首页 > 文章中心 > 精密加工

精密加工

开篇:润墨网以专业的文秘视角,为您筛选了八篇精密加工范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

精密加工范文第1篇

摘要:

随着手机、平板电脑及可穿戴数码产品的不断发展,触屏玻璃的材料及制作加工技术也不断推陈出新。文章综述了触屏技术分类及触屏玻璃的发展现状,阐述了触屏玻璃的加工流程,分析了各种触摸屏玻璃精密加工技术的特点以及触摸屏玻璃精密磨削金刚石磨具的发展方向。

关键词:

触屏玻璃;精密加工技术;金刚石砂轮工具

0前言

触摸屏广泛应用于智能手机、平板电脑、笔记本电脑、电子书、游戏机等领域。近年来,随着智能手机、平板电脑、车载移动终端以及商业化信息查询系统等智能终端产品的普及推广,全球触摸屏产品和技术发展突飞猛进,产业规模不断提升。市场调研机构TrendForce的报告显示,2014年全球智能手机出货量达到11.67亿部,相比2013年增加了25.9%;2015年全球智能手机出货量为12.93亿部,同比增长10.3%;TrendForce预估2016年智能手机市场仍呈现饱和状态,年增长约7.3%,总出货量向14亿部迈进。触屏玻璃为了达到高强度的要求,多采用强化玻璃作为基板材质,强化玻璃切割加工难度较大,加工时容易产生崩边,而这些崩边又容易造成玻璃强度降低[1],需要对触摸屏玻璃进行精密加工,因此对触屏玻璃精密加工技术与工具研究的进展进行总结讨论有着重要的意义。

1触摸屏技术

随着触摸屏在电子显示领域的广泛应用,触屏技术也在不断发展和提升。目前的触屏技术主要包括电阻式、表面音波、红外线、表面电容式、投射电容式等[2-3]。电阻式及电容式主要为中小尺寸应用技术。电阻式触摸屏是最早出现的触摸屏种类之一,其利用压力感应进行控制,由于其技术成熟且简单,并且具有价格优势,对一般厂商而言是最容易切入的触屏技术,但其存在透光率较低、耐久性较差等缺点;表面声波触摸屏是将一块不含有导电介质的普通玻璃屏安装在CRT、LCD或PDP等显示屏的前面,其主要特点是适应能力强,由于工作面是一层声波能量,表面声波触摸屏的基层玻璃没有任何夹层和结构应力,因此适合在公共场合等环境较恶劣的条件下使用;表面电容式触摸屏的表面覆盖有一层导电膜,工作时当人或其它物体接触其表面时,电极就能接收到表面电荷的变化,从而确定接触点的位置;红外式触摸屏是利用X-Y方向上设置的红外线矩阵来检测并定位触摸点的,红外线式触摸屏价格便宜、安装容易、能较好地感应轻微触摸与快速触摸,但是由于红外线式触摸屏依靠红外线感应动作,阳光、室灯等外界光线变化均会影响其准确度;表面电容触摸屏的寿命长,但是分辨率低且不能实现多点触控;投射式电容以蚀刻ITO制成,以触控时在X、Y交会处电容值的变化来判断触控的位置,具有较高耐用性、透光度、反应速度以及多点触控功能的优点。2007年以来苹果公司的iPhone、iPad系列产品取得的巨大成功,引发投射式电容屏开始了井喷式的发展,迅速取代电阻式触摸屏,成为现在市场主流的触控技术。

2触摸屏玻璃分类

触摸屏玻璃是触摸屏的重要组成部分,按照其用途的不同,可以分为盖板玻璃和基板玻璃。而按照屏幕面板材质的不同,则可以分为PET膜、钢化玻璃和蓝宝石玻璃。由于PET膜用于传统的电阻屏,故在下文不作详细介绍。

2.1触摸屏盖板玻璃

早期的触摸屏大多用于采用电阻式触摸屏技术的设备中,其盖板玻璃一般采用亚克力板或者是钠钙玻璃。但是其机械强度不高,表面抗划伤性和抗冲击性均较差,从而经常导致显示屏幕出现破损和表面变粗糙的情况。随着触摸屏在大众电子消费产品中的普及,电容式触摸屏应用得越来越广泛,对于触摸屏盖板的要求也随之提高。目前,触摸屏盖板玻璃多数采用高铝硅玻璃,其特点是硬度高,耐磨性好。市场上的高铝硅玻璃主要由外国企业生产,常见的牌号有美国康宁的Gorilla、日本旭硝子的Dragon-trail以及德国肖特的XensationCover等。国内对高铝硅玻璃盖板玻璃的研发起步较晚。成都光明光电目前推出了标号为MJB5的高强度玻璃,据相关信息显示,其比蓝宝石玻璃具有更高的强度。2014年,科立视材料科技有限公司研发了名为“下拉溢流法”的玻璃生产工艺,成功制造并量产0.4mm的高铝玻璃盖板,但是其生产的盖板玻璃是有碱配方,且不可以用于TFT玻璃基板。近年来,单片玻璃解决方案(OGS)以及玻璃薄膜电容(GF)成为触控面板厂研究的两大技术焦点。其中单片玻璃解决方案即在盖板玻璃上面制作传感器,节省了一片基板玻璃和一次贴合,触摸屏能够做得更薄且成本更低。OGS技术的兴起对触摸屏盖板提出了更高的要求,可以说盖板玻璃已成为电容式触控技术最关键的材料之一,而其加工技术将很大程度地影响其成品率和质量。

2.2触摸屏基板玻璃

触摸屏基板玻璃主要采用钠钙硅玻璃,其尺寸规格主要包括有1.1mm、0.7mm、0.5mm以及0.33mm等。国外厂家主要有美国康宁、日本旭硝子、电气硝子,国内的有南玻集团,河北东旭集团等。相对于触摸屏盖板玻璃,其技术门槛较低一些。由于钠钙硅玻璃的价格远低于高铝硅玻璃,虽然高铝硅玻璃的钢化效果要强于普通钠钙硅玻璃,但是其钢化后仍然能够达到一定的强度和保护效果,故出于降低成本考虑,许多厂家开始将普通钠钙硅玻璃作为中、低端触摸屏手机盖板使用。南玻集团采用新型的熔盐成分,对厚度为0.3~1.1mm、尺寸大于(300×300)mm的超薄平板玻璃进行化学钢化处理,处理后所得的化学钢化玻璃的表面应力平均值为300~450MPa,翘曲度低于0.2%,同时兼顾玻璃的可切割性和翘曲度,满足了显示器基板的使用要求。秦皇岛设计院针对显示屏玻璃的应用进行制备和性能研究,经过实验制备出的超薄玻璃化学钢化后表面压应力可达702MPa,已能满足液晶显示屏的要求。

2.3蓝宝石玻璃

2013年11月苹果公司消息称iPhone6可能使用蓝宝石玻璃作为手机面板。虽然后来iPhone6并没有采用蓝宝石玻璃,但却在其AppleWatch的显示屏上采用了。此后,蓝宝石玻璃便进入大众的眼球并受到广泛的关注。严格来说,蓝宝石玻璃一词是不确切的,因为采用的是蓝宝石晶体,而不是玻璃。蓝宝石是一种硬度达到9(莫氏硬度)的刚玉晶体,其硬度比知名手机面板玻璃Gorilla更高,其耐刮性能也更优于Gorilla。此外,蓝宝石的光泽度比玻璃好,化学稳定性和热稳定性也优于玻璃面板。但是蓝宝石生产工艺较复杂,特别是大尺寸蓝宝石手机屏幕制造成本较高,每块价格比玻璃面板提高近10倍。人工制备蓝宝石在1902年就开始进行研究,但大都是小尺寸的晶体。大尺寸蓝宝石在近年开始制备,并发展起来了多种方法,如热交换法、泡生法、温梯法以及针对泡生法进行改良的冷心放肩微量提拉法等。由于蓝宝石很硬,后期的研磨和抛光都非常困难,使得蓝宝石的成本很高。目前除了苹果手机屏幕采用蓝宝石玻璃外,国内也有数家手机制造商推出了蓝宝石屏幕手机。由于蓝宝石玻璃具有的优异性能,随着蓝宝石制备方法的改进,规模扩大,生产效率提高,价格有可能进一步下降,蓝宝石玻璃在未来的触屏面板领域将得到更广泛的应用。

3触摸屏玻璃加工技术

3.1触摸屏玻璃切割加工

在触摸屏的生产制造中,为了提高生产效率,通常是在一张大的玻璃上制作多个触摸屏。经过丝印后的大玻璃要通过切割分成多个触摸屏。切割是触屏玻璃加工的起始工序,其切割的质量直接影响后续加工的难易程度。目前常见的切割工艺有刀轮切割、水射流切割以及激光切割。刀轮切割也称为机械切割,是通过硬质合金或者金刚石的刀轮在一定压力下沿着玻璃滑动,在玻璃上形成一条深度和宽度一致的切口,然后进行裂断。刀轮切割技术成熟稳定、工艺简单、成本低;切割的质量主要取决于刀轮的品质[4]。但是刀轮切割也有着明显的局限,针对厚度小于1mm的玻璃使用刀轮切割是十分困难的,因为玻璃非常容易破碎;此外,刀轮加工后会在边缘区域留下显著的机械应力;随着触屏技术的不断发展,对触屏玻璃切割质量和切割成品率的要求非常严格,如用于平板显示方面的玻璃最薄已经达到0.4mm,有些应用于电子产品的玻璃甚至达到0.05mm。随着钢化玻璃的不断发展以及蓝宝石玻璃逐渐进入触屏领域,传统的刀轮切割在面对这些变化时,明显显得灵活性不足。水射流切割是将普通的水通过一个超高压加压器,然后通过通道直径为0.3mm的水喷嘴产生一道约3倍音速的水射流进行切割,若加入砂料增加其切割力,则几乎可以切割任意材料。使用水射流切割触摸屏玻璃与刀轮切割相比有着明显的优点:切割时不会产生裂痕,它可以切割厚度很薄的玻璃、能够灵活切割曲线、不需要进行磨边等二次加工,在切割过程中还可以减少飞尘,改善工作环境[5]。激光切割是利用经聚焦的高功率密度激光束照射工件,使被照射的材料迅速熔化、气化、烧蚀或达到燃点,同时借助与光束同轴的高速气流吹去熔融物质,从而实现将工件割开的目的。利用激光进行玻璃的切割可以使切割边缘光滑整齐,避免传统机械切割出现的微细裂纹,切割质量可以得到很大地提高[6]。并且激光能够很好的在薄触屏玻璃上面打孔或者开槽[7]。所以使用激光对触屏玻璃进行加工受到了行业的关注。目前,用于工业生产的玻璃切割设备主要由国外生产,如美国FononDSS公司用于平板显示方面的玻璃激光切割设备;德国Grenzebach公司的浮法玻璃在线激光切割设备;德国H2B公司的平板玻璃切割设备;德国Rofin针对玻璃、蓝宝石、陶片等透明易碎型材料推出的激光切割设备等。在国内,对于激光切割玻璃设备和工艺也有相关的研究。2014年大族激光研发的蓝宝石激光切割设备已量产并实现销售。理论研究方面,叶圣麟对激光切割液晶显示玻璃基片进行研究,其结果表明,增大光斑尺寸,可减少断面上的热影响区,提高切割质量;但光斑尺寸过大,会降低激光功率密度,增大输出功率[8]。焦俊科分析了单束和双束CO2激光热应力切割玻璃的切割效果,其结果表明相对于单束CO2激光切割的方法,利用双束CO2激光进行玻璃的切割,既可以保证切缝沿既定方向扩展又可以提高切面的光洁度,是一种比较理想的玻璃切割方法[9]。汪旭煌利用有限元软件ANSYS进行温度场数值计算,建立了激光切割液晶玻璃基板温度场的有限元模型,研究了激光功率和光斑直径对激光切割过程中温度场的影响,得到了温度分布与激光功率、光斑直径的关系[10]。

3.2触屏玻璃精密磨削加工

触屏玻璃的主要制造工艺包括切割、研磨,再经机械抛光研磨或化学强化,针对触摸屏玻璃切割后产生的玻璃边缘崩边,目前通常使用两种方法进行边缘缺陷的消除。一是机械加工法,如图1所示,使用金刚石砂轮进行精密磨削,消除崩边裂纹,降低亚表面损伤,提高表面质量;二是化学强化法,对切割后(或者精密磨削后存在表面缺陷)的强化玻璃基板(C圆角、R圆角、孔及边等)使用氢氟酸处理玻璃边缘,氢氟酸可以溶解掉玻璃表面的微观不平整,消除缺陷,此外氢氟酸还可以与玻璃产生六氟化硅填补玻璃的微观裂纹,但六氟化硅不稳定,易与水接触,接触后还会还原成有毒的氢氟酸。虽然化学强化法成本低,但面临着危害健康和环境保护的压力。因此业界也越来越重视精密磨削后玻璃的表面质量,这对金刚石精密磨削砂轮也提出了很大的挑战。

3.2.1电镀金刚石砂轮加工触屏玻璃工艺

电镀金刚石砂轮的制备原理是金刚石在弱酸性溶液中吸附H离子,在电场作用下向阴极缓慢移动,再辅助其它落砂方法,金刚石磨粒贴附在阴极(钢基体)表面时,Ni离子不断在阴极表面沉积,从而形成包裹金刚石磨粒的镀层[11]。电镀金刚石砂轮中金刚石磨粒、镀层与钢基体之间微观结构如图2所示。基于电镀原理,金刚石与镀层、镀层与钢基体之间的结合都是弱的机械镶嵌作用,因此砂轮在使用过程中金刚石磨粒受力、受热易脱落,导致砂轮寿命较短[12]。金刚石砂轮的寿命短导致CNC精密加工机床换刀次数频繁,会影响生产节奏,降低生产效率。使用电镀金刚石砂轮加工触屏玻璃的主要工艺包括:成型、开槽(孔)、倒边、精磨(抛)等。加工后表面质量对触屏玻璃的强度影响很大。基于目前电镀金刚石砂轮的磨削精度限制,为进一步提高触屏玻璃加工后的强度,还需要进行玻璃边缘的封胶强化,目的是使用树脂对玻璃加工表面微细缺陷(裂纹)进行封闭,缓解加工应力,因此目前电镀金刚石砂轮对触屏玻璃进行精密磨削还存在不足之处。

3.2.2烧结金刚石砂轮加工触屏玻璃工艺

烧结金刚石砂轮的金刚石的结合强度比电镀金刚石砂轮要高,而且成型性好,耐高温,导热性和耐磨性好,使用寿命长,能够承受较大的负荷[13]。但是,由于砂轮在烧结的过程中不可避免地存在着精度低的问题,因此需要对砂轮进行整形处理,这也增加了烧结金刚石砂轮的制造成本[14-15]。国内外学者针对金刚石砂轮的修整进行了大量的研究,主要的修整方法有电解修整法、电火花修整法以及复合修整法等[16]。电解修整法速度快,但整形精度不高;电火花修整法整形精度高,既可整形又可修锐,但整形速度较慢;复合修整法有电解电火花复合修整法、机械化学复合修整法等,修整效果较好,但系统较复杂,因此烧结型金刚石砂轮的修整问题仍然没有得到很好解决。由于烧结金刚石砂轮的使用寿命比电镀金刚石砂轮的长,在加工触屏玻璃时可以大大减少CNC精密加工机床换刀次数,从而提高生产效率。并且电镀金刚石砂轮存在不可忽略的环境问题,所以随着烧结金刚石砂轮制备工艺和修整技术的发展,在触屏玻璃加工领域,烧结金刚石砂轮将来很有可能会取代传统电镀金刚石砂轮。

3结语

目前,针对触屏玻璃进行深加工的电镀金刚石砂轮存在着寿命短,加工表面质量差等缺点,而性能较好的烧结或钎焊金刚石砂轮由于成本原因还未广泛使用,为满足不断扩大的触屏玻璃市场,一方面要对传统的加工工具和工艺进行提升,另一方面也要加大对新技术的研究和新工具的产业化推广。

参考文献:

[1]吕沫,张飞特,王建花.TP玻璃切割工艺研究[J].电子工艺技术,2014(4):242-245.

[2]刘瑞.触摸屏技术及其性能分析[J].装备制造技术,2010(3):69-70,76.

[3]吕明,吕延.触摸屏的技术现状、发展趋势及市场前景[J].机床电器,2012(3):4-7.

[4]周波.液晶基板玻璃切割工艺分析及优化措施[J].价值工程,2015(18):91-92.

[5]任慧,吴云桂.浅析TFT-LCD及触摸屏玻璃基板的切割工艺技术[J].电子世界,2014(19):67-67.

[6]付国柱.玻璃的激光切割技术[J].光机电信息,2008(3):5-11.

[7]叶圣麟,黄鑫,马军山,唐武,肖明强.液晶显示玻璃基板激光切割技术的实验研究[J].应用激光,2006(6):401-404

[8]焦俊科,王新兵,李又平.双束CO2激光切割玻璃的实验研究[J].中国激光,2008(11):1808-1812.

[10]汪旭煌,姚建华,周国斌,楼程华.液晶玻璃基板激光切割数值模拟与实验[J].中国激光,2011(6):95-99.

[11]温雪龙,巩亚东,程军,巴德纯.电镀金刚石微磨具磨损机理分析与试验研究[J].机械工程学报,2015(11):177-185.

[12]王爱君.电镀金刚石工具加工玻璃材料的研究[D].天津大学,2004.

[13]苏宏华.新型金属结合剂金刚石工具技术的基础研究[D].南京航空航天大学,2007.

[14]刘树.金刚石砂轮修整方法比较研究[J].科技创新与应用,2014(1):118.

[15]王帅.金刚石砂轮修整技术研究[D].南京航空航天大学,2011.

精密加工范文第2篇

关键词:数控机床;公式曲线;加工技术

0引言

随着我国社会经济的快速发展,我国工业取得了极大的进步,公式曲线类工件的应用也越来越多,如把手、子弹头、矫直辊等。公式曲线类工件对精度的要求答,在公式曲线类工件精密加工中,数控车床具有独特的优越性,但其加工技术难度较大,并且容易出现振刀现象。如何解决上述问题成为当前公式曲线类工件精密加工制造业面临的重要问题。

1加工前的准备

矫直辊工件图如图1所示,其辊型曲线为典型的公式曲线。矫直辊辊型曲面的加工工艺流程为:粗车留余量、表面热处理、精车成形。精车具体加工思路为:采用一夹一顶装夹方式,工件固定在心轴上,心轴一端用四爪卡盘夹紧、找正心轴,心轴另一端用尾座顶尖顶紧;然后分别精车辊形曲面、加工两端R15mm圆角。笔者采取多项技术措施,用802D系统数控车床很好地完成了该工件的加工。现将具体实施过程进行整理总结。

2程序设计

2.1辊型曲面加工程序设计

假想刀尖方位代号设定为8mm,车刀可供选择的假想刀尖方位如图2所示,刀尖圆弧半径为R2mm。以下辊型曲面加工程序为其精加工程序,可以通过在刀具补偿页内修改刀具X向长度补偿值的办法进行半精加工、精加工,进而保C工件尺寸精度。

辊型曲面加工程序如下:

JZG(程序名)

R1=164.29(辊型曲线X向起点)

R2=120(辊型曲线Z向起点)

R3=15(倒圆角半径值)

R4=58.5(辊型曲线方程R0参数值)

R5=20(辊型曲线方程r0参数值)

R6=33(辊型曲线方程α0参数值)

R7=0.1(力Nq-步距值)

T1D1(选择刀具及刀补)

M03S120(设定主轴转向及转速)

G64(选择连续路径加工模式)

G00X=R1+6Z=R2+R3+3(快速定位到加工起点)

G00G42X=R1(X向进刀、刀具半径补偿生效)

G01Z=R2F0.3(右端外圆加工)

R8=R2(自变量z赋初值)

ST:(程序跳转标记符)

R9=(R4+RS)*(R4+R5)

R10=RS*R8

R11=SIN(R6)*SIN(R6)

R12=SQRT(R9+R10*R11)-R5(辊型曲线参数方程)

R13=R12*2(辊型曲线X向坐标切换为直径值)

G01X=R13Z=R8(辊型曲面加工)

R8=R8-R7(自变量z值递减)

IFR8>=-R2GOTOST(判断辊型曲面是否加工完成)

G01Z-(R2+R3+3)(左端外圆加工)

G00G40X=R1+6(X向退刀、刀具半径补偿取消)

Z=R2+R3+3(Z向退刀)

M05(主轴停转)

M30(程序结束)

2.2圆角加工程序设计

加工程序原点如图5所示,假想刀尖方位设定为3,刀尖圆弧半径为R2mm。一个倒圆角加工循环走刀路线及刀尖圆弧半径补偿情况如图3所示。条件设定及加工程序为右端倒圆角情况。左端倒圆角时,工件掉头装夹,其它情况不变。

圆角加工程序如下:

JZGR(程序名)

R1=164.29(倒圆角圆柱端面的直径值)

R2=135(倒圆角圆柱端面的z向起点)

R3=15(圆角半径值)

R4=1(圆角半径初始值)

R5=1(加工步距值)

T2D1(选择刀具及刀补)

M03S120(设定主轴转向及转速)

G00X=R1+6Z=R2+3(加工循环起点)

ST:(程序跳转标记符)

G00X=R1-R4*2-6(加工起始点)

G01G42Z=R2F0.3(Z向进刀、刀具半径补偿生效)

X=R1-k4*2(进给至圆角起点)

G03X=R1Z=R2-R4I0K=-R4(圆角加工)

G01Z=R2-R4-3(加工终止点)

G01G40X=R1+6(X向退刀、刀具半径补偿取消)

G00Z=R2+3(Z向退刀)

R4=R4+R5(圆角半径递增)

IFR4

M05(主轴停转)

M30(程序结束)

2.3关于程序设计的几点说明

(1)关于程序原点程序原点一般选择工件的对称中心,以简化编程;或者工件的设计基准上,以使加工引起的误差最小。该工件程序原点的设定如图5所示。

(2)关于G64指令G64指令为连续路径加工模式,不同数控系统的数控机床都有该加工模式,G64指令具有速度前瞻功能,控制系统预先确定几个NC程序段的速度,并使其尽可能地以相同的速度运行,避免不断加速、减速。为保证曲面的辊形精度,z轴进给步距设定非常小,为0.1mm。使用G64指令,有效避免了从一个程序段到下一个程序段的进给顿挫,保证加工顺畅。

(3)关于刀尖圆弧半径补偿为了避免出现过切或欠切现象,保证工件加工精度,数控车床刀尖圆弧半径补偿应注意以下五点:①必须正确地选择假想刀尖方位并在刀具补偿页内输入刀具的假想刀尖位置号码。车刀可供选择的假想刀尖方位有9种,如图6所示,其中箭头表示刀尖方向,“O”表示刀位点,“+”表示刀尖圆弧圆心。②必须在刀具补偿页内输入刀具的刀尖圆弧半径值。③加工过程中,进刀线和退刀线的长度必须大于刀具刀尖圆弧的半径。④不要在工件轮廓线上进行刀尖圆弧半径补偿的建立和取消,最好在工件轮廓线以外进行。⑤刀尖圆弧半径补偿指令G41/G42与G40必须跟在直线段上,否则会出现语法错误。

(4)关于R参数编程(宏程序)数控车床R参数编程(宏程序)应注意以下两点:①数控车削加工采用直径编程,由于曲线方程的X值为半径值,编制公式曲线的加工程序中的x坐标值应换算为直径值。②程序设计尽量具有通用性。相类似的工件,只需修改相应参数变量,即可满足数控加工要求。这样既缩短了编程时间又不易出错。本文辊型曲面加工程序适宜同一类型不同规格的矫直辊辊型曲面的加工;圆角加工程序适宜不同直径圆柱端面上的倒圆角加工。

3避免振刀的措施

为避免工件切削过程产生振动,笔者结合自己加工经验总结了以下几点:

(1)采用小圆弧半径刀具加工。该工件笔者曾尝试用球头车刀一次完成辊型曲面及两侧R角的加工,但是由于球头车刀R圆弧半径大,切削过程中与工件表面接触面大,加工产生的切削力大,加工过程中振动明显,发生啃刀现象。后改变加工工艺辊型曲面、R圆角分别用小圆弧半径刀具加工,振刀现象得到很大程度的缓解。

(2)心轴由活顶尖换为死顶尖顶紧。采取该项措施后,振刀现象消失。需要注意的是,死顶尖顶工件不要顶太紧,顶尖与工件中心孔处要涂加黄油。

(3)为避免工件加工过程中松动,工件右端用双螺母拧紧,如图5所示。两螺母在拧紧后,螺母之间产生的轴向力,使螺母牙与螺栓牙之间的摩擦力增大从而防止螺母自动松脱。

精密加工范文第3篇

关键词:超精密;机械加工;技术发展;动向;研究分析

DOI:10.16640/ki.37-1222/t.2016.24.031

1 前言

随着我国经济建设发展速度的不断加快,我国的综合国力已经成功的跻身于国际的前沿,所以加强我国的经济建设的管理成为我国最重要的任务,必须保证我国的经济市场可以在激烈的竞争中得到生存,现在我们的行业种类越来越多,对于机械的应用越来越广泛,所以保证机械制作的精密度就可以保证工程的质量,得到人们的信赖,促进我国经济建设的进步与发展,如今我国的超精密机械已经取得了初步的成绩,所以继续研究发展超精密机械,保证产品的质量使人们得到满足是急需解决的问题。

2 超精密机械的介绍

超精密机械的加工技术非常的复杂,需要经过的步骤非常的多,并且机械的制作材料非常的小,超精密机械加工就是以形状精度为数百纳米甚至数百微米,表面的粗糙组的范围以在数百纳米以内为标准的机械,可以看出加工的过程必须非常的小心,在加工的过程中还要进行切削、磨削等多种加工的技术,然后将工具复制到其他的工件上的方法,超精密机械的加工过程以及加工技术的应用必须要时刻的注意,如果一不小心就会降低制作的质量,影响到机械的应用,降低产品的质量,不利于产品满足顾客的需求,就影响经济市场的发展,当前的超精密机械已经发展了40多年,在某些方面取得了较好的成绩,但是在其加工技术方面还是存在许多的漏洞,不能促进超精密机械的广泛应用。超精密机械的加工技术与现在的计算机、能源技术等等都有较为紧密的联系,超精密机械的加工技术在近些年来正在逐渐的发展,因为其发展的过程非常的缓慢,所以不能适应我国经济发展的速度,所以现在必须要采取正确的措施进行加工技术的升级,推动超精密机械的大规模发展和应用,使其适应我国经济的发展速度。

3 超精密机械加工技术的分析

3.1 切削加工技术

超精密机械在加工的过程中,最重要的环节就是切削加工,为了保证机械的精密和质量,所以需要对其进行一些列的切削,在切削的过程中,工作人员必须全部投入大量的耐心,为了确保以上方面在什么样的范围内才不会对切削的质量造成较大的影响,国际上很多伟大的科学家都进行了详细的实验,不断的实验,不断的探求最合适的数据,经过了许多次的数据探究,他们才将最好的切削环境温度、切削的形态、切削的锋刃度等等影响因素成功的确定下来,有效的控制了切削加工技术的使用,提高了成品的质量。

3.2 磨削加工技术

磨削的加工技术就是对产品进行磨光和抛光,但是许多材料因为自身具有较大的脆弱性,在进行磨削的过程中非常容易断裂,这是一种非常不利于经济发展的现象,为了保证在适用的产品上使用磨削加工技术的时候提高产品的质量,最重要的操作方法就是要提高机床的刚度,还有就是机床的高度运转的精度,保证磨削的刃非常的锋利,确保高度整齐一致,这样才能有效的控制产品加工的质量,防止较多的产品在加工过程中出现损伤,不利于产品生产效率的提高。

还需要一提的就是在进行产品的磨削加工过程中,伴随着的就是对产品进行研磨,但是产品在研磨的时候因为整个产品的形状问题不能有效的保证研磨的成功率,导致产品的研磨失败,需要重复的进行产品的切削过程,造成了工期的延长,为了提高产品的质量,但是不能提高产品的效率,这也是存在的一个重要的问题,所以在进行产品的研磨阶段需要根据产品给进的速度和停留的时间进行仔细的估算,对产品研磨阶段进行高效的管理和控制,保证整个过程的成功率。

3.3 加工技术所包含的内容

加工技术在应用的过程中出了使用传统的加工机理,还有非传统的加工方式,并且这种方法已经得到了广泛的应用,具有很好的应用价值,被加工的材料在加工性能上具有非常严格的要求,应该制定均匀,保持性能稳定,不要具有缺陷,还有就是加工设备的问题,加工设备一定要具有较高的稳定性和刚度,并且能够自动化,光、静电等等,一定要保证工作环境的标准,提高产品质量额成功率。

4 超精密机械加工技术的发展动向

机械制造就是在提高精度和提高成产率两个方面成功发展起来的,并且在不断的发展过程中取得了重要的成绩,并且越来越被重视,在不断的发展中,机械已经从高精密向着超精密的方向不断的发展,已经成为我国经济发展的重要手段之一。首先就是具有很高的材料切除率,具有很高的经济性,还有就是超精密机械的加工应用非常的广泛,所以我们可以对超精密机械加工进行预测,在未来的几十年里,超精密机械制造业一定稳定快速的向着高精密、高技术水平的方向发展,并且在以后的经济市场上占有非常重要的地位,成为以后经济市场在竞争中取胜的关键因素,现在的超精密机械加工虽然还存在着较多的问题,但是已经针对存在的问题进行了明确的分析,只要能够成功的解决存在的这些问题,我们一定可以提高产品在加工过程中的质量和生产的效率,使产品具有更高的稳定性和可靠性,所以说未来的超精密机械加工技术一定能够被广泛的应用于各个行业当中,促进我国经济事业的迅猛发展,为我国的发展带来更多的机遇。

5 结束语

通过本文的介绍,我们已经知道了现在的超精密机械具有很高的地位,是在竞争中能够取得胜利的关键,所以其加工技术的研发对我国的经济具有很高的价值,就现在的发展状况来说,未来的加工技术具有很高的发展前景,能够被广泛的应用于我国的各个领域。

参考文献:

精密加工范文第4篇

关键词 机械加工 加工中心 应用设计

中图分类号:TG659 文献标识码:A

随着社会向前发展,人们对机械设备的精度、外型、尺寸有更严格的要求,应用高精密、高速度数控铣床或加工中心能够加工出人们需要的机械零件,它在小批量、小型的、精密度要求较高的零件加工中有较大的应用优势。本次研究用VH1100/VSH1100机床的加工应用来说明高精密、高速度加工中心应用设计的方法。

1 VH1100/VSH1100机床自身的特点

VH1100/VSH1100加工中心的结构由床身、工作台、作业结构、辅助结构、数控结构这五个部分组成。它的应用特征为轴承精密、可无级调速、高速加工、燥音低、切销能力强,作业人员可根据加工需要高速加工或降低转速强力切销。这种机床自带有PLC系统,作业人员可应用PLC系统操控机床作业,或自编程序让机床自动加工。机床可外接通讯设备及其它的辅助设置,它可成为集成加工系统的一部份,完成多轴联动作业。

以VH1100/VSH1100加工中心为例,它除了具备以上的应用特点外,还具备以下的特点:智能回零的操作,简化作业过程;通过球杆仪与激光干涉仪器完成精度自动检测与修正的功能;具备安全保护功能;具备自动维护、保养功能。从以上的这些特点可以看到,要做好高精密、高速度加工中心的维护及应用并不困难。

2安装调试流程

假设机床搬运的方式不妥,可能会破坏机床的结构或损坏机床零件,影响机床生产的精密度。运送机床应用吊车或堆高机,以钢丝绳承送,一次性运送完毕。运送时要注意稳定机床的重心。将机床送进工厂,在开箱以前,要依照说明书核对机床的状况,避免运输时漏掉机床设备。在拆箱安装机床时,工作人员必须依照说明书上说明的方法作业,特别要注重说明书上标注的重点部位,以免在安装调试的过程中损坏机床。拆御、搬运、安装机装尽量由两名工作人员共同进行,以便稳定机床的重心,避免出现机床物理损坏。如不便人工搬运时,可应用吊车、叉车辅助搬抬。

在安装机床时,首先需安全选址,避免选择环境杂乱的位置,以免各类粉尘对机床造成影响;避免放在有磁电影响的位置,以磁电影响机床的作业;避免振动较大的位置,以免振动对机床造成影响,出现机械加工不精确的问题;避免放在化学污染严重的位置,以免化学药品侵蚀机床;避免出现过于潮湿或阳光爆晒的位置,以高温度对机床金属结构产生影响。机床最好设置在环境适宜的开阔之处,以便机床加工、维护及外接其它设备。选择了合适地点以后,需为机床配置导线与断路器。以VH1100/VSH1100加工中心为例,该次选择16―25mm2的导线与75A的无熔丝断路器。在安装时要仔细的确认电机相序。该次空压系统的压缩空气规格设置为0.6―0.8Mp之间。

御下机床后,需做好调整工作。首先,工作人员要调整固定快,检查轴X、轴Y、轴Z,重新设置固定杆、固定板、固定架、固定块,做好拼装工作。其次,做好其它部位的调整工作,水平仪决定机床作业的精度,工作人员要仔细调整水平仪,将它恢复至说明书中所说的原始状态;将其它机械部件依说明书恢复至原始状态,调整机床的防振、防垫铁,将机床恢复至原始的作业状态;调整机床的精密部件,比如螺栓、螺丝等部件,避免出现机床零件松动的问题;待全部机床重新设计完毕,通电检查机床的运动状态。最后,工作人员要做好防潮、防电、防磁、防震等工作,避免机床在作业时出现各种意外,影响机械加工的精度。比如工作人员要为机床喷上防锈油,待防绣油干后,做好外部清洁工作。

3 维护保养分析

只有做好维护保护工作,数控加工中心才能以正常的作业状态作业。工作人员要制定一套静态与动态相结合的维护方法。以静态的方式来说,作业人员可做好每日、每周、每季、每月、每年的保养。日保养的重点为检查各种零部件能否正常作业,做好日常清洁工作。周保养重点为彻底清理机床的零部件,检查机床的加工精度。月保养的重点为做好精度检查工作、零部件工作、零部件优化工作。季保养的重点为是否需要检修零部件或者更换零部件,避免由于零部件磨损影响加工精度的问题。年保养的重点为检查机床的整体结构、更换磨损的零件、做好机床优化工作。工作人员要制订一套动态的机床维护计划,针对部分易磨损、精度要求高的零部件做重点的维护工作。在维护高精密、高速度数控铣床或加工中心时,不能随意打开各器件的护盖,更不可将粉尘等带入到护盖内。

4 结论

目前的高精密、高速度加工中心具有集成化、高精化、智能化、可拓展化的特点。只要工作人员了解数控加工中心的外观特性、操作特性,便能设计出一套节省成本、高效率的应用和维护的方法。本次研究以VH1100/VSH1100数控加工中心为例,说明了这套应用设计方法。从VH1100/VSH1100数控加工中心的特点可以看到,它的整体性强、智能性强、精密度高,工作人员要依照它的整体特性做好外观维护工作、依照智能性强的特点在操作中应用一次回零的特点、依精密度高的特点制订维护计划,便能让机床保持工作状态,甚至能延长使用寿命。

参考文献

[1] 王德山.多工位连续模的排样设计[J].机械工程师,2010(12).

[2] 王文书.三坐标测量机对同轴度误差测量方法的探索[J].制造技术与机床,2010(11).

[3] 张谦.数控车刀安装高度对外圆加工精度影响[J].煤矿机械,2010(08).

[4] 何京中.数控机床的管理使用研究[J].煤矿机械,2010(07).

精密加工范文第5篇

关键词:细长轴 磨削 砂轮 中心架

1.问题提出

柴油机精密螺栓,材料为42GrMo ,直径为φ30(+0.015/0),长度为1000,属于细长轴。产品磨削外圆光洁度Ra0.4,圆度0.01,直线度为0.05 。如图一所示,精密螺栓两头螺纹M36X2-7e6e,两端面中心孔A2 。从产品结构分析,无法在无心磨床加工,只能选择外圆磨床。在试制磨削过程中,工件易产生弯曲,鼓形造成工件圆度难以保证,并且会产生震动,工件表面产生很浅的螺旋形波纹螺纹。

2.问题分析

2.1. 精密螺栓表面出现螺旋状很浅的波纹痕迹

其产生的原因:(1)砂轮工作表面凸凹不平;(2)机床刚性影响;(3)由于工件与顶尖系统刚性较差,顶紧力过紧或过松。(4)其他因素:磨削深度太大,纵向进给量太大,或砂轮主轴有轴向窜动,都可能产生螺旋形波纹。此外、工作台导轨油压过大,使工作台纵向移动产生漂浮和摆动,也会造成工件表面的螺旋形波纹。

2.2.精密螺栓圆柱度超差

精密螺栓在磨削后产生的鼓形和弯曲,使工件的圆柱度超差。(1)鼓形:由于工件刚性不足,或中心架调整不正确,磨削用量过大,使工件产生弹性变形而出现鼓形。(2)弯曲:当磨削用量太大时,工件过度发热,而冷却又不充分、不及时、不均匀、使工件产生内应力,以致使冷却后产生弯曲变形。

2.3.精密螺栓圆度超差

精密螺栓中心孔形状不正确,孔内有污垢或已磨损;顶尖在主轴和尾架套筒锥孔,内贴台不紧;工件顶得太紧或太松;砂轮主轴或头架主轴的径向跳动过大,这些因素都可能使工件圆度超差。另外,工件刚性差或余量不均时,在磨削力的作用下易产生弹性变形,结果使磨削表面出现圆度误差复映现象。

3.问题解决可行性实施

通过对精密螺栓产生问题的分析,从以下几个方面进行攻关实施:

3.1. 磨前准备工作

3.1.1.要校直工件。校正后工件同轴度应尽量在0.15mm/m以内。

3.1.2.精密螺栓经过调质热处理后,进行时效处理,消除工件内应力。

3.1.3.中心孔。中心孔是细长轴的基准,工件经热处理后,中心孔会产生变形,应对中心孔进行研磨,是基准中心孔。粗磨时,采用φ3角度为60°中心孔,提高粗磨时的生产效率,粗磨后两端面去除1mm。精磨时重新修整φ2角度为59°30′中心孔,减少中心孔和顶针接触面。

3.1.4.调整机床,主要调整头架于尾架间的中心距,将工件顶紧后用手旋转,感觉不松不紧为最好。

3.1.5检查工件两顶针顶住工件,用百分表测量径向跳动,控制在0.03mm以内,特别是工件间的弯曲度最大的地方,确定能否磨出。

3.1.6.精磨时采用双拨杆拨盘,使工件受力均衡,以减少振动和圆度误差。

2.砂轮及磨削用量的选择

2.1. 精密螺栓的材料调质硬度HRc38~44,根据材料性能特点,选择相匹配磨料、硬度、粒度的砂轮,具体型号选择见表一

2.2.修整砂轮。粗磨时修整的走刀量S,切深T,均比一般磨削要大些,可使砂轮表面比较粗糙,以增强切削性能,最好修整为凹型,这样能够减少砂轮和工件的接触面,接触面面为2/3;精磨时用锋利的金刚笔,较小的进给量,进行修整从而获得细密的砂轮面。

2.3.合理的选择切削用量

粗磨时工作台纵向速度放到1-1.5m/min,切削用量为0.02-0.05;精磨时工作台纵向速度放到0.3-0.8m/min,切削用量为0.01-0.03。

磨削时工件转速为50-100转,粗磨时 工作台纵向速度放到0.8-1.2m/min,切削用量为0.02-0.05;精磨时 工作台纵向速度放到0.5-0.8m/min,切削用量为0.01-0.02。

3.合理的选择中心架

根据精密螺栓的长度,合理的选择一个中心架的在轴中间位置;在磨削过程中要合理调整中心架的两个支片,刚开始可以用涂色的方法观察工件是否和支片前端接触;加工过程中当螺栓,砂轮和支片三者位置一致时,用手调整支片,并观察火花是否增大,最主要是看火花和工件的形状来不断调整上下两支片。根据操作多次试验经验,在进给0.07-0.10mm后就要调整,在调整时可根据情况来调整上下支片。

4.结论

在细化磨削外圆的工步时,首先,应注意机床的精度能否满足工艺要求和磨前准备工作;其次,为保证大批量加工中形状精度的控制,夹持要可靠、稳定,变形要小;最后,砂轮及磨削用量的合理选择,适合于批量生产时的需要。外圆磨削完全能满足精密螺栓工艺的要求,生产效率有了极大的提高。

参考资料:

精密加工范文第6篇

关键词:刀具 种类选择 切削用量

一、引言

机械制造业在整个国民经济中占有十分重要的地位,而其中金属切削加工是基本而又可靠的精密加工手段,在机械、电机、电子等各种现代产业部门中都起着重要的作用。工具的设计、制造和使用自古以来就很受重视,这里我们所说的工具,不仅仅指进行机械加工的机床,我们更关心的是直接进行切削加工的刀具。刀具是推动金属切削加工技术发展的一个极为活跃而又十分关键的因素,可以说切削加工技术发展、革新的历史就是刀具发展的历史。

我单位在2008年引进了小巨人公司制作的两台车铣加工中心。但一直未能在零件上真正实现和普及数控车铣加工中心的铣削功能。刀具选择、加工路径规划 、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。研究掌握数控车铣加工中心的铣削功能,对于形状复杂以及精度要求很高的回转体零件的精密加工,提升我单位数控精密加工能力,具有很重要的现实意义。

二、数控铣加工常用刀具的种类

数控铣加工刀具种类很多,为了适应数控机床高速、高效和自动化程度高的特点,所用刀具正朝着标准化、通用化和模块化的方向发展,主要包括铣削刀具和孔加工刀具两大类。为了满足高效和特殊的铣削要求,又发展了各种特殊用途的专用刀具。数控铣刀具的分类有多种方法,根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;③特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。从切削工艺上可分为:平端立铣刀、圆角立铣刀、球头刀和锥度铣刀等。

三、加工中心刀具类型的选择

刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便,刚性好,耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。生产中,被加工零件的几何形状是选择刀具类型的主要依据。

1)铣削刀具的选用。加工曲面类零件时,为了保证刀具切削刃与加工轮廓在切削点相切,而避免刀刃与工件轮廓发生干涉,一般采用球头刀,粗加工用两刃铣刀,半精加工和精加工用四刃铣刀;铣较大平面时,为了提高生产效率和提高加工表面粗糙度,一般采用刀片镶嵌式盘形铣刀;铣小平面或台阶面时一般采用通用铣刀;铣键槽时,为了保证槽的尺寸精度、一般用两刃键槽铣刀;

2)孔加工刀具的选用。数控机床孔加工一般无钻模,由于钻头的刚性和切削条件差,选用钻头直径D应满足L/D≤5(L为钻孔深度)的条件;钻孔前先用中心钻定位,保证孔加工的定位精度;精绞前可选用浮动绞刀,绞孔前孔口要倒角;镗孔时应尽量选用对称的多刃镗刀头进行切削,以平衡镗削振动;尽量选择较粗和较短的刀杆,以减少切削振动。在经济型数控加工中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。一般应遵循以下原则:①尽量减少刀具数量;②一把刀具装夹后,应完成其所能进行的所有加工部位;③粗精加工的刀具应分开使用,即使是相同尺寸规格的刀具;④先铣后钻;⑤先进行曲面精加工,后进行二维轮廓精加工;⑥在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。总之,根据被加工工件材料的热处理状态、切削性能及加工余量,选择刚性好,耐用度高的铣刀,是充分发挥数控铣床的生产效率和获得满意的加工质量的前提。

3)切削速度的确定。进给速度是数控机床切削用量中的重要参数,主要根据零件的加工精度和表面粗糙度要求以及刀具、工件的材料性质选取。最大进给速度受机床刚度和进给系统的性能限制。在轮廓加工中,在接近拐角处应适当降低进给量,以克服由于惯性或工艺系统变形在轮廓拐角处造成“超程”或“欠程”现象。确定进给速度的原则:1)当工件的质量要求能够得到保证时,为提高生产效率,可选择较高的进给速度。一般在100~200mm/min范围内选取。2)在切断、加工深孔或用高速钢刀具加工时,宜选择较低的进给速度,一般在20~50mm/min范围内选取。3)当加工精度,表面粗糙度要求高时,进给速度应选小些,一般在20~50mm/min范围内选取。4)刀具空行程时,特别是远距离“回零”时,可以选择该机床数控系统给定的最高进给速度。

4)背吃刀量(或侧吃刀量)的确定。在保证加工表面质量的前提下,背吃刀量(ap)应据机床、工件和刀具的刚度来决定,在刚度允许的条件下,应尽可能使背吃刀量等于工件的加工余量,这样可以减少走刀次数,提高生产效率。

四、结束语

我单位数控加工中心具有轴向和颈相动力头,能实现三个坐标的联动。利用极坐标插补指令和圆柱插补指令进行了程序优化和开发,并对机床加工工位重复定位误差进行了有效的补偿,初步实现对回转体的侧面进行快捷可靠的精密铣削加工,提高了加工精度和表面加工质量。

参考文献:

精密加工范文第7篇

关键词:精密机械;加工;抛光工艺;应用;解析

中图分类号:

TB

文献标识码:A

文章编号:1672-3198(2013)20-0193-01

0 引言

随着工业的发展,机械加工的精度和复杂度在不断的进步,尤其是微型计算机的出现,在工业控制领域得到了广泛的应用,极大的提高了加工的效率,使机械加工可以自动化的运行,并具有一定的智能性,在出现问题时,可以通过系统内置的人工专家系统,自行的解决一些问题。这些技术上的进步,都是为了提高机械加工的精度和效率,从机械加工的发展可以看出,不同时期的机械产品,最大的区别就体现在加工的精密性上。如现在人们的日常生活中,经常能看到很多微型、复杂的机械产品,在制造这种产品的过程中,必然会使用精密机械加工技术。无论在汽车大型机械产品还是钟表等微型机械产品中,都需要抛光工艺,机械产品越精密,对抛光工艺的要求也就越高,因此要想提高精密机械加工的水平,必须对先对抛光工艺应用进行研究。

1 精密机械加工技术简述

1.1 精密机械加工技术的概念

在不同时期,精密机械加工技术的概念也有一定的差异,主要的差别就体现在表面的粗糙度上。这个标准只是暂时的标准,随着机械加工水平的提升,精密机械加工的精度一定会得到大幅的提升,从机械加工的发展就可以看出,在工业发展的初期,汽车等大型机械产品就可以称为精密加工。除了加工的精细之外,最新的概念也包括了加工的效率,在以往的机械加工中,为了提高加工的准确性,需要消耗更大的工作量,这样必然会消耗更多的时间,因此降低了加工的效率,这显然不符合现代工业发展的情况。因此最新的概念中,在促进加工精度进步的同时,也要促进加工的效率的进步,精密加工的方法有很多,如抛光布轮、砂带磨削等,通常情况下,精密机械加工技术都是通过更新加工设备,来促进加工的精度和效率的进步。

1.2 精密机械加工的特点

与普通的机械加工相比,精密加工除了在加工精度上有更高的要求外,加工的效率也有一定的提升,这符合目前机械制造的发展趋势。随着机械加工领域的发展,加工的设备和技术都在不断的进步,为机械领域的进步提供了基础,加工的准确性和效率逐渐提高,逐渐就形成了精密机械加工的概念。由此可以看出,精密机械加工的第一个特点就是自身不断进步,精密机械加工技术随着时间的推移,加工的精度不断提高。其次在不同的机械产品加工中,精密机械加工会表现出不同的形式,如涂附磨具的加工中,砂带磨削就具有很高的加工精度,而且加工的效率很高,正是由于砂带磨削的这些特点,使其在精密机械加工中得到了广泛的应用。但是目前砂带设备的生产技术,大多掌握在国外的公司中,国内的砂带机床还处于起步阶段,机床的自动化程度较低,与国外的产品相比,质量也有一定的差异,要想提高我国机械加工设备生产水平,必须建立在精密机械加工特点的基础上。

1.3 精密机械加工中表面处理技术

在机械加工中,表面处理技术一直都受到人们的重视,表面的处理不仅关系到产品的美观,也是赋予材料表面某种功能特性。通常情况下,表面处理技术有两种方式,第一种就是在表面加上一些覆盖层,第二种就是利用物理和化学等手段,对材料表面的形状、成分等进行改变。在具体的机械加工中,可以使用物理作业的方式等方式,在零部件表面增加一层具有特殊性能的材质;也可以使用热处理等技术,来改变材质表面的形状和成分。但是在进行这样的表面处理技术之前,首先要对材料的表面进行抛光处理,只有材料表面的光滑度达到一定的标准后,才能进行下个环节的加工。由此可以看出,抛光是机械加工表面处理的第一个环节,也是非常重要的环节。

2 精密机械加工中抛光工艺的应用

2.1 抛光工艺的概念

在机械加工中,抛光就是利用一定的设备,对零部件的表面进行处理,从而降低零部件表面的粗糙度,这样的加工工艺就是抛光。在实际的加工过程中,抛光不能提高零部件的几何尺寸和精度,只是针对零部件表面的一种加工工艺,除了使工件表面更加光滑外,有时候需要消除工件表面的光泽,也可以通过抛光来实现。随着抛光工艺的发展,已经出现了化学抛光、CMP抛光等技术,利用这些先进的抛光工艺,极大的提高了加工零件表面的光滑度,同时也在一定程度上提高了加工的效率,尤其是抛光机床的使用,使得抛光加工可以自动化的进行,最大程度上减少人员的操作。现在的机械加工精度已经达到了微米级别,人眼已经无法直接进行观察,依靠人员操作显然无法完成加工,因此现在的抛光加工在向自动化和智能化发展。智能化的抛光工艺需要建立在诸多领域技术结合的平台之上,计算机技术就是必备的技术之一。此外,还需要机械加工技术,由于抛光技术一般主要应用于机械再加工中。对于目前的抛光技术而言,其还有很大的发展潜力,并能够在未来的发展过程中不断融入新的技术,从而改善现在抛光技术中存在的不足。当然,为了能够让抛光技术更加具备实用性和有效性,要进一步发展技术,从而更加满足现代以及未来技术领域的需求。

2.2 抛光工艺在精密机械加工中的应用

传统的机械加工中,由于对精度的要求较低,因此采用的是原始的手工抛光方式,随着工业水平的提高,人们对机械设备也有了更高的要求,出现了机械加工的方式,与手工抛光相比,这些机床设备大幅的提高了加工的精度,半自动化的加工方式,也极大的提高了抛光的效率,因此在实际的加工中,机械抛光得到了广泛的应用。但是在机械产品向复杂化和精密化发展的今天,机械抛光的加工出来的零部件,表面的镜面亮度和程度,都达不到产品规定的标准。为了满足精密机械加工中抛光的要求,现在的加工中都采用Lapping,利用这种加工方式,工件表面的精度可以达到2微米,粗糙度达到Ra0.01微米,完全能够满足现在精密机械加工的标准。Lapping使用起来非常方便,如目前常用的氧化锆研磨剂,由于辅助材料的配比不同,研磨剂可以有液体、膏体、固体三种状态,液态的研磨剂可以直接进行抛光使用,而膏体和固体的研磨剂,可以加水稀释成液态,也可以直接进行使用。在实际的抛光过程中,应该根据加工零部件的形状、材料等,针对性的选择一种研磨剂。在抛光的过程中,需要添加一定的抛光剂,保证后期的抛光效果。同时,现在化的抛光工艺也逐步发展成熟,并逐步应用到机械生产中,成为了现代主流的抛光技术。此外,对于机械再加工而言,由于需要更多的精度加工,机械表面的光滑度要求也越来越高,从而导致抛光工艺的技术革新。总之,抛光工艺在机械再加工中占据非常主流的地位,并能够在一定程度上完善机械的加工效果。

3 结语

抛光作为机械加工中一种重要工艺,在传统的机械加工中,就受到了人们的重视,随着工业的发展,机械产品变得越来越复杂和精密,对抛光工艺提出了更高的要求,因此抛光工艺也从原始的手工加工变成机械加工,能够满足批量生产的需要,同时也在一定程度上提高了加工的精度。通过全文的分析可以知道,抛光工艺在精密机械加工中,具有非常重要的地位,现在广泛使用的Lapping,可以同时提高抛光加工精度和加工的效率,而且根据抛光工件的特点,可以针对性的选择液体、膏体、固体状态的研磨剂。

参考文献

[1]王健,郭隐彪,朱睿.光学非球面元件机器人柔性抛光技术[J].厦门大学学报(自然科学版),2010,(05):636-639.

精密加工范文第8篇

关键字:机械 工艺 精密加工

科技的发展使我国的现代机械制造技术得到不断发展,机械制造在我国经济发展中起了一定的作用。技术的不断提高,机械及其自动化的程度越高是我国机械制造业进一步发展的不竭动力。

一、现代机械制造工艺与特点

1.现代机械制造工艺

现代机械制造工艺主要是指机械产品包括零件加工、装配等的制造工艺,它的目的就是,不断提高质量,并且在人力、物力、财力等方面的消耗达到最低,使效益最大化。现代机械制造工艺的快速发展,使工艺具备了精度高、柔软性强以及效率高等特点。现代机械制造工艺的发展使制造工艺的效率、产品特性等都有了很大的发展空间。

2.现代机械制造工艺特点

2.1柔性高

机械技术随着科技与技术的发展,柔性越来越高。加工柔性化就是指加工的样式多、更具灵活性、适应性强[1]。同时,各种数控机床、工业机器人等自动化设备的使用,柔性概念在机械制造系统不断得到肯定与认可,并在实施中取得了一定的效果。这种制造系统可以分成以下几种,包括:在数控设备的基础上,利用全自动的储运系统来连接的柔性制造单元、自动线以及柔性制造系统这几个部分。同时,利用计算机对零件的加工过程进行监控,使其生产过程完全自动化。

2.2精度高

精度高是现代机械制造工艺中重要特点之一。在现代机械制造工艺中,有很多方法可以提高机械制造工艺的精度,计算机技术是最主要也是最常用的方式,辅之以国防技术等的利用,有效促进现代机械制造行业的持续、快速的发展。

2.3效率高

效率高是现代机械制造工艺快速发展的第三个特点。在现代机械制造工艺中,高效率特点主要体现在缩短工期、提高加工速度这两方面。比如,可以采取三种方法来进行冷加工工艺:第一种方法是多重加工方法。这主要是指为了保证切削加工程序的高效进行,利用计算机系统来集中整合、控制各种设备的加工方式,它的优点在于可以缩短加工循环所需时间。第二种方法是新型加工工艺的使用,以此来提高加工的速度,进而提高效率。比如,应用一些化学方面的技术技能,激光等的应用,这能大幅度提高加工工艺的质量。最后一种方法则是先进刀具的应用。使用最新的切割刀具可以在很大程度上提高切削速度。比如,利用金刚石刀具来切割加工机械效果就比较好。其他的高性能刀具同样可以满足工艺的不同需求。这对提高切割速度的重要价值不言而喻,时间的大量节约,效率自然就上去了。

二、现代机械制造工艺与精密加工技术的实践应用

1.现代机械制造工艺的实践应用

现代机械制造工艺包括的内容很多,比如车、钳、铣、焊等。本文以焊接工艺为例进行研究。

1.1气体保护焊工艺

此工艺是指它的主要热源是电弧为特征的焊工工艺,进行焊接操作。它的突出特征是把气体作为保护介质,来连接焊接物,这具体是指,在进行焊接操作时,气体保护膜会在电弧周围来进行保护,通过这种工作原理来分离电弧、熔池和空气这三种介质。从而达到焊接能够正常进行而不被有害气体干扰,使电弧的能够持续、有效供热。通常情况下,由于二氧化碳成本低,所以二氧化碳气体保护焊的应用较广泛。

1.2电阻焊接工艺

电阻焊接工艺主要是指利用正负电极进行通电来对被焊接的物体进行焊接的,原理是利用电流经过被焊物体的接触面极其附近时,高电阻热效应所产生的高温度使被焊接物体融化,从而使它与其他金属相融合,达到焊接的目的,利用这种原理进行焊接有很多好处 [1]。使用这种工艺进行焊接可以使焊接的质量很高,机械化程度高,更重要的是由于加热时间短,有害气体污染少、噪声低等特点,提高了生产效率,因而这种焊接工艺被广泛应用于现代机械制造。

1.3搅拌摩擦焊工艺

该工艺(简称 FSW)是英国 TWI 焊接研究所在20世纪90年代初提出来的。主要应用于铁路、飞机、船舶等机械制造业。其最引人瞩目的就是只需利用焊接搅拌头就能达到焊接目的,跟其他焊接工艺相比,不需要保护气体、焊剂等的使用,就可以很方便、高效的进行焊接,汽车行业比较青睐这种焊接工艺 [2]。

1.4 埋弧焊焊接工艺

所谓埋弧焊焊接工艺,通俗讲就是在焊剂层下使用燃烧电弧这种原理来进行焊接的一种焊接工艺[3]。该焊接工艺有两种焊接方式:自动和半自动。自动埋弧焊只需利用焊丝和移动电弧进行焊接,而半自动埋弧焊需要手动送进焊丝,由于移动电弧需要人工手动完成,所需成本很大,现在很少有人使用。同时,这种焊接方式由于其具备生产率高,焊缝质量高且工作效率好的特点被用来焊接时,应注重焊剂的选择,这要根据工艺性能,冶金性能和电流种类来选择[4]。

1.5精密加工技术

精密加工技术的应用方面较广,其中最主要的有纳米、精细加工、超精密研磨、模制作具、高精确切削等几个技术[5]。精密加工技术与我们的生活息息相关,更值得一提的是,精密切削技术用途的很重要,这种切削技术只要是指,通过高精度切削来提高表面相糙度的水平和高精度[6]。根据机械的功能、属性的不同,其表面光滑、摩擦力的大小都有很高的要求,需达到相应的参数。使用精密管切削技术将很好解决这一问题。

三、结语

通过对现代机械制造业工艺与精密加工技术的探讨,我们能进一步了解工艺的进展以及他们的应用是如何提供机械零件的质量与生产效率的,这将极大地解放人力,机械制造工艺与精密技术的发展能促进机械自动化的发展。因此,现代机械制造工艺及精密加工技术的价值引起我们的重视,要加快该行业的快速、高效的发展,从而更好地为现代机械业的发展服务。

参考文献: