首页 > 文章中心 > 单片机温度控制系统

单片机温度控制系统

开篇:润墨网以专业的文秘视角,为您筛选了八篇单片机温度控制系统范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

单片机温度控制系统范文第1篇

所谓的单片机(MCU)是一个微型计算机。它是在一个设备中的CPU,RAM,ROM,I/O接口的一组或多个组件和中断系统,以及作为当前主流的STM32ARM公司生产的的A6和A7都属于微控制器。只要给一个外部单片机加上电源,并设置振荡电路和外部中断电路,就可以方便的实现单片机控制。由于其体积小,功能强大,成本优势,主要作用是改善劳动条件,节约能源,生产设备,并且可以防止事故的发生,以获得良好的技术指标和经济效益。因此,基于单片机的温度控制系统在国内外受到越来越多的关注,并已被广泛使用。

2分析并选择出最适合的温度控制方式

(1)第一种方法是使用纯硬件的闭环控制系统。这个系统的优点是速度快,但可靠性相对较差,控制精度是比较低的,弹性小,电路复杂,调试,安装都不容易实现,高精度的温度控制的要求变得更加困难。

(2)第二种方法是将FPGA/CPLG或与使用FPGAIP核/CPLG方式。它是用FPGA/CPLG完成采集,存储,显示和A/D转换等功能,实现人机由IP核的相互作用和信号测量和分析功能。这种解决方案的优点是系统结构紧凑,可以实现复杂的测量和控制,操作简便;但其缺点是在调试过程的复杂性,成本较高。(3)第三种方法是将高精度温度传感器组合在一个芯片上。这是完全与微控制器接口进行系统控制和信号分析,由温度传感器信号采集和转换的前端进行。此方法克服了前两种方法的缺点,所以基于单片机和温度传感器控制的温度在理论上非常的可行。

3在一个温控系统中如何选择合适的单片机和传感器

3.1选择AT89C51作为系统的单片机单片机在整个控制系统中占有主导地位。在主要考虑选择时应该考虑单片机的处理速度,数据存储容量,价格和通信方式。在考虑适当后选择了控制系统的AT89C51作为主芯片。AT89C51具有以下特点:具有4KB的闪存芯片和128KB的程序存储器。AT89C51的最高频率可以达到32MHz的,具有8位数据的处理能力,拥有32个IO端口和两个定时器。

3.2选择DS18B20作为系统的传感器该系统采用DALLAS半导体公司生产线数字温度传感器DS18B20来采集温度数据,DS18B20属于全新一代的微处理器专为智能温度传感器的配置。在温度测量和控制仪表,测量和控制系统,以及大型设备的工业,民用,军事等众多领域有着非常广泛的应用。它的优点是特别明显,具有结构紧凑,简单界面,传输距离远等特点。

3.3确定适合单片机温度控制的系统框架系统包括数据采集模块,单片机控制模块,显示5部分模块,温度设定模块和所述驱动电路。实时数据采集模块负责采集温度数据,收集温度数据给单片机,由数据显示部分上显示所处理的微控制器。设置模块可以设置在预定的温度,当检测到的温度低于设定温度的情况下,单片机控制所述驱动电路以开始加热,并发出报警声;当检测到的温度高于设定温度时,停止加热。

4单片机温度控制原理概述

传感器是测量温度信息的主要载体,通过将电压信号转化成的毫伏级后的传感器的温度信息提供给电路,然后通过电路放大,弱电压信号慢慢地放大,微控制器的范围内调节的可自由支配的,然后通过输入端A/D转换器的电压信号转换成数字信号进行转换。然后,相应软件的数字信号被输入到主机中去。使用中的信号采集到微控制器中,为了提高测量的精确度,必须在采样时将信号进行数字滤波。同时,信号的数字滤波处理后,它就会逐渐被转换成适当的标度,所得到的温度指标显示在IED屏幕上。同时还可以将温度值与提前设定的温度值进行比较,然后按照积分分离PID控制偏差之间的两个算法分析的大小,从而得出最终输出的控制值,然后确定出导通时间与输出功率以及控制量的热值,从而有效地调节环境的温度来达到目的。整个温度控制系统,它的主要目的是使实时单芯片温度可以有效地检测和精确的控制,从而解决了工业生产和日常生活的温度控制方面很难解决的问题。在难以控制的情况下,利用十进制数字显示器的实际温度值,这有利于实现人们进行简单和方便的温度监测。

5单片机温度控制系统的设计硬件和软件系统

5.1温度控制系统的硬件电路系统的原理及组成温度控制系统的硬件电路包括温度传感器电路,D/A转换电路,A/D转换电路,单片机最小系统电路,带通滤波电路,放大电路,以及一个数字的复用器电路的电磁阀控制电路和开关电路等。当然,为了实现不同的设计要求,仍然可以建立在一个单一的芯片上而在系统的设备不同的电路和在不同的配置。例如可以使用键盘来控制矩阵电路,可用于实现温度报警蜂鸣器和使用一些液晶显示模块,在温度异常时将在液晶显示屏上显示出来。通过这些不同的外设模块,可以更好地提高单片机温度控制系统。

5.2温度控制系统软件开发理论温度控制系统的软件主要是用C语言编写,实现了单片机的控制权。通过C语言可以实现单片机对温度的采集的频率的控制、实现温度的显示和控制等不同的功能。控制系统程序包括主程序和子程序。主程序主要用于实现单片机的初始化,将温度传感器的初始化设置(读取温度,加工温度,存储温度)被初始化,并且进行键盘与液晶显示器的初始化。使用该方法的主程序循环查询来实现对温度的采集和对温度显示的控制。主程序的主要作用是实时采集温度的,并且所述传感器的二进制代码读入到单片机内,并随后经单片机的处理转化成十进制显示在液晶显示器的上方。

6结束语

单片机温度控制系统范文第2篇

关键词:SST89E564RC单片机;温度控制;系统设计

Abstract: SCM has a small volume, strong function, low cost, wide application range and other advantages, can say, intelligent control and automatic control core is the microcontroller. In the modern industrial production, current, voltage, temperature, pressure, flow, flow rate and switching capacity is accused of main parameters. In this paper, from two aspects of hardware and software design are introduced in this paper the multi-point temperature heating control system using SST89E564RC microcontroller and a new temperature measurement devices, according to the set of real-time control of the temperature of each point of the indoor heating system, so as to improve the living comfort and heating economy.

Key words: SST89E564RC MCU; temperature control; system design

中图分类号:F407.63

1.单片机温度控制系统的组成及工作原理在工业生产和日常生活中,对温度控制系统的要求,主要是保证温度在一定温度范围内变化,稳定性好,不振荡,对系统的快速性要求不高。以下简单分析了单片机温度控制系统设计过程及实现方法。现场温度经温度传感器采样后变换为模拟电压信号,经低通滤波滤掉干扰信号后送放大器,信号放大后送模/数转换器转换为数字信号送单片机,单片机根据输入的温度控制范围通过继电器控制加热设备完成温度的控制。本系统的测温范围为0℃~99℃,启动单片机温度控制系统后首先按下第一个按键开始最低温度的设置,这时数码管显示温度数值,每隔一秒温度数值增加一度,当满足用户温度设置最低值时再按一下第一个按键完成最低温度的设置,依次类推通过第二个按键完成最高温度的设置。然后温度检测系统根据用户设定的温度范围完成一定范围的温度控制。下面将以SST89E564RC单片机为例进行温度控制分析。

2.系统设计目标

系统总体设计思想是以SST89E564RC单片机为控制核心,整个系统硬件部分包括温度检测部分、控制执行部分、显示及键盘系统及最小系统基本电路。系统利用单片机获得温度传感器数据并与系统设计值进行比较,根据比较结果分别控制执行系统。温度控制系统控制框图如图1所示。

3.系统硬件设计

根据系统所需完成的功能,设计系统硬件结构如图2所示。

3.1 控制核心。系统采用SST89E564RC单片机作为控制核心,进行温度采集、信息显示及执行机构的控制。SST89E564RC是美国SST公司推出的高可靠、小扇区结构的FLASH单片机,内部嵌入72 KB的Super-Flash,1 KB的RAM,通过对其RAM做进一步扩展,可满足嵌入系统操作系统的运行条件。

3.2 温度传感器。温度传感器采用Dallas半导体公司的数字化温度传感器DSl8820。该传感器支持“一线总线”接口,可方便地进行多点温度测量,还可以程序设定9~12位的分辨率,最高精度为±0.062 5℃,分辨率设定及用户设定的报警温度存储在E2PROM中,掉电后依然保存。该产品支持3~5.5 V的电压范围,因其体积小使系统设计更灵活、方便。DSl8820的管脚排列如图3所示,其中DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输人端。

DSl8820内部结构主要由4部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DSl8820的地址序列码。光刻ROM的作用是使每一个DSl8820都各不相同,这样就可以实现1根总线上挂接多个DSl8820的目的。

DSl8820温度传感器的内部存储器包括9 B高速暂存RAM和1 B非易失性的可电擦除的E2PROM,后者存放高温度和低温度触发器TH,TL和结构寄存器,该字节第7位(TM)为0,低5位一直都是1,第6,5位(R1,R0)用来设置分辨率,如表1所示。

根据DSl8820的通信协议,主机控制DSl8820完成温度转换必须经过3个步骤:每一次读写之前都要对其进行复位,复位成功后发送1条ROM指令,最后发送RAM指令,这样才能对DSl8820进行预定的操作。复位要求主CPU将数据线下拉500μs,然后释放,DSl8820收到信号后等待16~60μs左右,后发出60~240μs的存在低脉冲,主CPU收到此信号表示复位成功。由于DSl8820采用的是单线进行控制与读取数据,因此对操作的时序要求非常严格,否则由于时序不匹配,将无法完成对器件的正确操作。

3.3 控制执行那分。(1)壁挂炉燃烧系统控制。控制电路采用了脉冲继电器器件作为整个系统的总控部分,当所有居室温度均达到设定值时,停止壁挂炉的工作。该继电器的特点是:当线圈收到一个脉冲信号后,线圈通电,电磁铁吸合,带动触头闭合接通需要控制的电路,当下一个信号到来后,电磁铁吸合,触头断开,切断被控制的电源,因此其具有自锁和信号遥控功能。由于磁铁的作用,控制脉冲消失后滑片位置不发生变化,保持稳定状态,所以该器件具有功耗小、具有记忆功能。(2)居室温度控制。各居室温度控制在燃烧控制系统工作前提下,根据各居室温度测量返回值,采用上海欧凯电磁阀制造有限公司生产的OK6515自保持脉冲电磁阀控制各回路的通断。脉冲电磁阀采用脉冲和永磁技术,只需通过控制器切换脉冲的电极触点来改变电磁阀的开关状态,当控制器发出电脉冲时,驱动阀芯克服永磁力产生上下移,使阀瓣到位后在永磁作用下处于自保持状态。

3.4 图形液晶显示模块。为了能够提供形象直观的用户显示界面,系统采用图形液晶显示模块LCDl2864,其具有8位标准数据总线、6条控制线及电源线,可与CPU直接接口,显示各种字符及图形。考虑到系统中汉字的使用量少,因此选用不带汉字库的LCD。对于使用的汉字分别提取其字模并以二进制形式保存于内部FLASHROM中。

4.系统软件设计

系统软件设计主要依据系统程序流程以及DSl8820的时序要求进行代码编写。为了降低开发难度,提高开发效率,系统开发中引入了μC/OS一Ⅱ嵌入式操作系统并移植了LCD显示驱动。另一方面,为了确保对DSl8820操作时序的精确性,对DSl8820进行初始化和读写代码仍采用汇编语言。

4.1系统数据结构。系统所需数据结构包括各测温元件的序列号表,汉字字模存储、系统运行时间表存储、各温控点的设定值及测量值、系统时间的存放及一些临时数据存储。

为了区别多个温度传感器,在系统初始化时读入传感器中的64位序列号,并将其存入程序存储空间,以便程序运行期间进行比对,共需64 B。汉字字模采用16×16字库进行提取,其中每个汉字需32 B,约15个字,为了方便程序功能的升级改进,在程序存储空间中按20个字进行空间分配,需要存储空间640 B。系统运行时间表的设计以小时为设置单位,需要保存24个值;为了减少时间比较过程中的数据计算量以及方便编程,对每个值采用一个字节存储,这里共需24 B存储空间,这里仍然使用程序存储空间进行存储,以便在系统掉电时设定值不会丢失。

4.2系统程序设计。系统程序设计主要使用KeilC5l进行编写,但由于对DSl8820器件的读写时序要求比较严格,故采用汇编代码,其中温度读取子程序主要代码如下:

单片机温度控制系统范文第3篇

关键词:STC89C52单片机;温度控制;温度检测

中图分类号:TP273文献标识码:A文章编号:1009-3044(2011)04-0902-02

A Temperature Control System Based on STC89C52 MCU

WU Jian, HOU Wen, ZHENG Bin

(National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China)

Abstract: This paper discusses a STC89C52 MCU to increase the technical indexes of accused of temperature control system,Presented the design of the MCU circuitry of system, temperature control output circuit, temperature detecting amplifier circuit and so on. Realized of furnace temperature automatic control and improve the precision temperature control. Be provided with important engineering use value.

Key words: STC89C52 MCU; temperature control; temperature test

随着工业技术的不断发展,利用温度控制表,温度接触器的控制方式已不能满足高精度、高速度的控制要求,其主要缺点是温度波动范围大,受仪表本身误差和交流接触器寿命的限制,通断频率很低。本文设计了一种基于STC89C52单片机控制的温度控制系统。它使用了较少的器件和较为简单的电路设计,因此具有成本低、控制方便,实用性强等特点。

1 系统设计

本系统是对电炉炉温进行控制的微机控制系统。控制方式是单闭环控制形式。温度控制系统是以STC89C52单片机为控制核心,其系统结构框图如图1所示。

键盘将温度设定值和温度反馈值送入单片机,然后经过运算得到输出控制量,输出控制量控制控温输出电路得到控制电压,施加到驱动器上,从而控制电加热炉内温度。

2 系统硬件设计

硬件系统由单片机电路,温度检测放大电路,A/D、D/A转换电路,控温输出电路等组成。下面分别给予介绍。

2.1 单片机电路

STC89C52是一个低功耗,高性能的51内核的CMOS 8位单片机, 具有在线编程功能,不再需要启动像STC89C51那样的12V的VPP编程高压[1]。 使用简单且价格非常低廉。故本文使用STC89C52为系统的主控制器。单片机发送温度设定值和采集温度反馈值,并据此调节I/O的输出来控制温度的值。

2.2 温度检测放大电路

温度检测电路承担着检测电阻炉温度并将温度数据传输到单片机的任务。铂电阻最常应用于中低温区,精度高,稳定性好,具有一定的非线性,温度越高电阻变化率越小,测量范围一般为-200~850℃。目前应用最广泛的是Pt100。Pt100铂热电阻与温度的关系如下:

(1)

其中:Rt――温度为t℃时铂电阻的电阻值(Ω);R0――温度为0℃时铂电阻的电阻值(Ω);A,B,C――常数,3.96847×10-3 (℃-1);-5.847×10-7 (℃-2);-4.22×10-12(℃-3)。

信号放大电路采用OP07E放大器,温度信号输入采用差动放大模式,输入电压范围为+/-14V,输出电压范围为+/-12V。设计电路如图2所示。

U1放大器放大倍数为:

(2)

2.3 A/D转换电路

温度检测电路采集到的温度值为模拟信号,需要转化为数字信号才能被单片机处理。温度控制系统的A/D转换模块采用ADC0804型8位全MOS A/D转换器。转换时间约为100μs,转换时钟信号可以由内部施密特电路和外接RC电路构成的震荡器产生,当/CS与/WR同时有效时便启动A/D转换,经DATA口送入单片机,再采集第二个模拟量进行转换。

2.4 D/A转换电路

温度控制系统的D/A转换芯片采用DAC0832。D/A转换器由8位输入锁存器、8位DAC寄存器、8位D/A转换电路及转换控制电路构成[2]。DAC0832的主要特性参数:分辨率为8位;电流稳定时间1us;可单缓冲、双缓冲或直接数字输入;只需在满量程下调整其线性度;单一电源供电,电压范围为+5V~+15V;低功耗,功耗为200mW。

2.5 可控硅调功控温电路

温度控制电路采用可控硅调功率方式。双向可控硅串在50Hz交流电源和加热丝电路中,在给定周期里改变可控硅开关的接通时间改变加热功率,从而实现温度调节[3]。如图3所示。

可控硅驱动器MOC3041集光电隔离、过零检测功能于一身,具有体积小、功耗低、抗干扰能力强,无噪声等优点[4],RS、CS为吸收电路,起保护作用。经验公式如下:

Cs=(2~4)IT×10-3(uF)(3)

Rs=10~50Ω(4)

R17是触发器输出限流电阻,取51Ω。R16是驱动器的门极电阻,一般取值300-500Ω。

3 PID温度控制算法

温度控制技术大致可分为定值开关控温法,PID线性控温法。定值开关控温法通过硬件电路或软件计算判别,系统温度上升至设定点时关断电源,当系统温度下降至设定点时开通电源,因而无法克服温度变化过程的滞后性,致使被控温度波动较大,精度低。当我们不完全了解被控对象,或不能通过有效的测量手段来获得系统的参数时,最适合用PID控制技术。PID线性控温法主要取决于比例值、积分值、微分值[5]。只要三参数选取的正确,其控制精度是比较令人满意的。当执行机构需要的不是控制量的绝对值,而是控制量的增量时,需要用PID的“增量算法”。增量式PID控制算法可以通过(式5)推导出。

(5)

Uk――控制器的输出值;ek――控制器输入与设定值之间的误差;Kp――比例系数;

Ti――积分时间常数;Td――微分时间常数;T――调节时间。由(式5)可以得到控制器的第k-1个采样时刻的输出值为:

(6)

将(式5)与(式6)相减并整理,就可以得到增量式PID控制算法公式:

(7)

其中:

由(式7)可以看出,如果计算机控制系统采用恒定的采样周期T,一旦确定A、B、C,只要使用前后三次测量的偏差值,就可以由(式7)求出控制量。物理模型如图4所示。

4 系统软件设计

为了便于程序的调试与维护,系统全部程序采用模块化结构。由一个主程序和若干子程序组成。子程序主要包括A/D转换子程序、D/A转换子程序、LED显示子程序、增量式PID控制子程序、键盘控制子程序等,各子程序均能很快返回主程序,不会发生子程序时间过长等问题,子程序对相关事件的处理依靠标志位和判断标志位来完成。主程序通过调用各个子程序来完成所有的温度控制器功能。主程序的流程图如图5所示。

5 设计结果

设计的温度控制系统基于STC89C52单片机,采用了信号放大,可控硅控制等简单的电路,经过焊接、 组装、 调试后,可以很好实现控制功能,具有很强的实用性,尤其是具有体积小、 易移动等优点。 该方案也可以在功能上加以扩展,如加上LED电路,当到达我们想要的温度时绿灯亮,当超过我们想要的温度一定量程时红灯亮。

参考文献:

[1] 张俊谟.单片机中级教程[M].北京:北京航空航天大学出版社,1999:75-86.

[2] 小岛郁太郎.实现数字电路与模拟电路及软件的协调设计[J].电子设计应用,2009(6):15-20.

[3] 王海宁.基于单片机的温度控制系统的研究[D].合肥:合肥工业大学,2008.

单片机温度控制系统范文第4篇

关键词:温室大棚;无线传输;温度的监测;实时

1 引言

设计温室大棚温度控制系统的目的就是能够相对恒定的控制温室内部的环境,对于对环境要求比较高的植物来说,更能避免因人为因素而造成生产损失。利用温室大棚栽培蔬菜可以促进其早熟和丰富其产量,延长蔬菜的供应期,温室大棚测控系统是实现温室生产管理自动化、科学化的基本保证。通过对监测数据的分析,结合作物生长规律,控制环境条件,使作物在不适宜生长的反季节中,可获得比室外生长更优的环境条件,从而使作物达到优质、高产、高效的栽培目的。本设计最大的特点是采用无线传输技术,无线数据传输广泛地运用在车辆监控、遥控、小型无线网络等领域。并且能够不需要留在现场也能监测到大棚的温度情况。无线图像其安装方便、灵活性强、性价比高等特性使得更多行业的监控系统采用无线传输方式,建立被监控点和监控中心之间的连接。

2 设计方案

系统的总体设计分为硬件和软件设计两方面,首先确定系统实现的功能,然后对硬件、软件分别进行规划,完成这些准备工作之后,就可以开始制作硬件电路,编写程序,在模块化调试结束后,进行软硬件联调,针对出现的问题对软硬件进行相应的修改,直到调试成功为止。在上位机中,利用C++ Builder编程,让电脑和单片机正常地进行数据传输,同时上位机界面显示大棚的温度。在本设计中,在无线接收端采用1602液晶(16引脚带背光接口)进行显示。整个无线监测系统主要分为三部分:即温度检测、无线传输和PC机对温度的监测环节。大棚温度无线测控系统的信息流如图1所示。

3 系统仿真

把发射板的TXD和接收板的RXD相连,分别把发射程序和接收程序下载到芯片中,测试接收板的液晶能否显示正确的温度,图2为仿真电路图。

4 结论

本文描述一个用于监控一个温室的物理变量(像温度,相对湿度,发光度和等等其他)的系统。该系统具有良好的可靠性和经济性,能够实现对温室大棚温度的准确测量和控制,在实际应用中有一定价值。在不同的系统模块中运用串级连接用于通讯是非常方便的,因为它提供一个更好的安全性,由于它只能被发送和接受相应串级类“Pa”的相应对象。但是不足的是,设计还是存在一些局限性的,主要是体现在无线模块上。像传输距离上最多只能达到200m左右;传输速度也达不到高速;实时是指信号的输入、运算和输出都要在一定的时间内完成,并根据生产过程状况及现场情况变化及时进行处理。而实时系统指在事件或数据产生的同时,能够在规定的时间内给予响应,以足够快的速度处理,及时地将处理结果送往目的地的一种处理系统。本系统的实时性是属于硬实时性的,如果大棚温度发生异常变化,而不及时采取措施的话,农作物会受到严重的影响,甚至死亡。但是,它的硬实时性并不是像航天应用中要求的那么高。例如在冬天夜间,如果大棚的保温被被风吹倒了,大棚的温度会下降,这时系统就会向控制者发出警告,但是它不会下降地很快,这样控制者就会有足够的时间去大棚把保温被盖好,这样农作物就不会被冻坏。

参考文献

[1] 张友德. 单片微型机原理、应用与实验[M].上海: 复旦大学出版社 ,2005.

[2] 袁任光. 电动机控制电路选用与258实例[M].北京: 机械工业出版社,2005.

[3] 王秀和. 永磁电机[M].北京: 中国电力出版社, 2007.

[4] 房玉明, 杭柏林. 基于单片机的步进电机开环控制系统[J].电机与控制应用, 2006, 33(4): 64-64.

[5] 孙笑辉,韩曾晋.减少感应电动机直接转矩控制系统转矩脉动的方法[J].电气传动,2001, 11(1): 8-11.

[6] 李夙. 异步电动机直接转矩控制[M].北京:机械工业出版社, 1998.

作者简介

杨文杰,邵阳学院魏源国际学院电子科学与技术专业学生。

单片机温度控制系统范文第5篇

关键词:单片机;P82B96;I2C;远程温度控制

中图分类号:TP273文献标识码:A

文章编号:1009-2374 (2010)27-0070-02

远程温度控制技术是为了使人们可以在远离设备的地方及时了解设备的温度状况并对温度进行控制的一种技术。在工业生产和农业生产的某些领域中,由于现场的特殊环境,不能即时在现场控制温度,因此,远程温度控制技术的研究十分必要。

1系统硬件设计

整个系统分为主机和从机两个部分,从机部分由温度传感器LM75A、I/O扩展芯片PCA9554和远程控制芯片P82B96组成;主机部分由单片机P89LPC922、远程控制芯片P82B96、数码显示系统和报警系统组成。温度传感器LM75A检测现场温度,信号通过P82B96传送到主机,如果检测到的温度过高(过低)就反馈到主机进行报警,并通过数码管显示检测到的温度,并给从机发出控制信号,驱动风扇降温(升温)。系统总体结构如图1所示:

1.1单片机的选择

P89LPC922 是一款单片封装的微控制器,适合于许多要求高集成度、低成本的场合,可以满足多方面的性能要求,采用了高性能的处理器结构,指令执行时间只需2~4个时钟周期,是传统80C51的6倍。P89LPC922集成了许多系统级的功能,这样可大大减少元件的数目和电路板面积并降低系统的成本。此外,它还集成了字节方式的I2C总线、SPI接口、UART通信接口、实时时钟、E2PROM、A/D转换器等一系列有特色的功能部件。开发方便,支持ISP/ICP/IAP等多种编程方式。

1.2无线传输设备

采用P82B96作为主机和从机的通信设备,P82B96是是一款双极性、内部无锁存、双向逻辑接口器件,它提供标准I2C器件和远距离总线间的桥接,可以将不同电压和电流级别的类似总线与I2C总线进行桥接。其远程的距离最多能达到1000m。该器件可桥接SMBus(350μA)、3.3V逻辑器件,15V电平及低阻抗导线可以延长通信距离,增加抗干扰能力。该器件对I2C总线协议和时钟速率没有特殊要求。P82B96能增加I2C总线节点上挂接的最小负载数、新总线负载数和远程I2C总线器件数,且不会对本地节点造成影响。挂接器件数目和物理上的限制也会大大减小。通过平衡传输线(双绞线)或光耦隔离(光纤)发送信号,Tx、Rx结构上的分隔使其发送变得简单,且Tx和Rx信号直接相连时而不会锁死。

1.3I2C总线配置

I2C(Inter-IC)是一种用于内部IC控制的双向两线串行总线协议。在I2C总线中仅需要SDA(串行数据线)和SCL(串行时钟线)两根信号线就可以实现多个器件之间主从式的通信,其典型配置错误!未找到引用源。所示,注意连接时需要共地。在I2C总线上要实现功能和模块扩展非常容易,只需在总线上“挂上”相应功能的I2C兼容芯片就行了,器件之间是靠不同的编址来区分的,而不需要附加的I/O 线或地址译码部件,在7位地址模式中最多可达128个。I2C的通讯速率也令人满意,标准传输速率为100kbps(每秒100k 位),在快速模式下为400kbps,最新的高速模式可达3.4Mbit/s。

一般具有I2C总线的器件其SDA和SCL管脚都是漏极开路(或集电极开路)输出的结构。因此实际使用时,SDA和SCL两根信号线都必须加上拉电阻RC(Pull-up Resistor)。上拉电阻一般取值3~10kΩ。开漏结构的好处是:当总线空闲时,这两条信号线都保持高电平,不会消耗电流。电气兼容性好,上拉电阻接5V电源就能与5V逻辑器件接口,上拉电阻接3V电源就能与3V逻辑器件接口。因为是开漏结构,所以不同器件的SDA与SDA之间,SCL与SCL之间可以直接相连,不需要额外的转换电路。

1.4I/O扩展芯片

采用PCA9554作为I/O扩展芯片。PCA9554是16 脚的CMOS 器件,它们提供了I2C/SMBus 的应用中的8 位通用并行输入/输出口GPIO 的扩展该器件使PHILIP 的I2C I/O 扩展器件系列得到增强改进的特性包括更高的驱动能力5V I/O 口更低的电源电流单独的I/O 口配置400kHz 时钟频率和更小的封装形式当应用中需要额外的I/O 口来连接ACPI 电源开关传感器按钮LED 风扇等时可使用I/O 扩展器件实现简单的解决方案。

1.5温度传感器的选择

LM75A是一个使用了内置带隙温度传感器和Σ-模数转换技术的高速I2C接口的温度-数字转换器。MCU可以通过I2C总线直接读取其内部寄存器中的数据,并可通过I2C对其4个数据寄存器进行操作。LM75A有3个可选的逻辑地址管脚,使得同一总线上可同时连接8个器件而不发生地址冲突。同时,其测量温度范围宽(-55℃~+125℃),精度高,可达0.125℃,能满足一般场合温度检测的需要。

1.6数码管显示电路

数码管显示有静态显示和动态显示两种显示方式。当数码管工作在静态显示方式时,其阴极点(或者阳极)连接在一起接地(或接VCC),每一个段选线(a,b,c,d,e,f,g,dp)分别与另外一个8位口相连。

当数码管工作在动态方式时,各个数码管共用段选线,8位段选线用来输出显示字符的段选码,通过输出不同的位选码来点亮某一数码管。段选线不断输出待显示字符的段选码,位选码输出不同的位扫描码,并使每位显示字符停留显示一段时间,一般为1~5ms。利用人的视觉停留,便可见到相当稳定的数字显示。

2软件设计

软件设计的关键问题是发送端和接收端的通信协议,然后是单片机控制程序。系统软件部分框图如图3所示:

2.1I2C通信协议

系统设计的关键问题在于发送端和接收端的I2C通信协议,编制测试模拟包程序来调试I2C通信,使每个模块的I2C通信协议正确。

通过调试I2C总线通信协议,来调试PCA9554。设置配置字来决定I/O口的输入和输出。图4是I2C发送流程,图5是I2C接受流程。

2.2系统调试

将各个模块调整并连接好之后,将程序下载到系统,从软件上设定温度值,测量用户设定的值与室温进行比较。

3结语

本文设计了一种基于单片机I2C的远程温控系统。利用无线传输实现远程温度控制,传输距离远、精度高,性价比高,在工业生产和农业生产中有很高的应用价值。

参考文献

[1] 周立功.LPC900系列Flash单片机应用技术[M].北京:北京航空航天大学出版社,2005.

[2] 孙刚,冯国雨,朱孟忠. I2C总线的软件模拟在KeilC51中的实现[J].电脑编程技巧与维护,2009.

[3] PHILIPS semiconductors. LM75A Digital temperature sensor and thermal Watchdog data sheet,2001.

单片机温度控制系统范文第6篇

单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。因此,单片机广泛用于现代工业控制中。

本论文侧重介绍“单片机温度控制系统”的软件设计及相关内容。论文的主要内容包括:采样、滤波、键盘、LED显示系统,加热控制系统,单片机MCS-51的开发以及系统应用软件开发等。作为控制系统中的一个典型实验设计,单片机温度控制系统综合运用了微机原理、自动控制原理、模拟电子技术、数字控制技术、键盘显示技术等诸多方面的知识,是对所学知识的一次综合测试。

关键词:MCS-51;8051;温度控制;PID

ABSTRACT

With scientific constant progress, in industrial production, electric current, voltage, temperature, pressure are mainly commonly used. especially in the heat treatment industry, the accurate test and controlling of temperature is very important. In a lot of fields, for example: In metallurgical industry, chemical production, power engineering, machine manufactures, food processing, family and industry heat etc. people need to heating furnace, heat-treatment furnace and all kinds of response stove and boiler temperature measure and control, through software design, to reach the intelligent control finally and realize the interactive function.

Adopt Single-Chip Microcomputer is it control convenient, simple, flexibility advantage such as being heavy to have not merely to control to go on to temperature to come, and can raise by technical indicator not to accuse of temperature by a large margin, thus can big improvement quality and the quantity of products. So the control problem to the temperature of Single-Chip Microcomputer is the control problem constantly be able to encounter in the industry manufacture.

This thesis introduces the design and debugging of “the temperature control system by microcomputer”. As a typical experimental design in control system, it uses much control knowledge and comprehensively tests student’s ability in control system.

单片机温度控制系统范文第7篇

[关键词]单片机;温度传感器;巡回检测报警;温度控制

中图分类号:TM351 文献标识码:A 文章编号:1009-914X(2017)12-0285-01

1、引言

温度采集系统可被广泛应用于工、农业生产和日常生活中,单片机控制温度采集控制系统就是为对温度进行检测和监控而设计的。采用PC机控制进行温度检测、数字显示、信息存储及实时控制,对于提高生产效率和产品质量、节约能源等都有重要的作用。系统以52系列单片机为控制核心,实现温度控制报警显示系统的设计,简单实用,具有一定的推广价值。

2、温度控制系统的整体方案设计

系统运用主从分布式思想,由一台PC作上位机,单片机作下位机,进行温度数据采集。该系统采用RS-232串行通讯标准,通过PC机控制单片机进行现场温度采集。温度值既可以送回主控PC进行数据处理,由显示器集中显示,也可以由下位机单独工作,实时显示当前各点的温度值,并对各点进行实时温度控制,并具有超温声光报警功能。工作原理如下:当单片机采集温度低于所设定的下限温度或高于设定的上限温度时,单片机控制数字温度传感器DS18B20系统,把温度信号通过单总线从数字温度传感器传递到单片机上。单片机在处理数据之后,发出控制信号改变报警和控制执行模块的状态,同时将当前温度值发送到显示电路显示。本设计选用LED数码管显示器,采用蜂鸣器报警。

为了实现预定值的设置,本系统采用的是直接和I/O口连接的三个按键来实现,分别代表循环切换键、加1键和减1键。循环切换键用来设定报警值,加1键和减1键用来设置温度的上下限值。O定完参数后,再按一次功能键,系统便进入了监控状态。

3、系统的硬件设计

(1)系统的硬件组成

本系统的设计包括对温度的采集、转换、显示以及报警等环节。系统的硬件主要由AT89S52单片机、DS18B20温度传感器、LED数码管、电源、RS232、蜂鸣器等组成各个功能环节的元器件构成。

(2)元器件的选择

1、PC机采用普通的个人计算机。个人计算机由硬件系统和软件系统组成,是一种能独立运行,完成特定功能的设备。个人计算机具有优良的性能,使用广泛。由PC机控制AT89S52单片机,完成系统的功能设计。

2、本设计中的下位机采用的是单片机基于数字温度传感器DS18B20的系统。DS18B20利用单总线的特点可以方便的实现多点温度的测量,轻松的组建传感器网络,系统的抗干扰性好、设计灵活、方便,而且适合于在恶劣的环境下进行现场温度测量。DS18B20是DALLAS公司生产的一线式数字温度传感器。测温分辨率可达0.0625℃。它与传统的热敏电阻的不同之处在于它可直接将被测温度转换成船行数字信号供微处理器处理。DS18B20具有体积小、线路简单等特点。CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

DS18B20最大的特点是单总线数据传输方式,DS18B20的数据接收和发送均由同一条线来完成。本系统为单点温度测试。DS18B20采用外部供电方式,理论上可以在一根数据总线上挂256个DS18B20,但实际应用中发现,如果挂接25个以上的DS18B20仍旧有可能产生功耗问题。另外单总线长度也不宜超过80M,否则也会影响到数据的传输。在这种情况下我们可以采用分组的方式,用单片机的多个I/O口来驱动多路DS18B20。本设计采用的是单路温度传感器测温的方式。在实际应用中还可以使用一个MOSFET将I/O口线直接和电源相连,起到上拉的作用。

3.单片机

本设计最终选用ATMEL公司的8位单片机AT89S52作为本系统的CPU。

下面简单地介绍一下AT89S52的特性:与MCS-51产品兼容,包括引脚;8K字节可编程闪速程序存储器,寿命:1000次写/擦循环;全静态工作:0~33MHz;3级程序存储器加密锁定;256×8位内部RAM;32条可编程I/O线;两个16位定时器/计数器;8个中断源;可编程串行通道;低功耗的闲置和掉电模式,从掉电模式中断恢复;看门狗定时器;双数据指针;断电标志等。

4.键盘以及显示电路

键盘电路比较简单,设立三个键K1,K2,K3。其中:

K1(“”键):循环切换,可以选择设定温度传感器的上,下限温度报警值。

K2(“”键):在设定传感器的上,下限温度报警值时,按“”键,设定值加1。

K3(“”键):在设定传感器的上,下限温度报警值时,按“”键,设定值减1。

显示电路用显示器作为人机接口,尤其是作为本系统的温度监测仪器,是必需的。常用的显示器件主要有LED(发光二极管显示器)和LCD(液晶显示器),它们都具有耗电少,成本低,线路简单,寿命长等优点,广泛应用于智能仪表场合。本设计选用共阴极LED数码管显示器。我们所用的显示器主要用于显示温度值。

4、温度控制系统的软件设计

整个系统软件分为PC机软件和单片机软件,PC机进行现场可视化检测,单片机负责数据采集、处理和控制,PC机和单片机之间采用主从式通讯。

本系统软件采用汇编语言来编写。汇编语言程序具有代码效率高(编译后的指令代码占用存储空间小)和执行时间短等优势和特点。[7]由于单片机的存储器等资源有限,单片机应用程序中经常需要面对硬件操作,且对程序执行的时间有较为严格的要求或限制。因此,选用汇编语言程序设计具有诸多优势。

单片机中的程序分为主程序和各个功能模块。主程序是整个控制系统的核心,用来协调各执行模块和操作者的关系。功能模块则是用来完成各种实质性的功能如测量、计算、显示、通讯等。

功能模块共有6个,分别是温度转换开始子程序、读出温度值子程序、根据温度进行控制子程序、温度显示模式设定子程序、温度数据计算处理子程序、显示数据BCD码刷新子程序、数码管显示子程序、键盘扫描以及按键处理程序、单片机与PC机串口通讯程序。

5、结束语

单片机温度控制系统范文第8篇

关键词:温度控制系统;PID算法;光耦合器MOC3041

0引言

在现代工业生产和日常生活当中,对温度的检测、控制有着非常重要的意义和广泛的应用。及时准确地得到温度信息并对其进行适时的控制在许多工业场合中都是重要的环节。例如大型火力发电站锅炉的温度控制、石油炼油厂油温的控制等。本文设计一个温度自动控制系统,基于PID算法,结合温度采集、主机控制、温度控制及显示等外部设备,完成水温的自动控制。

1 系统介绍

通常来说,一般的温度控制系统其主要构成部分有以下几部分:被控对象、温度信号采集与转换模块、显示模块、执行模块、主机控制模块、按键等。

本文设计一个温度自动控制系统,在该系统中,控制算法不但结合经典的PID控制算法的优势,还增加了死区控制、平均滤波、限幅消抖以及抗积分饱和等措施抑制非正常情况的发生。此外,控制算法还发挥了二维PID算法的优点,加快了系统的动态响应速度。

2系统方案设计

2.1温度信号的采集及AD转换

本文采用数字类温度传感器进行温度采集,DS18B20可直接将温度信号转换为数字量,可编程的分辨率为9~12位,采用独特的单总线接口,只需要一条总线就可以实现与单片机通信,简化了硬件电路设计,降低了设计成本。

2.2主机控制模块

本文采用普通单片机AT89C52。AT89C52单片机片内有8KB的EPROM和256B的RAM,程序通过串口下载,十分方便。在晶振频率为12MHz的情况下,单指令仅需1us,完全能满足系统设计要求。

2.3显示模块

本文采用LM1602液晶显示。LM1602液晶的市场价格便宜,可以与单片机直接连接,不需要增加额外的驱动电路,它可以显示所有的ASCII字符。另外可以同时显示32个字符,电路设计简单、软件复杂度低、性价比高。

2.4温度控制模块

本文采用双向晶闸管。市场上双向晶闸管的种类很多,本设计中采用的双向晶闸管BTA06价格便宜,配备以驱动电路,可以使设计成本大大降低,另外,采用双向晶闸管BTA06的硬件设计也较为简单。

2.5单片机控制方式

2.5.1方案一

P控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。同时,由于水的温度调节,可以等效于“纯滞后+一阶惯性”,理论可推导其易产生振荡。

2.5.2方案二

PI控制是在比例控制的基础上加上积分作用,在积分控制中,控制器的输出与输入误差信号的积分成正比关系,采用比例积分控制方式,只要有足够长的响应时间,理论上可以做到稳态无静差。

2.5.3方案三

PID控制器就是根据系统的误差,利用比例、 积分、微分计算出控制量进行控制的,也就是在比例积分控制方式下,加入微分控制,在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

将上述三种方案进行比较,由于本设计要求无静差,被控对象惯性较大,为了加快调节速度,采用方案三即PID算法作为控制算法。

3系统硬件设计

本设计硬件电路主要分为温度信号采集与转换模块(传感器DS18B20)、主机控制模块(单片机AT89C52)、温度控制模块(双向晶闸管BTA06)和液晶显示模块(LM1602液晶)等四部分。系统电路图如图1所示:

图1 系统电路图

4 系统软件设计

系统软件流程图如图2所示:

图2 软件流程图

5 结论

通过上述的分析进行系统搭建,可以实现水温的自动控制,从而表明上述系统的设计满足工业要求。

参考文献:

[1]边春元.单片机应用开发实用子程序.人民邮电出版社

[2] 高吉祥.全国大学生电子设计大赛培训系列教程.电子工业出版社