首页 > 文章中心 > 激光焊接技术

激光焊接技术

开篇:润墨网以专业的文秘视角,为您筛选了八篇激光焊接技术范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

激光焊接技术范文第1篇

【关键词】激光焊接;汽车制造;应用

激光焊接技术在汽车制造中的应用已经得到普遍的采用的工艺,经过80多年的发展,已经逐步发展成一种应用于各个行业的技术,在汽车制造中的应用更是推动激光焊接技术向工业化发展。

一、激光焊接技术的简介

(1)激光焊接技术的原理。激光焊接是一种高速、变形极小、非接触的焊接方式,适合大量且连续的在线加工。激光焊接技术的主要原理是利用激光产生波长单一的光束,选用化学能或者电能将液态、固态或者气态介质,通过光学震荡器产生,这些光束的可传播距离较长,波长差异小,被集中率非常高,形成高功率的激光束,作用于金属表面,能够快速达到沸点,将金属汽化。当金属蒸汽以一定的速度离开金属熔池的表面时产生的应力反作用,是熔化的金属向下凹陷,出现一个小凹坑。进行继续加热,此时会形成一个非常细且长的小孔。随着激光束的移动,小孔前方熔化的金属会绕过小孔流向后方,冷却凝固后形成焊缝。激光功率的密度决定着焊缝的深浅,激光功率密度较高时,熔深较大,焊缝深宽也就较大;激光功率的密度较低时,熔深较浅,焊缝的深宽也就较小。(2)激光焊接技术的分类。在汽车制造业中主要应用两类激光焊接机是CO2激光焊机和YAG激光焊机,相应的激光焊接技术可以分为激光焊接、激光拼焊和激光复合焊接技术。(3)激光焊接技术的特点。一是能够给有效的节约材料,加工的速度较快,可以减轻工作人员工作强度;二是激光焊接不直接接触零件,工作产生噪音低,环保性强;三是有工作中带来的热量影响范围小,造成产品零件热变形非常小;四是焊缝焊接质量较高,外观较为美观;五是激光焊接技术的实施设备功能多,多成套或者成系列,操作方便灵活,提高工作效率;六是焊接精度高,在激光焊接机中配备计算机数控系统,能够进行二维立体加工或者三维立体加工;七是对于质地坚硬、易脆裂、熔点极高和极薄的材料,具有特别的功效。

二、激光焊接技术在汽车制造中的应用

汽车制造成规模化发展已经成为一个重要趋势,在汽车制造中,焊接工艺是一项重要工艺,也是整车流程中重要的衔接环节,激光焊接技术的广泛应用,使焊接环节的工作效率大大提高,从而达到汽车制造过程优化效率的目的。目前在汽车制造中应用最为广泛的焊接方式有激光拼焊、激光焊接和激光焊接技术。拼焊技术是汽车制造中的一个重要环节,普遍应用于汽车制造,在车身制造上的应用更为突出。激光拼焊帮我们解决了传统车身制造方式的缺点,传统方式是将各分部件先进行冲压成型,之后再进行焊接,焊接的效果总是不尽如人意,融合处处理不是很完美,甚至融合不是很好。激光拼焊过程中,在车身制造时顺序和传统方式正好相反,先进行焊接,再进行冲压成型。激光拼焊使用零件数量少,可以节约成本,并且能够进行不同材质、不同部位的钢板焊接,焊接精准度较高,这项技术在世界汽车制造业广泛应用,在奇瑞、一汽等国内汽车公司都已近开始使用激光拼焊技术,并且是最先进的汽车车身焊接技术。激光焊接技术在汽车制造中的应用是从变速器的齿轮焊接开始的,这要求焊接不但要净度高,还要质量高,才可以满足变速器齿轮对运转速度和重量的高要求。激光焊接技术具有高精度、高净度的特点,可以减轻齿轮负担。这种焊接技术的兴起在20世纪80年代,克莱斯勒公司、通用公司、福特公司等最先将激光焊接技术应用到汽车制造中,而激光焊接技术带来的高效率、高质量、低成本,成为美国汽车制造技术在世界领先地位的保障。随着新型镁、铝等材料在汽车制造中的应用,对于焊接技术的要求也越来越高,激光焊接技术不但可以减少镁、铝化合物的产生,延长使用寿命,满足功能要求,同时也兼顾了美观。将激光焊接和电弧焊接综合在一起,便是激光复合焊接技术,也可以看作是激光焊接技术的改进技术,不但提高了激光焊接技术的稳定性,焊接速度高,而且焊接的工作效率和质量都得到很大程度上的提高。

随着我国改革开放的不断深入,人们生活水平不断提高,对汽车的需求也逐渐提高,而且对汽车的质量、外观等方面的要求也越来越高,为了满足这种社会需求,要求我国汽车制造企业要根据实际情况,引进先进的加工工艺,提高汽车制造中的工作效率和产品质量,同时降低成本,保证企业稳定、持续发展。因此,在汽车制造中广泛应用激光焊接技术等先进工艺,已经成为国内汽车业内人士的关注。在“九五”期间,激光焊接技术已经被列入机械行业十大技术之一。在未来的发展中,激光焊接技术的产业化、规模化仍是我们努力的方向。

参考文献

激光焊接技术范文第2篇

【关键词】塑料;加工;激光;焊接

激光焊接技术是通过该运用激光束产生的热量熔化塑料接触面,最终把热塑性片材、薄膜和模塑零部件粘结在一起。塑料的激光焊接技术是在利用激光束与有机高分子物质的作用以此达到对塑料的焊接和处理等加工的目的。激光加工技术是一种包括光、机、电和材料等多门学科在内的综合技术。激光加工无需接触加工面便能进行焊接,不仅能完成各类形状复杂塑料的高精度焊接,不会存在刀具磨损和更换刀头等工序,速度快、噪声小,推广价值很大。将激光技术与计算机控制技术相结合,能更好的实现激光加工全自动化,其优势和应用价值相当大。

1.激光焊接技术的工作原理及其特点

塑料的激光焊接会在很大程度上与焊接材料相关。一般的激光焊接主要是通过激光透射焊接,一方面要求这个激光辐射能穿透零件,另一方面要求零件具有强列的吸收性能。在采用这种焊接技术的时候,要注意避免2个焊接件相互间的裂缝。在进行激光焊接时,吸收性的零件升温并且局部熔化,通过热传导将能量传递到透光的零件,通过外部的压力将2个零件紧密结合在一起。所吸收的近红外线激光转化为热能,将两个部件的接触表面熔化,最终形成焊接区。这种焊接方法能够形成超过原材料强度的焊接缝。

当前,我国市场上广泛运用的塑料焊接技术主要有振动摩擦焊接、热板式塑料焊接及超声波焊接等,主要是用在用于连接敏感性塑料制品、几何形状复杂的塑料件以及洁净度要求高的塑料制品上。

使用激光焊接技术来熔接塑料部件,具有很多其他传统方法不可比拟的优点:焊接缝尺寸精密、不透气及不漏水;激光焊接的接缝牢固且洁净,可以将很难连接的改性橡胶及玻纤填充的热塑性塑料进行焊接;能获得高精度的焊接件。在焊接的时候,树脂降解少,基本不会产生碎屑和飞边,部件表面能够精密连接;焊接设备不需要和被黏结的塑料零部件相接触,与其他熔接方法比较,大幅减少制品的振动应力和热应力;最小化热损坏和热变形,可以将不同组成或不同颜色的树脂黏结在一起;可焊接尺寸极小或外形结构复杂的零件,对有些复杂零件甚至可以进行“穿透焊接”;无振动技术能产生气密性的或者真空密封结构;能够将多种不同塑料焊接起来,而其他焊接方法有较大限制;设备自动化程度高,能方便用于复杂塑料零部件加工。非常适合运用在外形(甚至是三维) 复杂塑料品的焊接上;能够焊接其他方法不易达到的区域。

因为激光焊接具有上述众多优点,因此尤其适合运用在对于清洁焊接方式要求高的焊接加工中,如可以运用在含线路板的塑料制品和医疗设备中。

2.塑料材料对激光焊接的适应性

激光焊接塑料材料必须对激光有吸收,否则就不能完成塑料的激光焊接。绝大多数本色的塑料和许多有色的半透明塑料都能采用激光焊接,例如聚苯乙烯(PS)、聚氯乙烯(PVC)和聚丙烯(PP)等材料。对于吸收率低的热塑性塑料,首先要选择合适的激光种类;二是在其中添加炭黑等激光增敏剂,能有效提高塑料对近红外激光的吸收率。通过对各种塑料材料对激光反射率和透过率的研究,可以解决激光焊接塑料的材料等问题。

激光焊接方式并不是适用于所有的材料,在以下材料中不适宜适用:高性能聚合物,如PPS,聚(PEEK)和LCP等材料中,因为这些材料对于近红外光的透射率很低,不适合适用激光焊接方式;如果两种材料中都有炭黑时,因为二者都为黑色,就不能焊接在一起。同时,两种对近红外线激光都透射的材料(通常是透明的或者白色的),因为会很少的吸收近红外光,不能使用激光焊接。而在很多工业塑料上,这些产品都要求透明。由于许多矿物填充的化合物能够吸收近红外线激光,所以通常不适合用激光焊接。高填充的玻纤增强物能够改变近红外线激光的透射率,降低焊接效率。不过原料供应商的配方中的玻纤含量通常不会超过这个限度。

3.激光焊接技术的运用

激光焊接技术起源于20世纪70年代,但是它的造价比较高,不能与更早的振动焊接技术、热板焊接技术相竞争。但是,在20世纪90年代中期,激光焊接技术所需要的设备费用大大降低,这种技术慢慢的真正走进工业应用当中,并被人们所认可。

塑料的激光焊接技术主要用于普通焊接技术难以适应的塑料制品(如高密度线路板)、形状复杂的塑料件以及有严格洁净要求的塑料制品(如医药设备、电子传感器等)等。激光便于计算机控制,采用光纤激光器输出激光束可使激光灵活地达到零件各个微小部位,能够焊接其他焊接方法不易达到的区域。传统焊接技术无法焊接的异型塑料也有机会加以良好焊接,如用激光可将能透过近红外激光的聚碳酸脂(PC)和30% 玻纤增强的黑色聚对苯二甲酸丁二醇酯(PBT)焊接在一起,而其他的焊接方法根本不可能将2种在结构、软化点和增强材料等方面如此不同的聚合物连接起来。

激光焊接技术被广泛运用在被黏接的非常精密的塑料零部件材料(如电子元件)或要求无菌环境(如医疗器械和食品包装)中。激光焊接技术速度快,特别适用于汽车塑料零部件的流水线加工。另外,可以将激光焊接技术运用在那些很难使用其它焊接方法黏接的复杂的几何体中。目前国内使用的塑料焊接技术主要有热熔焊接、高频焊接、振动摩擦焊接及超声波焊接等。塑料的激光焊接技术在欧美发达国家已经得到了一定程度的应用。我国这方面的技术尚在起步阶段。

近年来,激光二极管广泛用于焊接及塑料的连接。激光焊接已用于制造汽车传感器、调速控制箱及薄壁医用管的精细焊接。激光焊接要求所焊接的2种塑料对同一波长的光有不同的反应,其中一种材料对激光必须具有穿透力,而另一种必须可被激光吸收,激光从上方接合处的穿透性元件传到下方可吸收元件,这样辐射能量就被转化成局域性的热能,此热能导致塑料的熔化。而透明塑料部位的熔化是通过与非透明材料的接触性热传导所致。在外部夹具的施压下,由局部加温而产生的焊接处热膨胀可形成牢固接缝。

4.激光焊接技术几种主要方法

根据激光器随塑料零件移动方式的不同,可把激光焊接技术(方法)分成四种类型:

4.1顺序型周线焊接

激光沿着塑料焊接层的轮廓线移动并使其熔化,将塑料层逐渐黏结在一起;或者将被夹层沿着固定的激光束移动达到焊接的目的。

4.2同步焊接

激光束经自适应光学系统或光纤,使光能均匀地分布在整个焊缝结构上。由于使用的装置很复杂,这种技术通常仅限于大批量焊接较大零件使用。

4.3准同步焊接

该技术综合了上述两种焊接技术。利用反射镜产生高速激光束(至少10m/s的速度),并沿着待焊接的部位移动,使得整个焊接处逐渐发热并熔合在一起。

4.4掩模焊接

激光束通过模板进行定位、熔化并黏结塑料,该模板只暴露出下面塑料层的一个很小、精确的焊接部位。使用这种技术可以实现小于10m的高精度焊接。

总之,激光技术发展到今天已经成为一门综合性科学,并可大大加快塑料产品研发的速度,使塑料生产企业获得更大的市场主动权。随着塑料工业的发展,激光技术的大规模应用无疑会给塑料工业带来革命性的影响,对于激光产品提供商来说,更是一种难得的机遇,也必然会推动激光技术的进一步发展。

【参考文献】

[1]庞振华,宋杰,杨绍奎,马跃新.激光塑料焊接技术及其典型应用[J].机电工程技术.2010(4):17-19.

激光焊接技术范文第3篇

关键词:激光焊接 激光焊接工作台 锂离子电池激光焊接 激光焊接焊接影响 应用

中图分类号:TG456.7 文献标识码:A 文章编号:1672-3791(2016)03(b)-0074-02

1 激光焊接技术概述

激光焊接的工作原理如下所示。

激光焊接工作是应用高能脉冲激光来实现,脉冲氙灯作为泵浦源,激光电源把脉冲氙灯点着,通过激光电源对氙灯放电,形成一定频率的光波,光波经过激光聚光腔照射到激光晶体上,使晶体受激辐射,再经过谐振腔之后发出波长的脉冲激光,该脉冲激光经过扩束,反射聚焦于所要焊接的物体,在控制器的控制下,移动工作台面完成焊接[1]。

2 一种锂离子电池电芯制作中激光焊接系统

锂电池激光焊接系统主要由激光器、导光系统、工作台、电池组件固定工装夹具、控制系统、冷却系统组成。

2.1 激光器

激光器的选用首先决定于所要求的波长、功率和模式,以及加工对象。同时还要考虑在工作环境下运行的可靠性,维修调整的方便性,尺寸的大小以及占用面积等因素。

2.2 导光系统

导光系统将激光由激光器引导至由聚焦光或匀光光具组成的加工头。加工头若是固定的,则导光系统固定不动,若加工头可以运动,那么导光系统也必须是可动的。

2.3 工作台

工作台用于固定电池零件工件,加工过程中确保工件与激光束的相对位置。根据加工要求,工作台能带动工件做所需的相对运动,工作台示意图见图1。

工作台功能及性能介绍如下。

(1)二轴运动模块:由两个伺服平台组合构成,每个伺服平台采用高精度电机驱动滚珠丝杆运动,线性导轨导向。伺服平台带动焊接头进行焊接。

(2)CCD监视模块:两个CCD与两个准直聚焦头同轴安装,在此工序中,CCD能够实时监控到焊点的焊接情况。

机架:由方钢钣金焊接而成,实现机器的牢固稳定、外形美观、运行稳定。

电控系统:实现对整个系统的控制(包括运动控制和传感器的检测)。

软件系统:实现各个步骤的焊接与激光焊接的配合。

2.4 夹具部分

夹具需对焊接样件进行完全防护,只漏出焊接区域,能够有效地防止焊穿现象的发生,防止焊渣飞溅落到产品表面。

(1)夹具机构:采用气缸夹紧,利用定位板定位,封闭式夹具结构防止焊渣飞溅落到产品表面。

(2)吹气机构:在不干涉夹具的情况下,使用加装侧吹方式(防飞溅气刀)吹保护气体,保证焊接表面效果;在飞溅严重的正极两侧,安装专用气刀,由压缩气体组成屏障,防止飞溅污染保护镜片。

(3)导向部分:使工件沿导向槽放入夹具中,提高装夹效率。

2.5 冷却系统

激光焊接机工作时,泵源对激光器的输入能量大部分都转化为灯、工作物质和聚光腔的热能。工作物质温度过高时,会严重损害激光器的正常工作,因此,必须采取冷却措施。一般采用闭合回路冷却系统,包括液泵、热交换器和容器等。

当前的激光器件已经形成系列化,使用比较成熟,因此,控制系统的性能就对整机功能起到重要影响。要求更加智能化和自动化[2]。

3 激光焊接技术在锂离子动力电池电芯制作中的应用

3.1 在锂离子动力电池(叠片工艺)电芯制作过程中的应用

电池盖板极柱组件极耳软连接引片厚度、材质,极耳引片(Tab)厚度、材质,焊接面积,焊印形状,焊接参数等。在使用激光焊接的过程中,要综合考虑各种因素,并进行大量实验,才能得到良好的焊接效果。

电池在制作过程中,对于层数较多的软连接,需通过超声波焊接机对多层软连接进行预焊,再将预焊后压平后的软连接与盖板极柱利用激光焊接起来。若软连接层数较少,可直接对多层软连接与极柱进行激光焊接,无需超声波预焊整形处理。

3.2 影响焊接过程因素分析

进行焊接过程,需要保证物件完全加紧压平,确保有效焦距的位置公差精度,另外焊接过程中要使用氮气保护器,对焊接位置进行保护,防护产品氧化[3]。

脉冲激光焊接机的规格参数主要为最大电功率、转换效率,最大激光功率,最大脉冲能量,峰值功率,最大光路分时分光反馈速度、决定了焊机规格的选择[4]。

在锂电池生产过程中,此项工序作为特殊关键工序规定,一定要进行首件三检和过程自检,焊接完成后,需要使用拉力设备检验焊接效果,检验产品焊接拉力和粘连面积,根据测试结果对焊接参数进行调整,直至焊接效果最佳方能连续生产,保证电池组件焊接质量一致性。针对动力电池壳体、盖板激光焊接试验,通过调整激光焊机脉宽、频率、峰值功率等工艺参数,验证不同参数对激光单点能量及焊接平均功率的影响,结合平均功率对焊缝熔深影响及不同熔深状态下与焊缝耐压强度的对应关系,进而优化激光焊接工艺参数,确保动力电池激光焊接过程的稳定性和焊接质量的一致性[5]。

4 结语

目前,与激光焊机配合的工作台及焊接工件固定夹具的精度和自动化程度,对焊接的效果及生产效率有很大的影响。在使用焊机的过程中,需要对焊机的环境加以控制。其中若出现保护镜片过脏,焦距不合适,极柱与软连接装夹不到位,存在有间隙,软连接层间未压实等因素,均会出现产品虚焊和脱焊不良,影响物件连接强度,对于电池而言,严重影响电池内阻和容量性能。激光器冷水机水温过高,光纤烧坏,激光棒爆裂等故障均为导致设备不出激光。国内的激光焊接厂家数量很多,产品的优点是设备价格适中,但焊接质量及设备稳定性与进口设备相比,仍存在一定差距,而锂离子电池制造过程对于焊接质量的一致性要求较高。

参考文献

[1] 梁艳梅.激光焊接中各参数对焊接质量影响的研究[J].价值工程,2015(30):137-139.

[2] 郝新锋,朱小军,李孝轩,等.激光焊接技术在电子封装中的应用及发展[J].电子机械工程,2011(6):43-45.

[3] 刘其斌.激光加工技术及其应用[J].北京:冶金工业出版社,2007.

激光焊接技术范文第4篇

【关键词】激光焊接焊接特性 应用

中图分类号:E933.43文献标识码:A 文章编号:

激光焊接技术是集激光技术、焊接技术、自动化技术、材料技术、机械制造技术及产品设计为一体的综合技术。激光焊以其高能量密度、深穿透、高精度、适应性强等优点,在工业中充分发挥了其先进、快速、灵活的加工特点,不仅在生产率方面高于传统焊接方法,而且焊接质量也得到了显著的提高。激光焊接技术发展到今天,其逐步取代电弧焊、电阻焊等传统焊接方法的趋势已不可逆转。在21世纪中,激光焊接技术在材料连接领域必将起到至关重要的作用。

一、激光焊接的基本特征

1、激光焊接属非接触加工,与接触焊工艺相比,无电极、工具等的磨损消耗,不需对工件加压和进行表面处理,无加工噪声,对环境无污染。

2、焊点小、能量密度高、适合于高速焊接加工,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。

3、焊接时间短,既对外界无热影响,又对材料本身的热变形及热影响区小,尤其适合焊接高熔点、高硬度的特种材料。

4、焊接时无需屏蔽或真空环境,能在室温或特殊条件下进行焊接,焊接设备装置简单。

5、激光焊缝力学性能好,力学性强于母材。焊缝强度高、焊接速度快、焊缝窄且表面状态好,免去焊后清理等工作。

6、极适合于精密件、箱体件和有密封要求焊接件的加工。

7、对带绝缘层的导体可直接进行焊接,对性能相差较大的异种金属也可焊接,实现自动化。可焊接难熔材料如钛、石英等,效果良好。

8、通过光纤实现远距离、可焊接难以接近的部位,实施非接触远距离焊接;光束易于控制、焊接定位精确,很容易搭载到自动机、机器人装置上。

二、常见金属材料的激光焊接特性

激光焊接适用于多种材料的焊接,激光的高功率密度及高焊接速度,使得激光焊缝、热影响区都很小。掌握好一些变化规律,就可以根据对焊缝组织的不同要求来调整焊缝的化学成分,通过控制焊接条件来获得最佳的焊缝性能。

1、碳钢

低碳钢和低合金钢都具有教好的焊接性,但是采用激光焊接时,材料的含碳量(碳当量)不应高于0.25%。对于碳当量超过0.3%的材料,焊接冷裂纹倾向会加大,设计中考虑到焊缝的一定收缩量,有利于降低焊缝和热影响区的残余应力和裂纹倾向。

碳当量大于0.3%的材料和碳当量小雨0.3%的材料在一起焊接时,采用偏置焊缝形式有利于限制马氏体的转变,减少裂纹的产生。材料碳当量超过0.3%时,减小淬火速度也可以减小裂纹倾向。

表面经过渗碳处理的钢由于其表面的含碳量较高,极易在渗碳层产生凝固裂纹,通常不适用激光焊接。

2、不锈钢

奥氏体不锈钢的导热系数只有碳钢的1/3,吸收率比碳钢高。因此,奥氏体不锈钢可获得比普通碳钢深一点的焊接熔深。激光焊接热输入量小,焊接速度高,非常适合于Ni-Cr系列不锈钢的焊接。

马氏体不锈钢的焊接性差,焊接接头通常硬而脆,并由冷裂纹倾向。在焊接含碳量大于0.1%的不锈钢时,预热和回火可以降低冷裂纹和脆裂倾向。

铁素体不锈钢,激光焊接通常比其他焊接方法容易焊接。

3、铜、铝及其合金

紫铜对CO2激光的反射率很高,但对YAG激的反射率很低,所以用激光焊接紫铜还是有可能的。另外,可以通过表面处理来提高材料对激光的吸收。

黄铜的不可焊性是因为其锌的含量超出了激光焊接允许的范围,锌有相对较低的熔点,容易汽化,会导致大量的焊接缺陷如气孔产生。

由于铝合金的发射较高和导热系数很高,铝合金的激光焊接需要相对较高的能量密度。但是,许多铝合金中有易挥发的元素,如硅、镁等,焊缝中都有很多气孔。而激光焊接纯铝时不存在以上问题。

三、激光技术在焊接中的具体应用

目前激光焊应用领域逐渐扩大,主要应用于: 制造业应用、粉末冶金领域、汽车工业、电子工业、生物医学、航空航天工业、造船工业。

1、制造业应用

激光拼焊(Tailored Bland Laser Welding)技术在国外轿车制造中得到广泛的应用。据统计,2000年全球范围内剪裁坯板激光拼焊生产线超过100条,年产轿车构件拼焊坯板7000万件,并继续以较高的速度增长。国内生产的引进车型Passat,Buick,Audi等也采用了一些剪裁坯板结构。

2、粉末冶金领域

由于粉末冶金材料具有特殊的性能和制造优点,在某些领域如汽车、飞机、工具刃具制造业中正在取代传统的冶铸材料,随着粉末冶金材料的日益发展,它与其他零件的连接问题显得日益突出,使粉末冶金材料的应用受到限制。在20 世纪80年代初期,激光焊以其独特的优点进入粉末冶金材料加工领域,为粉末冶金材料的应用开辟了新的前景,采用激光焊接可以提高焊接强度以及耐高温性能。

3、汽车工业

德国奥迪、奔驰、大众、瑞典的沃尔沃等欧洲的汽车制造厂早在20世纪80 年代就率先采用激光焊接车顶、车身、侧框等钣金焊接,20世纪90年代美国通用、福特和克莱斯勒公司竟相将激光焊接引入汽车制造,尽管起步较晚,但发展很快。

激光焊接还广泛应用到变速箱齿轮、半轴、传动轴、散热器、离合器、发动机排气管、增压器轮轴及底盘等汽车部件的制造,成为汽车零部件制造的标准工艺。我国一些汽车制造厂家已经在部分新车型中采用激光焊接技术,而且从激光焊接技术本身研究的角度看,我国一些科研院所在一些具有特色的领域取得了具有特色的成果。随着我国汽车工业的快速发展, 激光焊接技术一定会在汽车制造领域取得丰硕的成果和广泛的应用。

4、电子工业

激光焊接在电子工业中,特别是微电子工业中得到了广泛的应用。在集成电路和半导体器件壳体的封装中,显示出独特的优越性。在真空器件研制中,激光焊接也得到了应用,如钼聚焦极与不锈钢支持环、快热阴极灯丝组件等。传感器或温控器中的弹性薄壁波纹片其厚度在0.05-0.1 mm,采用传统焊接方法难以解决,TIG焊容易焊穿,等离子稳定性差,影响因素多,而采用激光焊接效果很好,得到广泛的应用。

5、生物医学

生物组织的激光焊接始于20世纪70年代,Klink等用激光焊接输卵管和血管的成功焊接及显示出来的优越性,使更多研究者尝试焊接各种生物组织,并推广到其他组织的焊接。激光焊接作为一种焊接牙科合金的新技术,经过十余年的设备改进、技术更新,在口腔修复领域的应用日趋成熟。

6、航空航天工业

美国在20世纪70年代初的航空、航天工业中即已利用15kW的CO2激光器针对飞机制造业中的各种材料、零部件,进行焊接试验及评估工艺的标准化。近年来,新的应用成果是铝合金飞机机身的制造,用激光焊接技术取代传统的铆钉, 从而减轻飞机机身的重量近20%,提高强度近20%。

7、造船工业

造船业是激光焊接应用的一个重要领域。造船的主要工艺是焊接。采用激光焊接的优点在于可得到高强度的焊件,从而在设计上可减小所用材料的厚度,达到轻重量、高强度的目标。

在其他行业中,激光焊接也逐渐增加,如含有线路板的塑料制品、医疗设备等均可采用激光焊接。

四、结束语

激光加工是21世纪一门发展极快的新制造技术,必将对我国传统工业的技术改造、新兴工业领域以及制造业的现代化提供先进的技术装备,在现有的激光焊接技术的基础上还应该继续对传统的焊接工艺进行技术改造,使激光焊接可以发挥出更好的优势,获得越来越广泛的应用。

参考文献:

[1] 李来平,胡明华,杨学勤,魏薇,朱平国. 激光焊接技术及其在航天领域的应用[J]. 现代焊接,2009,(08).

[2] 张文毓. 激光焊接技术的研究现状与应用[J]. 新技术新工艺, 2009,(01).

[3] 吴明清,尹占顺. 激光焊接技术在工程车辆生产中的应用[J]. 现代焊接, 2008,(08).

[4] 齐力. 激光焊接的应用[J]. 现代焊接, 2005,(01).

[5] 李树锋. 激光技术在焊接中的应用[J]. 现代焊接, 2009,(01).

激光焊接技术范文第5篇

摘要:伴随着迅速发展的现代焊接技术,水下激光焊自动修复工艺必然拥有非常广阔的应用前景,研究部门只有积极不断的探索,才能推动水下激光焊自动修复技术的创新发展。本文主要分析了激光焊接技术工艺参数,水下激光焊技术原理及特点,水下激光焊接自动化修复工艺的应用及测试。

关键词:水下激光焊;自动修复;工艺

中图分类号:TP30 文献标识码:A

陆地资源已经无法达到经济发展要求,需要进一步加快开发应用海洋资源,同时,由于复杂的水下环境对设备造成的潜在危害,高质量的水下焊接便凸显出重要作用。目前水下焊接技术基本上可以对一些水下焊接问题有效解决,但是也带来了不少的局限,无法达到高效的应用需求。所以,积极发展水下激光焊自动技术,加强研究自动修复技术的应用,对于目前或者未来来讲,都是一项挑战性工作。

一、激光焊接技术工艺参数

(一)激光焊接的功率密度。在激光焊接中功率密度是最重要的参数。通过极高的功率密度,可以在几秒或者几微秒的时间内快速加热金属至熔点,熔融焊接激光光束要想产生良好的光斑聚焦直径取决于激光器光束输出模式,模式越低,光点聚焦越小,焊缝越窄,则热影响区域越小。

(二)激光焊接的脉冲波形。在焊接中激光脉冲波形非常关键。当材料表面受到高强度激光束照射时,反射将会造成金属表面60%-90%的激光能量被消耗,并且随着不同反射率的表面温度在一个激光脉冲作用期间内发生变化,金属反射率具有极大变化,例如正弦波,比较适合迅速散热的工作,飞溅很小、熔深浅;方波则适合缓慢散热的工作,飞溅大且熔深大。通过调整可有效渐升与渐降功率防止焊件受到激光功率开关影响而瞬间突开、突闭导致焊缝出现气孔以及收尾弧坑裂纹问题。

(三)激光焊接的高焦量。离焦量具体是指工件表面与焦平面偏离产生的距离。离焦位置对拼焊过程中的小孔效应造成了直接影响。离焦方式包括两种:正负离焦。焦平面处于工件上方时称为正离焦,反之则是负离焦。当正负离焦量相同时,对应平面产生了相似的功率密度,事实上得到了不同的熔池形状。负离焦时,由于形成熔池过程造成了更大的熔深。试验说明,激光发生50-200us加热时开始熔化材料,产生液相金属并且部分形成汽化,通过极高的速度喷射高压蒸汽,发出炫目的白光。同时,高浓度气体造成液相金属运动到熔池边缘,并且在熔池中心产生负离焦凹陷时,材料内部功率明显高于表面,容易产生更为强大的气化和熔化,促使材料在更深处传递光能。所以熔深在实际应用中较大时,应当利用负离焦,薄材料焊接最好选择正离焦。

二、水下激光焊技术原理及特点

(一)水下激光焊技术原理。水下激光焊接工艺综合了活性光学纤维和半导体二极管两种激光技术。光源把极亮的半导体二极管发射器产生的聚焦光束通过光纤,从一个极小的光纤腔中发射出很强的光亮。在光学纤维中包含了激光束,光学纤维利用柔韧的金属装甲导管实行屏蔽。水下激光焊通过二极管纤维激光束,利用初次与二次保护气对熔池实行保护,采用激光焊枪输送保护气。初次保护气发挥了排开水功能,营造一个比较干燥的焊接环境,同时也为焊接创造了保护媒介。二次保护气产生了一些对激光焊系统有利的条件,避免焊接时水涌入焊接试件中。水下激光焊和钨极氩弧焊使用了一样的填充金属,保证可以正确连接填充金属和母材。输送填充金属到形成激光束的熔池中,这类似于钨极氩弧焊焊接过程。但是,水下激光焊使用的焊接工艺具有全自动化特点,从这点分析水下激光焊与钨极氩弧焊并不相同,因为在焊接期间钨极氩弧焊还需要操作者对设备进行调整。

(二)水下激光焊特点。1自动化特点。由于是全自动化的水下激光焊,对于焊接质量来说初始安装非常关键。自动化工艺减轻了依赖焊接操作者技能的程度,准确控制工艺过程确保了焊缝的高度统一。一旦安装好焊接设备,设计好控制操作步骤,焊接操作者只要按下启动键就能够进行焊接。在这一过程中操作者不需要调整设备。2可靠的焊接特点。准确的激光束热输入量以及科学控制稀释率能够确保焊缝质量的连续统一,经过测试表明高纯沉积率的原因是焊接过程输入量的低热。

三、水下激光焊接自动化修复工艺的应用及测试

(一)水下激光焊接自动化修复工艺的应用。作为水下激光焊热源的光学纤维发射激光,最大程度上降低了焊接系统的复杂程度,可以有效开发应用密封或者远程焊接场合的焊接接头。同时在人们不适合长期工作的场合也可以应用自动化焊接工艺。

在修理或者维护场合应用水下激光焊接,类似与其他水下工艺方法的运用。具体包括了修理近海钻探油平台以及海底其他传统焊接方法产生的问题场合。这一工艺也对存在焊接飞溅的地方比较适用,这些场合应用传统的电弧焊法会危害工人的生命安全。

(二)水下激光焊接自动化修复工艺的应用测试。1检测不同类型的焊缝金属。目前,机械性能包含了拉伸测试、侧弯测试,以及对水下激光焊熔敷的强度与致密性进行评估。从水下激光焊多道焊缝产生的三层钢板上获得侧弯试样,通过柱塞型试验设备与卷包测试夹具实行侧弯检测。通过目视检查这两种测试设备,没有发现问题,之后的液体渗透探伤也没有找出任何问题。2测试扩散氢含量 。实行氢含量扩散试验对水下激光焊工艺影响氢含量的情况进行评价。结果说明,扩散的氢含量要比焊接干燥环境下应用手工电弧焊产生的扩散氢含量少。实际上,剩余的氢含量完全可以媲美空气中采用钨极氩弧焊产生的氢含量。

水下激光焊样品氢含量平均为100克0.5毫升。相较于国际标准这些试样的氢含量明显低一个数量级。按照这些测试数据分析,比较水下激光焊接与传统水下电弧焊,前者拥有更低的氢致裂纹延迟的敏感度。

结语

水下激光焊自动修复技术是一种焊接创新技术,其是一种具有极强综合性的技术,综合激光技术、焊接技术、自动化技术、材料技术以及产品创新设计。人们尚没有完全对水下激光焊自动修复技术的应用范围与焊接能力充分认识,还需要科技工作人员不断研究与探索。相信水下激光焊自动修复技术在不久的将来不但出现在更多的加工领域,还会在这些领域成为加工主流技术。

参考文献

激光焊接技术范文第6篇

关键词 轨道交通;铝合金;焊接工艺

中图分类号TG4 文献标识码A 文章编号 1674-6708(2014)114-0195-02

随着国内经济发展,轨道交通在社会经济生活中扮演着极重要的角色。地铁是轨道交通的重要组成部分。随着经济发展,重视轨道交通技术革新是非常重要的。轨道交通车辆用铝合金电焊技术是当前较为先进的生产工艺技术。该技术具有不易变形,而且环保并且操作方便。重视该技术的应用研究是非常必要的。

1 轨道交通车辆用铝合金焊接技术简介

轨道交通主要包括地铁、轻轨、有轨电车和磁悬浮列车等等。轨道交通是现代社会交通的重要组成部分。地铁又被称为“重轨”,属于电气化铁路系统。例如:上海地铁1号、2号线。地铁具有运输量大的特点,因此备受现代化城市青睐。轻轨也是一种电气化铁路系统,但机车重量和载客量都较小。有轨电车的运量最小。磁悬浮列车的最大的特点是速度快。轨道交通是现代社会必不可少的交通方式。国内各大城市也积极开展地铁交通的建设。北京、天津、香港、上海、广州、深圳等城市都已经建立了完善的地铁交通线,许多城市也正紧锣密鼓的建设地铁。轨道交通具有舒适、快捷、便利的特点,因此是现代社会重要的交通工具。铝合金电焊技术在轨道交通车辆建设方面有重要意义。现对相关技术做简单的介绍。

1.1 铝合金焊接技术的产生

铝合金具有重量轻、高强度、耐锈蚀、热稳定、易成形、易再生性等一系优点。因此铝合金是比较优良的建筑材料。国内轨道交通在不断发展的同时也在不断追求速度的提升。为了适应轨道交通发展的需要,铝合金是轨道交通车辆的最佳原材料。在轨道交通车辆的制造和修理过程中都需要面临铝合金的焊接工作。为了更好的做好轨道交通车辆用的铝合金焊接工作质量和效率,由此产生了相关的技术应用研究。铝合金焊接技术在国外已经发展有一段的历史了,焊接技术发展的也较为成熟。例如:交流电源的铝合金焊接技术、气体保护铝合金焊接技术、铝合金激光焊等等。国内相关技术发展才刚刚开始。

1.2 铝合金焊接技术的难点

铝合金的焊接不同于一般钢铁的焊接技术。铝合金焊接也有其特色。首先,铝合金表面的氧化膜是铝合金焊接技术需要攻克的难点。其次,铝合金的导热性和导电性较好,因此铝合金的焊接线的性能要比钢铁焊接线的性能高2~4倍。寻找合适的焊接线是铝合金焊接的技术难点。最后,焊接过程需要产生大量热量,在焊接过程中焊件容易产生裂纹。轨道交通车辆的铝合金焊接技术需要攻克这些难点,才能真正服务生产实践。

2 轨道交通车辆用铝合金焊接工艺的应用策略

铝合金可以大大减轻轨道交通车辆的重量,提高车辆运行的速度。铝合金已经是当前轨道交通车辆的主要原材料。重视铝合金焊接技术是轨道交通车辆生产的重要环节,重视相关工艺的技术研究和应用研究是非常必要的。

2.1 重视铝合金焊接工艺的创新

国内铝合金焊接工艺发展是近几年的时间,在应用实践方面还是存在一些不足。在实践中常会暴露出一些问题,作为轨道交通车辆生产企业应鼓励广大生产一线的职工重视技术创新实践探索。目前比较成熟的铝合金焊接技术种类比较多,组织铝合金焊接工走出企业甚至走出国门,参加必要的技术学习。国外的铝合金焊接技术相对比较发达,向国外优秀的铝合金点焊工学习对技术的提升是非常有效。另一方面,在企业内部或行业内部开展技术竞赛,通过竞技的方式促进点焊技术的不断提升。

2.2 重视铝合金激光焊接技术的应用

铝合金激光焊接技术是当前比较先进的焊接技术。该技术具有能量密度高、热量小的特点,因此焊接过程中不会造成焊件的变形和裂纹。而且该种技术冷却速度快,因此对一些细微的焊件有较好的焊接效果。总体来说,激光焊接的速度快,精度高,可靠性强。现代社会对轨道交通车辆的坚固性、稳定性、美观性都有要求。为适应现代社会的需要,只有铝合金激光焊接技术能实现。但激光焊接技术工艺并不成熟,还需要在克服一些技术难点。在国内积极开展相关技术公关,借助高校科研力量和企业的实践经验,开展技术公关。相信激光焊接技术的发展将对国内制造也发展有重要意义。

2.3 重视铝合金焊接设备的开发研究

焊接设备是铝合金焊接的关键。焊接设备的功率、焊束的能量密度、焊接速度等等因素都会影响到焊接的质量和效率。另外,焊接设备的先进性直接影响到工人的工作环境。综合考虑,开发性能高、效率高、安全系数高的自动化焊接设备是提高铝合金焊接工艺水平的关键。最后,国内的焊接技术工的人力资源相对还比较匮乏。重视铝合金焊接设备自动化水平的提升还可以缓解当前技术工人短缺的问题。

2.4 不断改善焊接工人的作业环境

任何工艺水平的提升都是建立在人的基础上的。为焊接工人营造一个安全舒适的工作环境是非常必要的。焊接过程大多是在高温环境下进行,焊接使用的化学材料大多对环境和工人身体有一定的影响。例如:使用单一气体保护焊接过程会紫外线和臭氧。在轨道交通车辆生产过程中要尽量避免这种污染性高的焊接工艺。重视工人作业环境的改善是非常必要的,也是铝合金技术应用的重要标准。

3 结论

轨道交通是国内社会重要的交通工具。随着国内轨道交通的发展,国内对轨道交通车辆需求不断增长。铝合金材料是轨道交通车辆制造的重要材料,同时铝合金焊接工艺也是轨道车辆生产和维修中常用的工艺。重视相关工艺的技术创新研究对整个轨道交通发展有重要意义。

参考文献

[1]朱宏.铝及铝合金激光焊接技术的研究现状[J].电子工艺技术,1997(7).

激光焊接技术范文第7篇

关键词:铝合金;焊接技术;进展

铝合金具有强度高、耐腐蚀性强、导热性好、易成型、重量轻等优点使其可以广泛用于汽车制造、航空航天、体育器材、建筑装修材料等领域,相对钢铁等传统材料而言,对铝合金材料的焊接工艺要复杂的多,其焊接工艺是否先进应成为影响铝合金实际应用的重要条件,随着科技的发展,铝合金的焊接技术也在不断的向前发展,经历了从单一焊接到复合焊接的过程。

1 铝合金的焊接中面临的问题

铝合金是轻质高强材料的代表,而焊接是铝合金结构之间连接的主要方式,在焊接过程中,由于铝合金材料本身的性质,在铝合金表面会产生一层致密的氧化膜,其主要成分是三氧化二铝,这是一种熔点较高的物质,因此要想对铝合金进行焊接就要采用大功率密度的焊接工艺,同时由于铝合金的导热性能极好,因此焊接的热量很大一部分会被铝合金基材导走,这就要求对铝合金焊接必须要速度很快,在焊接后经常发现铝合金焊接处容易产生气孔或热裂纹,导致在焊接后的焊缝处强度系数较低,并且软化严重,容易变形,因此采用先进的焊接方法并控制好焊接工艺参数显得格外重要。

2 铝合金焊接技术进展

2.1 铝合金焊接传统技术

2.1.1 TIG焊

惰性气体钨极保护焊(Tungsten inert gas arc welding)通常称TIG焊,是一种常用的金属焊接技术,在焊接中,由工件本身作为正极,而将焊炬中的钨电极作为负极,采用直流电弧作为焊接热源,工作电压为10到15伏特,而工作电流最高达到300安培,在氩气、氦气等的保护下使钨电极放电产生电弧,使熔池内的工件得以熔合在一起,由于TIG焊接过程中产生的电弧可以自动清除工件表面的氧化膜,因此可对铝合金进行良好的焊接而避免采用大功率造成工件表面的损伤。但是由于工作电流不易过大,导致TIG焊接的熔深较浅,只能适合焊接厚度较小的铝合金工件,如果对厚度较大的工件进行焊接,要么焊接深度不够,要么加大电流的同时就会造成钨电极熔化进入到熔池,造成焊缝夹钨,并且TIG焊接多数采用手工操作,导致焊接的生产效率较为低下。

2.1.2 MIG焊

熔化极惰性气体保护焊(Metal inert-gas welding)通常称为MIG焊,与TIG焊技术类似,只是用可熔化的金属丝来替代TIG焊工艺焊炬内的的钨电极,在焊接铝合金过程中,利用焊炬内燃烧的电弧作为热源来熔化铝合金工件和焊丝,焊丝以熔滴的方式不断进入焊池中与母材进行熔合,在冷凝后使铝合金工件之间连接在一起,整个焊接过程需要在惰性气氛下完成,避免空气进入。MIG焊在焊接铝合金时工艺较为简单,而且几乎不存在焊接损失,用可熔的金属丝代替了钨电极,成本大大降低,并提高了生产效率,在焊接过程中必须要保持母材表面无杂质,以免产生气孔等,但MIG焊也具有与TIG同样的缺点,即是熔透能力有限,焊接熔深浅,焊接变形较大,因此需要对其进行科学的改造,以使其在铝合金焊接中得以更广泛的应用。

2.2 铝合金焊接先进技术

2.2.1 激光焊

随着激光加工技术的不断发展,激光焊接在铝合金的焊接中受到了广泛的重视,根据功率大小不同激光焊分为热传导型焊接和激光深熔焊接两种,其中热传导型焊接功率较小,适合焊接厚度较小的工件,而激光深熔焊接适合焊接厚度较大的工件,激光焊接是利用高能量的激光束使工件表面材料蒸发并形成小孔,随着激光束的不断移动,小孔内的熔融金属也不断移动,待小孔移开后熔融态的金属进入到小孔内部,冷凝后就将工件焊接在了一起。与传功的TIG、MIG焊接方法相比,激光焊的能量更大,并且热输入量小,因此不易变形,并且可根据工件的实际情况来调整焊接方式,可焊厚度较大的工件,但是功率大会造成设备的造价较为昂贵,并且对工件本身的要求较高,准备工序复杂等。

2.2.2 激光-电弧复合焊

在传统焊接方法和激光焊接的基础上,人们将激光焊与TIG焊或MIG焊相结合发展处激光-电弧复合焊接工艺,在焊接铝合金时,采用激光-电弧复合焊可以使焊接的能量密度达到很高,并且两种热源同时在一个区域内产生叠加效应,因此可以弥补激光焊接和电弧焊的不足之处,有效解决激光焊接的功率、铝合金表面对激光束的吸收率以及深熔焊的阈值等问题,其应用前景极为广阔。目前在德国、日本等工业发达国家,采用激光-电弧复合焊接铝合金的技术研究较多,并且在一些领域得到了实际的应用,取得了良好的效果,而在我国这种先进的铝合金焊接工艺还处于研究阶段,需要不断提高技术手段以促进其早日实现实际应用。

2.2.3 摩擦搅拌焊

无论是电弧焊还是激光焊,都属于熔焊的范畴,虽然熔焊的应用较广,但是由于焊缝为铸态,容易产生气孔等缺陷,在热循环的作用下使得焊接部位的组织微观结构受到影响,并且外表颜色与母材有较大差异,接头的力学性能明显低于母材,成为结构中薄弱的一环。鉴于此,摩擦搅拌焊(Friction Stir Welding,FSW)出现在人们的视野,摩擦搅拌焊是利用工件端面的相互摩擦作用产生热量,使端面达到热塑性的状态,通过快速的锻压使工件之间达到连接的目的。由于这种焊接方法不用使母材熔化,而是在固相的状态下完成焊接,因此不宜产生气孔、热裂纹等缺陷,并且焊接处变形小,与木材颜色一致,焊缝处与母材状态一致,力学性能相对较好,并且整个焊接过程不需要惰性气体保护,准备工作相对简单,设备成本低,因此是一种相当有前途的焊接方法。

3 结束语

综上所述,铝合金的焊接技术先进与否直接影响铝合金结构的外观、力学性能等,因此必须不断优化铝合金的焊接工艺,在对铝合金的焊接工艺进行选择时要综合考虑方法先进程度、焊接效率以及成本问题,并不断改进现有焊接方法,以提高铝合金焊接处的整体性能。

参考文献

[1]杨宗辉,孙孝纯.现代铝合金焊接技术[J].工装设备与工程,2003.

[2]殷春喜,黄军庆,熊震东.铝及铝合金TIG焊接特性[J].热加工工艺,2011.

激光焊接技术范文第8篇

摘要:钛合金具有密度小、强度高、耐热性好、导热性及抗疲劳性好、有着较宽的工作温度范围等优点,被广泛地应用于航空航天领域。而钛合金在飞机及其发动机等部方面的应用,不可避免的需要使用焊接手段进行连接,因此,钛合金的焊接方法在扩大钛合金的应用范围上具有重要推动作用。

关键词:钛合金; 航空航天; 焊接技术

中图分类号:V252 文献标识码:A钛及钛合金是一种密度小、强度高、耐热性好、韧性高、导热性及抗疲劳性好、有着较宽的工作温度范围和优异的抗海水腐蚀性能及超低温性能等一系列优异性能的工程结构材料。因此,被广泛地应用于航空航天领域。钛及钛合金已经成为航空航天工业的支柱之一,相关资料表明,高性能钛及钛合金在航空航天工业中的应用占到了钛材总产量的70%左右。钛制设备虽然一次性投资较高,但全寿命费用较低,经济效益明显,目前高性能的飞机、坦克正在采用钛合金部件,先进发动机的压气机盘、压气机叶片、风扇叶片以及机匣等均由钛合金制造。并且在石油化工部门中钛合金的范围也在逐渐扩展。而钛合金在飞机及其发动机等部方面的应用,不可避免的需要使用焊接手段进行连接,因此,钛合金的焊接方法在扩大钛合金的应用范围上具有重要作用。

1.钛合金的电子束焊

电子束焊目前越来越多地应用到钛合金的焊接中。电子束焊接是利用汇聚的高速电子轰击工件接缝处所产生的热能,使其加热、熔化、冷却结晶,形成焊缝的一种新型焊接技术。真空电子束焊,由于焊接过程是在真空环境中进行,杜绝了空气对焊缝的影响,所以焊缝的保护效果很好。可完全防止大气污染,易获得质量高于非真空环境下的焊缝。真空电子束焊焊接钛及钛合金具有独特的优势,表现为焊接冶金质量好,焊缝窄,深宽比大,焊接角变形小,焊缝及热影响区晶粒细小,接头性能好、焊接快。电子束焊焊后产生的晶粒大多是较均匀的等轴晶,焊接接头有较高的强度。

由于真空电子束焊接需要真空室,所以一般不适合于室外焊接以及大尺寸工件焊接,而且焊缝中易出现气孔,但塑性相对降低,结构尺寸易受真空室限制,不适合于大批量生产。

2. 钛合金的激光焊

激光焊接是利用高能量密度的激光束作为热源的一种高效精密焊接方法。自“小孔效应”的激光深熔焊得以实现,激光焊接技术迅猛发展,钛合金激光焊应用研究也得到了广泛重视。激光焊接具有高能量密度、热变形小、可聚焦、无接触加工、深穿透、高效率、高精度、热影响区狭窄、适应性强等优点,激光焊能焊接高熔点、难熔、难焊的金属,自动化和柔性化程度高,一般情况下不需要真空工作室。激光焊接具有熔池净化效应,能纯净焊缝金属,焊缝的机械性能相当于或优于母材。基于激光焊接具有的诸多优势,它是二十一世纪先进的制造技术之一,受到世界各国的重视,广泛的应用于航空航天、汽车制造、电子轻工业等领域。中国的激光焊接处于世界先进水平,具备了使用激光成形超过12平方米的复杂钛合金构件的技术和能力,并投入多个国产航空科研项目的原型和产品制造中,具有更广泛的应用前景。

激光焊也有其不足之处,它的穿透力不如电子束强,因此能够焊接的板材的厚度十分有限。激光焊接系统的成本通常高于传统的焊接设备,但由于激光焊的高生产率和高性能质量足以弥补此项缺憾,使得激光焊接系统在技术及经济上具有很强的综合竞争力。

3. 钛合金的等离子弧焊

等离子弧焊广泛用于工业生产,特别是航空航天等军工和尖端工业技术中,等离子弧焊也常用于钛及钛合金的焊接。等离子弧焊是利用等离子弧作为热源的焊接方法,它有两种基本方法:小孔型等离子弧焊及熔透型等离子弧焊。等离子弧焊具有能量集中、射流速度大、熔深大、电弧力强、焊缝窄、热影响区小、焊件不开坡口等特点,等离子弧的能量密度介于电弧与电子束之间,等离子射流可以直接穿透被焊工件,由于钛的比重较轻,重力作用较小,而且液态钛的表面张力较大,所以有利于形成“穿孔效应”进行等离子焊接,而且用等离子弧焊接钛及钛合金,能获得优质的焊接接头。目前,许多高精度、高质量的军用装备都已采用了等离子弧焊接方法。等离子弧焊既不需填充材料,又能一次性焊好,减轻了基体金属的过热程度。有利于焊接区减少气体污染,从而进一步提高了接头的机械性能。

4. 钛合金的钎焊

在钛合金构件的制造中,钎焊也是一种有效的连接方法,主要应用在钛合金复杂结构的制造中,如蜂窝结构,小型航空精密部件等。钎焊是采用比母材熔点低的金属材料作为钎料,将焊件和钎料加热到高于钎料熔点,低于母材熔化温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接焊件的一种工艺方法。由于钛的高温活性强,钎焊一般在真空或隋性气体保护下进行。

钎焊在钛合金焊接中得到了广泛的应用,但是钎焊通常只用于焊接小型薄壁构件,不适合大厚度钛合金的焊接,另外,钎焊接头的强度也比较低。

结语

由于钛合金优异的特性,它在航空航天领域必将有着更广阔的应用前景,也为焊接技术的发展提出了新的挑战,开发研制先进的钛合金焊接工艺也必将大大推进钛合金在航空航天领域的应用。

参考文献

[1]康彦,何晓梅.钛及钛合金焊接接头表面纳米化研究现状[J].金属材料与冶金工程,2013,41(06):55-58.

[2]杨苹. TC4钛合金焊接工艺分析[J]. 机械制造,2008,46(531):51-52.

[3]韦生,费东,田雷,等.钛及钛合金焊接工艺探讨[J].焊工之友,2013,42(4):73-75.

[4]刘鹏飞.钛及钛合金结构焊接技术研究进展.金属加工.2012, (20):11-13.