首页 > 文章中心 > 数据通信论文

数据通信论文

开篇:润墨网以专业的文秘视角,为您筛选了八篇数据通信论文范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

数据通信论文范文第1篇

1.1数据报格式

数据报分为报文头部和数据部两部分,其格式如图2所示。报文头部由6字节组成,第1、2字节AB表示报文长度,即报文头部长度加上数据部长度;第3、4字节CD表示整个报文的校验和;第5、6字节XX表示应答ACK;第7、8字节GH表示报文序号。数据报长度AB范围为0~65535,所以一个报文最大为8KB。数据部长度等于报文长度(AB)减去报文头长度(8B)。2.2数据处理与报文处理数据处理包括分割上层应用提供的数据,以及从报文还原拼接数据;报文处理包括格式化报文以提供给串口发送以及从串口读取报文、校验报文、提取数据。

1.2.1数据分割

协议从应用程序接口获取应用程序提供的数据并以流式数据写入发送方数据缓冲区;然后以事先设定的数据分割长度取数据,长度不足的部分则全部取出,取数据指针移动相应距离。

1.2.2报文组装

报文的组装过程如下:

(1)计算取出数据的长度,填入报文第1、2字节;

(2)报文第3~6字节全部置0;

(3)计算报文序号GH;

(4)计算校验和,从第1字节开始,每两个字节为一个单元进行分割,末尾不足两字节则在其后补0,再将这些单元进行二进制反码求和,结果存在检验和字段中第3、4字节;

(5)将取出的数据接在报文头部后面,将整个报文写入报文缓冲区。

1.2.3报文拆分

报文拆分的具体步骤如下:

(1)从报文缓冲区按报文长度获取报文数据;

(2)计算校验和,方法同报文组装里的计算方法:如果校验和不为0xFFFF,则传输过程中发生差错,丢弃此报文;如果校验和为0xFFFF,取出报文长度及报文序号,计算数据部长度,取出数据。

1.2.4数据拼接

将从报文取出的数据填入接收方数据缓冲区,写数据指针移动相应距离;接收完最后一个数据后,协议将数据缓冲区中的数据提供给上层应用程序,写数据指针恢复初始值。

1.3数据报传输过程

数据报传输情况分为考虑定时器超时和不考虑定时器超时两种,定时器超时处理应属于中断调用。

1.3.1传输过程数据报传输过程如下:

(1)在进行数据报传输前,发送方将数据分割并装进报文,ACK置为0x0000,计算报文序号,再将报文送入报文缓冲区。

(2)开始发送时,串口按已经设定的工作方式和波特率工作,从报文缓冲区获取报文数据并发送。

(3)发送方发送完毕一个数据报后,停止发送,启动定时器计时,准备接收响应。

(4)接收方串口接收数据并填入报文缓冲区。

(5)接收方从报文缓冲区获取报文数据,进行校验:

①若接收方校验结果为正确,则取出数据;若接收的ACK=0x0011并且收到的序号等于前面一个报文的序号,则将数据覆盖到前一块数据,否则将数据填入数据缓冲区;记录报文序号,发送数据部为空、ACK=0x1111的报文。

②若接收方校验结果为错误,则丢弃数据报,发送数据部为空、ACK=0x1110的报文,通知发送方重发。

(6)接收方每次处理完数据报均初始化并启动定时器计时,刚收到数据报时关闭定时器。

(7)发送方收到响应报文,校验通过则关闭定时器,获取ACK,若ACK=0x1111,则发送下一个数据报;若ACK=0x1110,则重发当前数据报(ACK置0x0011)。如果校验不通过就丢弃此数据报,仍保持定时器计时。

(8)双方重复以上步骤直到最后一个报文发送完毕。

(9)发送方发送最后一个报文完成后,发送数据部为空、ACK=0x0001的报文提示数据传输完毕,若此报文发送后收到重传响应,则重发此数据报(ACK仍置0x0001)。

1.3.2定时器超时处理

若发送方定时器达到发送方超时等待时间仍未收到响应报文,则重传当前数据报(ACK置0x0011),连续超时三次还没收到应答则停止发送数据报,清空报文缓冲区和数据缓冲区,并向应用程序返回通信失败。若接收方定时器达到接收方超时等待时间仍未收到报文,清空报文缓冲区和数据缓冲区,关闭定时器,并向上层应用程序返回通信失败。

2结论

数据通信论文范文第2篇

城市轨道交通信号系统的DCS网络包含有线部分和无线部分。有线网络部分是指轨旁设备之间的数据通信,为信号系统提供专用有线信息传输,为控制中心、车站、场段之间提供有线传输通道,建立局域网连接。无线部分主要是列车上的移动无线设备和地面轨旁无线单元之间建立的车地双向通信。如上所述,在信号系统的DCS网络中,可以根据不同的组网方式,构建不同的网络结构,形成连接信号系统相关设备的通信网。而在这样的网络中,传递的信息就包含大量的管理信息、行车数据信息、ATS信息、维护信息、数据记录信息等。DCS系统网络连接设备一般连接方式需要说明的是DCS网络结构是多样的,随着实际地铁线路情况、所连接的设备情况、以及技术发展和应用情况有不同变化。从图1中可以看出,信号系统DCS网络具有连接设备类型多、数量大,信息传输种类繁多的特点。如果在DCS网络中信息没有合理的传输定义,使网络中任何一个数据帧的传输都要遍及整个网络,导致所有与网络连接的设备都接收到,这样就会严重的消耗掉网络整体带宽。因此,在DCS网络传输信息量较大时(如早、晚运行高峰时等),如不对网络进行合理设置,就可能产生网络风暴。网络风暴发生时,与网络连接的部分设备也可能会由于无法应对网络流量的大幅波动导致故障,进而引发故障面扩大的情况发生,对运营产生严重影响,这就需要对网络中的信息传输进行合理优化。

2VLAN技术特点及在DCS网络中的应用

VLAN技术是将局域网设备从逻辑上划分成一个个网段,从而实现虚拟工作组数据交换。由于VLAN设置是在交换机上按逻辑来划分,而不是传统上的只能从物理上划分,因此VLAN技术的出现,可以满足根据实际应用情况,将同一物理局域网内不同用户逻辑地划分成不同的广播域需求。在设计VLAN并实现应用时,首先要确定如何划分VLAN。较为常见的VLAN划分方式包括:按照端口划分,按照MAC地址划分、基于网络层划分、以及基于IP广播和基于规则等方式。其中应用最为广泛、也是最有效的,是按照端口划分的方式,这种划分方式是根据以太网交换机的交换端口来划分的,将交换机上的物理端口分为若干个组,每个组构成一个虚拟网。由于基于端口划分VLAN的优点是定义VLAN成员非常简单,只要在接入交换机上进行相关设置即可,操作相对简单,适合任何大小的网络。同时,这种配置方式适用于网络环境比较固定的情况,与DCS网络构建后即在运营中不会轻易改变的实际情况较为符合,因此在地铁信号系统DCS网络交换机的配置中,一般都可以使用按照端口划分VLAN的配置方式。以赫斯曼交换机为例,按照端口划分VLAN,为不同端口赋予不同ID后的界面显示情况综上所述,为了有效避免信号系统DCS网络风暴的发生,可以将交换机端口划分到不同VLAN中。其原理为:在不同端口发出的所有数据帧上增加一个代表所属VLAN编号的ID,各个交换机端口只有在接收到所属VLANID的信息时,才会对该信息进行拆分处理,而在收到标有其他VLANID信息时,只会将该信息按照目的地址进行转发。这样就实现了通过在DCS网络交换机上应用VLAN技术,有效控制网络流量、降低网络风暴发生概率的目标。并且通过在交换机上进行VLAN的划分,可以起到减少项目建设的设备投资成本、简化DCS网络管理、提高网络安全性的作用。这里需要提出的是,有必要找到适合于信号DCS网络的划分原则,结合实际应用情况,将不同级别的信息进行合理区分。

3适用于DCS的VLAN划分原则

由于地铁信号系统DCS网络具有连接设备数量、类型较多,信息传输种类繁多的特点,在按照端口划分的VLAN配置方法对信号DCS网络交换机等进行配置时,需要寻找到合适的原则,将信号系统DCS网络中不同设备、不同信息类型进行全网的统一配置,既能有效避免网络风暴,又有利于维护人员进行维修检查。这就需要根据网络端口是否有用、该端口在网络中的作用、所传输的信息内容和特点等特征,将网络端口有序划分。例如,在网络的列车自动控制(ATC)信息、列车自动监控(ATS)信息、维护管理信息等带有不同功能及目地的信息,划分到不同的VLAN中。在信息有效传输的同时,也可以提高网络的安全性能。建议按照以下原则进行层层划分。

1)由于信号系统涉及列车行车安全,因此可先将交换机上多余端口统一划入“无用端口”的VLAN中,这样即使有其他设备接入到该端口上,也不会对有用端口间的网络通信造成影响。

2)进一步将有用端口进行分类,如该端口在信号DCS网络中只做收发,不对信息进行拆分和处理,即可将其划入“管理类”的VLAN中。

3)在DCS网络中,与“管理类”信息对应的是“业务类”信息,在此类信息中,建议先将涉及到列车控制安全的ATC信息独立划分出来,同时由于此类信息较为重要,需设计两路,可以划分至两个不同的VLAN中。

4)另外,“业务类”信息还包含其他非ATC信息,也就是非安全信息。对这类信息的划分,首先将其中的ATS信息独立划分出来,同样建议为两路。

5)同时,非安全类的信息也包含维护管理类信息,如维护支持、电源监控类等信息也需要划分到单独一个VLAN中,此类信息可以不进行冗余设置。

6)其他非安全类信息也可以通过实际情况进行VLAN设置,可以独立VLAN,也可统一划入一个VLAN,根据实际情况进行设置即可。建议的VLAN划分原则,以及该原则对应在信号系统中的传输内容示意。

4总结

数据通信论文范文第3篇

计算机网络系统防雷电波侵入,特别是高层建筑物内的电子计算机设备的供电电力线不可架空敷设进入大楼。已经这样敷设的地方,应采取改造措施,改用铠装电缆穿金属管埋地敷设进入楼房,并装上电源避雷器,会收到好的效果。数据通信的信号线在户外传输时不可架空敷设,应穿金属管埋地敷设,在两端信号线上装上相应的信号浪涌保护器,金属管两端应接设备保护地。金属管埋地线路要避开直击雷引线和接地体。信号线在户内传输时,不可与强电线路并排平行敷设。

二、防感应雷的措施

(一)电源系统的防感应雷

目前市场上有三相四线组合型电源浪涌保护器和单相组合型电源浪涌保护器,有箱式带雷击数计数的和简易型,单相又有并式和串式,还有多种直流电源浪涌保护器。各种场合均有相应的电源浪涌保护器。这些电源避雷器性能稳定,安装方便。一般应在总电力室、楼层配电屏和机房等设三级来防护电源系统的感应雷,采用者三级防护来实现逐级泄流的作用。

(二)数据信号线防感应雷

1、用交换网进行远程通信的广域网,在Modem前用两线信号浪涌保护器。

2、在异步串行通信端口用RS-232-C25针9线或9针9线速率在20Kbps或64Kbps以下的数据信号浪涌保护器。这种浪涌保护器使用场合较多,比如Modem与主机或终端间作为二级防护;以太网或Novell网总线结构粗缆网路由器与Modem间作二级保护;在终端服务器与终端间以保护终端服务器;各银行系统营业部服务器与各终端通过RS-232-C接口的地方都可使用这种避雷浪涌保护器。

3、局域网总线结构细缆网BNC连接速率100Mbps的数据信号浪涌保护器,用于以太网、细缆Novell局域网与终端串接,安装方便。

4、通过HUB采用星形连接方式的10BASE-T网络,用RJ45连接器连接双绞线传输的数据信号浪涌保护器。

5、两线平衡传输的数据信号浪涌保护器,用于监控系统或自动控制以及电流环的地方。

6、采用卫星数据通信的广域网,在室内收/发单元或室外单元使用卫星数据通信同轴浪涌保护器。这些信号浪涌保护器安装方便、性能好,能有效地防止感应雷击。安装后不影响数据传输和通信。具体安装多少个信号浪涌保护器,要根据具体单位的设备位置和布线来确定,一般是信号线上楼或到别的房间要考虑安装,以防感应雷击。

三、防止地电位反击

系统的接地是比较复杂的问题。我们的看法是防雷与接地是一个整体,而且接地是做好防雷的基础。我们主张接地系统能分开则分开好,分不开或高层建筑物及综合通信系统应采取联合的接地方式。或采用分开接地方式,对于弱电电子设备,各接地系统应相距20米以上。这样的接地体才是独立的,不致于造成地电位反击。因为雷电流是属于高频冲击波,在地中传播时,电压随距离的衰减成一个嗽叭口的曲线形状。按照GB50174-2008《电子计算机机房设计规范》中的规定,计算机机房应采用四种接地方式:

交流工作接地,接地电阻不应大于4欧;

安全保护接地,接地电阻不应大于4欧;

直流工作接地,接地电阻按计算机系统具体要求确定,若设备较少,接地电阻可以为2欧;若设备多,其接地电阻应不大于1欧;

数据通信论文范文第4篇

手机测试

挑战:

中国的手机市场发展迅猛,世界各大手机厂商竞相争夺手机用户。在如此激烈的竞争中,手机的功能日趋丰富,比如摄像头、MP3、FM调频收音机等等。同时,手机通讯协议也层出不穷,GSM、CDMA、GPRS、CDMA2000、EDGE、WCDMA等等。为了应对产品的不断变化,工程师面临着提高效率并缩短产品市场化时间的挑战,他们需要一个灵活而强大的通用测试平台。我们先来看一个通用测试平台针对手机通讯协议的变化而表现出来的优势。大家知道,2G的协议比如GSM和CDMA都已被成功地运用于市场了,而3G的协议比如WCDMA,CDMA2000等等是未来的必然趋势。在从2G到3G的转变中,面临客户群、设备置换、技术的成熟度风险等等问题。运营商希望能够进行平滑的过渡,在不丢失已有手机用户的情况下,首先升级交换网络部分,这使得用户可以使用过渡期的2.5G产品,然后等时机成熟时再升级无线网络部分达到3G的标准。2G的测试仪器已经比较成熟,3G的测试产品正在加紧开发,2.5G的专用测试设备却由于传统仪器制造商考虑到研发成本和市场前景的问题而匮乏。

一家著名的手机制造商制造了支持EDGE(EnhancedDataratesforGSMEvolution)协议的2.5G手机产品,需要针对这一产品的测试方案。EDGE是一个专业协议,由于它的出现时间比较短,了解它的人也比较少,要在短期内构建一个EDGE测试系统是一个巨大的挑战。为了在市场上与同行竞争,需要在一个月内能够使用这套测试设备。

应用方案:

利用TestStand模块化,兼容性强,可自定义的特点,根据生产测试的需要对其进行修改与完善,并结合LabVIEW,GPIB卡,以及相应的测试仪器,创建百分之百符合自己需要的CDMA基站测试系统。

使用的产品:

硬件上整个系统包含了一个PXI机箱,其中有:

NIPXI-8186摘要:MSM6882是日本OKI公司生产的、采用最小频移键控方法的数据调制解调器。该器件内含接收、发送和时钟产生电路,且数据传输波特率可在1200bps和2400bps中选择。文中介绍了MSM6882的主要性能和工作原理,给出了MSM6882在无线通信中的应用电路设计。

关键词:MSM6882;最小频移键控;无线数据通信

1引言

计算机与数据终端的普及使得无线数据通信技术在很多领域得到广泛应用。在无线数据传输设备中,调制解调器是不可缺少的一环。调制解调器的调制方式主要有频移键控(FSK)、相对相移键控(DPSK)等,其中最小频移键控(MSK)调制方式是FSK方式中较好的一种。MSK调制方式是连续相位频率键控(CP-FSK)方式的特殊情况,其调制系数为0.5。MSK信号在码元转换瞬间没有相位突变,因而信号频谱在频带之外的滚降会加快,占用频带比PSK信号窄,但却具有与PSK相同的性能,非常适合在无线通信中使用。

MSM6882是日本OKI公司生产的采用MSK调制方式的调制解调芯片。它的工作温度为-25℃~70℃,采用DIP22或SOC24封装,其主要特点如下:

片内滤波器采用开关电容结构;

数据传送波特率1200/2400bps可选;

片内发送滤波器可作为音频信号滤波器单独使用;

接收定时再生电路有两种同步方式供用户选择;

片内集成有振荡电路;

调制可采用正弦或余弦方式;

采用单5V电源供电(MSM6882-5)。

2MSM6882的引脚功能

MSM6882的引脚排列如图1所示,其引脚功能描述如下:

X1、X2:晶体输入脚。当外接时钟时,X1悬空。

MCS:时钟频率选择端。该脚为“0”时,外部晶振或时钟选择3.6864MHz,为“1”时,外部晶振或时钟选择7.3728MHz。

ME:调制器使能端。该端为“0”时,TI脚与发送低通滤波器相连,为“1”时,调制器与发送低通滤波器相连。

SD:发送数据输入脚。

ST:发送时钟输出脚。使用时可用ST信号的上升沿同步SD脚的信号。

SIN:正弦调制方式选择。

PRE:发送数据预置选择。为“0”时,SD脚信号输出至AO脚。

BR:波特率选择位。其选择方式见表1所列。

表1波特率选择表

时钟频率(MHz)MCSBR波特率(bps)

7.3728112400

101200

3.6864001200

SG:片内模拟信号地。

GND:芯片电源地。

TI:音频信号输入。

AO:调制信号输出。

AI:解调信号输入。

CDT,CDO:芯片测试脚。正常使用时,CDT脚应接地,CDO脚悬空。

RD:接收数据端。经解调后的信号由此脚串行输出。

RT:接收数据时钟。使用时可用RT信号的下降沿同步RD脚数据。

CF:快速锁相控制。该端为“1”时,RD脚和RT脚的输出信号相位差大于22.5°,相位校正将快速完成;如果相位差小于22.5°,相位校正以低速进行。而在该脚为“0”时,无论RD脚和RT脚的输出信号相位差为多少,相位校正均以低速进行。通常情况下该脚接高电平,即选择快速锁相方式。

CT:同步方式选择。为“0”时,锁相环在50比特内完成相位同步。为“1”时,锁相环在18比特内完成相位同步。

FT:自环测试控制。通常接高电平。

VDD:芯片电源端口。

3MSM6882的内部结构原理

MSM6882的内部结构如图2所示。该电路主要由三个部分组成:发送电路、接收电路和时钟发生电路。发送电路包括调制器、发送低通滤波器和两个RC低通滤波器。它在PRE和SIN输入信号控制下可完成对输入二进制数据的调制或输入音频信号的滤波。在完成调制功能时,首先由调制器将输入数据调制为MSK信号,再由发送滤波器和两个RC低通滤波器滤除高频分量并加以平滑后,输出到线路上。在完成音频滤波功能时,发送滤波器将与调制器断开而与TI端接通,从而直接将输入的音频信号滤波并送至线路。

接收电路由RC低通滤波器、混频器、接收带通滤波器、限幅器、采样保持电路、延迟检测器、检测后置滤波器和定时再生器组成。接收信号经接收滤波器滤除杂波后,可由限幅器和采样保持电路变换为方波信号输入延迟检测器。然后由延迟检测器恢复出解调数据,经检测滤波送入定时再生电路以提取接收时钟,最后将接收时钟和解调数据输出。

图3

时钟发生电路可为整个电路提供时序信号。

4应用电路

图3给出了MSM6882的实际应用电路。此电路的通信波特率为1200bps,由于MSM6882的发送数据和接收数据均需要有同步时钟来同步,因此应选择82C51异步串行通信接口芯片来使MSM6882与AT89S52微处理器相连接。通过AT82C51的RTS脚可控制电台的PTT,而RTS则通过反相信号控制MSM6882的发送使能。电台的SPK脚和MIC脚通过各自的耦合回路与MSM6882的AI脚和AO脚相连。在设计时,82C51单片机CLK脚的输入时钟周期应在0.42μs到1.35μs范围内,否则芯片可能不能正常工作。由于MSM6882的AO脚的输出电平较高,因此,通过可调电阻W1可调节调制信号输入到电台的幅值。从电台接口出来的SPK信号一路经信号限幅后送入MSM6882的AI脚,另外一路经放大、检波、幅值比较后送入82C51的DSR脚,以作为载波检测信号。同时,通过W2调节载波检测信号的灵敏度。当系统检测到该信号时,可以采取延时发送的方式来避免同频干扰和信道阻塞。对82C51的操作方法可参考相关书籍,这里不再重复。对于抗干扰性要求较高的场合,电台和调制解调器之间可采取加入传输线变压器的方法将两端的电信号进行隔离,由于篇幅所限,这里不再赘述。

P操作系统

NIPXI-5660

2.7GHzRF信号分析仪,9kHz到2.7GHz,20MHz实时带宽,80dB真实动态范围

NIPXI-5670

RF信号源,250kHz到2.7GHz,16位,100MS/s任意波形发生,22MHz实时带宽

NIPXI-5122

14位数字化仪,100MS/s实时采样,2GS/s随机间隔采样,100MHz带宽

NIPXI-4070

6位半数字万用表,6ppm精度

其中,NIPXI-5660被用作矢量信号分析仪,NIPXI-5670被用作射频信号源,NIPXI-5122被用作示波器,NIPXI-4070被用作数字万用表。

软件上使用了LabVIEW图像化开发环境和NI-DAQmx驱动程序。

数据通信论文范文第5篇

组播VPN是基于MPLSL3VPN来实现组播传输的技术。如图1所示,网络中同时承载着两个相互独立的组播业务:公网实例、VPN实例A。公共网络边缘PE组播设备支持多实例。各实例之间形成彼此隔离的平面,每个实例对应一个平面。以VPN实例A为例,组播VPN指:当VPNA中的组播源向某组播组发送组播数据时,在网络中所有可能的接收者中,仅属于VPNA(即Site1、Site3或Site5中)的组播组成员才能收到该组播源发来的组播数据。组播数据在各Site及公网中均以组播方式进行传输。其中,实现组播VPN所需具备的网络条件如下:(1)在每个Site内支持基于VPN实例的组播。(2)在公共网络内支持基于公网实例的组播。(3)PE设备支持多实例组播,即支持基于VPN实例和公网实例的组播,并支持支持公网实例与VPN实例之间的信息交互和数据转换。为了满足以上条件,互联网工程任务组(IETF)最终形成制定了以MD(MulticastDomain)组播域方案来实现组播VPN的标准。MD方案的基本思想是:在骨干网中为每个VPN维护一棵称为Share-MDT的组播转发树。来自VPN中任一Site的组播报文都会沿着Share-MDT被转发给属于该MD的所有PE。MD是一个集合,它由一些相互间可以收发组播数据的VRF组成。其中,支持组播业务的VRF为MVRF,它同时维护单播和组播路由转发表。PE收到组播报文后,如果其MVRF内有该组播组的接收者,则继续向CE转发;否则将其丢弃。不同的MVRF加入到同一个MD中,通过MD内自动建立的PE间的组播隧道(MT)将这些MVRF连接在一起,实现了不同Site之间的组播业务互通。每个MD会被分配一个独立的组播地址,称为Share-Group。当两个MVRF之间通信时,用户报文以GRE方式被封装在骨干报文里通过MT进行传输,骨干报文的源地址为PE用来建立BGP连接所使用的接口IP地址,目的地址为Share-Group。

2民航数据通信网中组播VPN的实现

在民航数据通信网中实现组播VPN主要需完成骨干网络的准备工作以及组播VPN设计与实施等工作。

2.1组播VPN的规划设计民航ATM数据网华东地区ATM交换机上的RPM-PR板卡提供了MPLSVPN业务,目前部署的MPLSVPN业务网络拓扑为星形结构,即由区域一级节点9槽RPM板卡作为P设备和路由反射器,而其他节点均为PE设备。华东地区ATM网络中同时承载着两个相互独立的组播业务:ATM数据网公网组播实例和名为YJCJ2的用户私网组播实例。VPN组播实例是通过在P和PE设备上部署实现的,网络中,作为P和PE的RPM板卡上运行着公网组播实例,而作为PE的RPM板卡同时又运行着用户私网组播实例。公网的组播实例是在所有RPM板卡上开启组播应用。上海虹桥和浦东机场两个节点的10槽RPM板卡负责接入用户的VPN组播业务,所以需在这两台设备上部署MPLSVPN应用,并在这两个用户站点相应的VRF实例中开启组播应用。在本案例中,VPN用户接入侧要求使用的是PIM密集模式,而民航数据网MPLSVPN公网则使用的是PIM稀松模式。在MPLSVPN网络中不同用户的VPN站点都是彼此逻辑独立的,并且VPN用户数据封装MPLS标签后通过公网的PE和P设备进行传输。对于VPN组播来说,数据的传输模式也是类似的。PE设备通过将该VPN实例中的用户VPN组播数据报文封装成公网所能“识别”的公网组播数据报文进行组播转发。这种将私网组播报文封装成公网组播报文的过程就叫做构造组播隧道(MT)。在PE上,每个VPN用户的组播数据是通过不同的MTI(MulticastTunnelInterfac)组播隧接口在公网构造组播隧道,参见图2。由于公网、VPN网以及用户接入侧各组播部署中都采用PIM协议启用了组播应用,MPLSVPN中组播应用包含如下的PIM邻居关系:(1)PE-P邻居关系:指PE上公网实例接口与链路对端P上的接口之间所建立的PIM邻居关系。(2)PE-PE邻居关系:指PE上的VPN实力通过MTI收到远端PE上的VPN实例发来的PIMHello报文后建立的邻居关系。(3)PE-CE邻居关系:指PE上绑定VPN实例的接口与链路对端CE上的接口之间建立的PIM邻居关系。部署公网组播实例需在华东地区所有相关RPM板卡开启组播服务,考虑到密集模式对RPM设备和骨干网资源的开销,在民航ATM数据网中使用了PIM稀松模式。根据网络的物理网络拓扑模型,选取上海虹桥9槽RPM板卡作为RP。

2.2组播VPN的实施运行在MPLSVPN网络中的P和PE设备上部署PIM协议,这些设备之间会形成PE-P邻居关系,从而使得公网支持组播功能,并形成公网的组播分发树。本案例中使用PIM稀松模式,即在虹桥和浦东机场节点的9、10槽RPM板卡的配置底层IGP路由协议的接口上部署PIM稀松模式,这样就构造了公网的PIM共享树。在传输用户私网组播报文的PE上部署基于VRF实例的组播,一个VPN实例唯一制定一个Share-Group地址。同一个VPN组播域内的PE之间形成PE-PE邻居,并形成该组播域的共享组播分发树(Share-MDT)。在本例中就是在虹桥和浦东机场的10槽YJCJ2VRF实例中部署相应的defaultMDT地址239.255.0.5。用户CE设备和PE连接CE的相应接口启用组播,本例中使用PIM密集模式。这样就形成了PE-CE邻居关系。本例中是在虹桥和浦东机场节点的相应VPN业务端口配置PIM密集模式。当用户有组播报文需要传输的时候,就将组播报文发送给PE的VRF实例,PE设备收到报文后识别组播数据所属的VRF实例。用户私网的数据报文对于公网是透明的,不论数据归属或类别,PE都统一将其封装为公网组播数据报文,并以Share-Group作为其所属的公网组播组。一个Share-Group唯一对应一个MD,并利用公网资源唯一创建一棵Share-MDT进行数据转发。在该VPN中所有私网组播报文,都通过此Share-MDT进行转发。如图3所示,可以看到华东地区公网上的Share-MDT创建的过程。虹桥节点10槽RPM向9槽RPM(RP节点)发起加入消息,以Share-Group地址作为组播组地址,在公网沿途的设备上分别创建(*,239.255.0.5)表项。同时虹桥浦东机场节点也发起类似的加入过程,最终在MD中形成一棵以虹桥节点9槽RPM为根,以虹桥、浦东机场节点10槽RPM为叶的共享树(RPT)。随后,虹桥和浦东机场节点10槽RPM的公网实例向公网RP发起注册,并以自身BGP的router-id地址作为组播源地址、Share-Group地址作为组播组地址,在公网的沿途设备上分别创建(20.51.5.6,239.255.0.5)和(20.51.5.3,239.255.0.5)表项,形成连接PE和RP的最短路径树(SPT)。在PIM-SM网络中,由(*,239.255.0.5)和这两棵相互独立的SPT共同组成了Share-MDT。虹桥节点PE的私网组播报文在进入公网后,均沿该Share-MDT向浦东机场节点PE转发。图4是私网组播报文在公网中转发的过程。当浦东机场节点的YJCJ2VPN用户CE设备加入到虹桥节点数据源所在的组播组,此时由于这两个站点部署为PIM-DM模式,虹桥节点组播设备会立刻将数据推送到虹桥节点10槽RPM的YJCJ2VRF实例中,并通过该VPN构建的Share-MDT在公网上以(20.51.5.6,239.255.0.5)构建的SPT进行公网组播报文传输。当公网组播报文被浦东机场10槽PE设备收到后会将其解封装成原始的私网组播报文,并转发给相应的接收CE,最终完成用户私网组播数据在MPLSVPN网络中的传输。

3总结

数据通信论文范文第6篇

【关键词】 电子数据通信 网络资源管理 应用分析

随着数据通信企业的快速发展,网络规模的不断扩大,传统的人工管理方法和手段也远远的不能满足现有模式的管理和发展的需要,所以,为了实现科学规范的现代化管理数据,通信网络资源管理系统的使用也越来越受到人们的重视。不过从我国现今的数据通信网络资源管理系统中看,还存在着一定的不足之处,因此,我们也要在实践的过程中,不断地对其进行完善和改进,从而实现数据通信网络资源管理系统的高效化、科学化管理模式 。

一、数据通信网络资源管理系统的相关技术及理论分析

1、相关的数据通信网络资源管理理论。数据通信网络资源管理系统就是在信息网络资源管理的角度去分析,以自身实际的发展条件为依据,从而对整个社会中的数据通信网络资源进行信息整合处理,使数据通信网络资源的信息能够正常的传输,并安全可靠。而在我国数据通信网络资源管理的发展过程中,企业也可以通过网络资源管理系统对数据通信中存在的基础信息数据处理进行有效的控制,从而保证数据通信企业的服务质量,进而有利于数据通信企业的稳定健康发展。因为,目前数据通信技术的网络资源管理还没有明确的系统管理要求,所以,在不同的国家和地区,对其的认识和理解的程度也不相同。因此,这也就成为数据通信网络资源管理系统中的阻碍。

2、数据通信网络资源管理系统的相关技术。随着社会经济的不断发展,我国的科学研究水平也在不断提高,数据通信网络资源管理系统也在不断更新。其中,通信资源管理系统的主体框架就包括:网络文件服务器,主机终端模式,网络客户服务端等。这些不同的应用模式在实际的操作使用中都与企业中的数据通信网络资源进行系统数据信息整合,并与系统中正常运行的数据有十分紧密的联系。所以,在使用数据通信网络资源管理系统时,一定要严格要求其使用性能,并合理选择ASP、NET技术与MS、SQL、SERVER技术。

二、数据通信网络资源管理系统设计

1、数据通信网络资源管理系统的结构设计分析。目前,我国的数据通信网络资源管理包括三大类数据通信专网:固定语音通信、宽带互联网通信技术、数据专线等,而网络资源的拓扑结构也为星形拓扑结构。它的核心设计理念就是负责企业设备的数据信息交换,汇聚层设备转发及管理接入层设备数据信息,路由器,接入层设备与传输资源系统为客户端设备与汇聚机房设备中的数据进行通信控制。而从整体数据的信息网络中分析,通信网资源管理的系统结构就包括:数据通信设备和相关的信息传输设备,而通信设备中的光电缆类资源则包括:电信号的传输设备,连接光电缆的系统设备。并且,数据通信资源管理系统的设计也可分为三个模块,包括:传输数据资源管理模块、数据信息管理模块和客户端资源管理模块,并且,在数据通信网络资源管理中,它的使用可在现实工作中实现网络机房数据设备资源与设备连接情况的管理,从而有效的降低数据通信网络资源管理系统的管理难度,提高工作人员的管理效率。

2、数据通信网络资源管理系统结构设计的理念。数据通信网络资源管理的设计结构有一独立的形式为概念理论结构设计。它是数据库中DBMS的独立支持系统,它可以认为是网络世界与现实世界发展的媒介,它可以充分的反应现实世界的环境,包括:信息实体与信息实体之间的联系性。同时,这种联系性也有利于数据信息向网络资源信息的模型转变,如:其中的网状、层次、关系等。这种概念性的设计在使用的过程中,方便用户理解,方便与不熟悉电脑网络应用的客户进行意见的交换,从而使更多的数据通信网络用户参与到资源管理系统当中,有效地提高其使用的效率。

3、数据通信资源的逻辑管理设计。数据通信网络资源的设备主要包括:ERP编码器、设备的名称、型号、生产地、软硬件的编码、设备的配置信息、入网时间、机房的编码号等。数据通信网络设备的端口信息包括:端口的编码、名称、ERP的编码及类型。还有传输设备的端口信息包括:传输端口的名称、编码、所属设备的ERP编码及类型等。

结语:总之,我国目前的数据通信网络资源管理系统在发展中势头良好,有利于企业对其数据信息的管理与应用。并且,在使用的过程中,还有利于对数据通信信息的采集与处理,从而达到数据通信网络资源信息共享的效果。虽然,在使用的过程中还存在不足,但是,在实践的过程中,我们依然对其不断完善,从而使其在使用的过程中,更加的稳定,创新能力更强。

参 考 文 献

[1]张伟斌,姜宏伟.建设完善的网络资源管理系统的探讨[J].通信管理与技术.2010年02期

数据通信论文范文第7篇

红外通信是利用950nm近红外波段的红外线作为传递信息的媒体,即通信信道。发送端将基带二进制信号调制为一系列的脉冲串信号,通过红外发射管发射红外信号。接收端将接收到的光脉转换成电信号,再经过放大、滤波等处理后送给解调电路进行解调,还原为二进制数字信号后输出。常用的有通过脉冲宽度来实现信号调制的脉宽调制(PWM)和通过脉冲串之间的时间间隔来实现信号调制的脉时调制(PPM)两种方法。

简而言之,红外通信的实质就是对二进制数字信号进行调制与解调,以便利用红外信道进行传输;红外通信接口就是针对红外信道的调制解调器。

2.红外通讯技术的特点

红外通讯技术是目前在世界范围内被广泛使用的一种无线连接技术,被众多的硬件和软件平台所支持:

⑴通过数据电脉冲和红外光脉冲之间的相互转换实现无线的数据收发;

⑵主要是用来取代点对点的线缆连接;

⑶新的通讯标准兼容早期的通讯标准;

⑷小角度(30度锥角以内),短距离,点对点直线数据传输,保密性强;

⑸传输速率较高,目前4M速率的FIR技术已被广泛使用,16M速率的VFIR技术已经。

3.红外数据通讯技术的用途

红外通讯技术常被应用在下列设备中:

⑴笔记本电脑、台式电脑和手持电脑;

⑵打印机、键盘鼠标等计算机设备;

⑶电话机、移动电话、寻呼机;

⑷数码相机、计算器、游戏机、机顶盒、手表;

⑸工业设备和医疗设备;

⑹网络接入设备,如调制解调器。

4.红外数据通讯技术的缺点

⑴通讯距离短,通讯过程中不能移动,遇障碍物通讯中断;

⑵目前广泛使用的SIR标准通讯速率较低(115.2kbit/s);

⑶红外通讯技术的主要目的是取代线缆连接进行无线数据传输,功能单一,扩展性差。

5.红外通信技术对计算机技术的冲击

红外通信标准有可能使大量的主流计算机技术和产品遭淘汰,包括历史悠久的调制解调器。预计,执行红外通信标准即可将所有的局域网(LAN)的数据率提高到10Mb/s。

红外通信标准规定的发射功率很低,因此它自然是以电池为工作电源的标准。目前,惠普移动计算分公司正在开发内置式端口,所有拥有支持红外通信标准的笔记本计算机和手持式计算机的用户,可以把计算机放在电话机的旁边,遂行高速呼叫,可连通本地的因特网。由于电话机、手持式计算机和红外通信连接全都是数字式的,故不需要调制解调器。

红外通信标准的广泛兼容性可为PC设计师和终端用户提供多种供选择的无电缆连接方式,如掌上计算机、笔记本计算机、个人数字助理设备和桌面计算机之间的文件交换;在计算机装置之间传送数据以及控制电视、盒式录像机和其它设备。

6.红外通信技术开辟数据通信的未来

目前,符合红外通信标准要求的个人数字数据助理设备、笔记本计算机和打印机已推向市场,然而红外通信技术的潜力将通过个人通信系统(PCS)和全球移动通信系统(GSM)网络的建立而充分显示出来。由于红外连接本身是数字式的,所以在笔记本计算机中不需要调制解调器。便携式PC机有一个任选的扩展插槽,可插入新式PCS数据卡。PCS数据卡配电话使用,建立和保持对无线PCS系统的连接;扩展电缆的红外端口使得在PCS电话系统和笔记本计算机之间容易实现无线通信。由于PCS、数字电话系统和笔记本计算机之间的连接是通过标准的红外端口实现的,所以PCS数字电话系统可在任何一种PC机上使用,包括各种新潮笔记本计算机以及手持式计算机,以提供红外数据通信。而且,由于该系统不要求在计算机中使用调制解调器,所以过去不可能维持高性能PC卡调制解调器运行所需电压的手持式计算机,现在也能以无线方式进行通信。红外通信标准的开发者还在设想在机场和饭店等地点使用步行传真机和打印机,在这些地方,掌上计算机用户可以利用这些外设而勿需电缆。银行的ATM(柜员机)也可以采用红外接口装置。

预计在不久的将来,红外技术将在通信领域得到普遍应用,数字蜂窝电话、寻呼机、付费电话等都将采用红外技术。红外技术的推广意味着膝上计算机用户不用电缆连接的新潮即将到来。由于红外通信具有隐蔽性,保密性强,故国外军事通信机构历来重视这一技术的开发和应用。这一技术在军事隐蔽通信,特别是军事机密机构、边海防的端对端通信中将发挥出重要的作用。正如前面所述,它还将对计算机技术产生冲击,对未来数据通信产生重大影响。

参考文献

[1]蒋俊峰.基于单片机的红外通讯设计[J].电子设计应用,2003,11.

[2]曾庆立.远距离红外通讯接口的硬件设计与使用[J].吉首大学学报(自然科学版),2001,4.

[3]邓泽平.一种多用途电度表的红外通讯问题[J].湖南电力,2003,4.

[4]朱磊,郭华北,朱建.单片机89C52在多功能电度表中的应用研究[J].山东科技大学学报(自然科学版),2003,2.

[5]罗兆虹,詹学文,戴学安.红外通讯技术在电能表数据交换中的应用[J].电测与仪表,2002,12.

[6]吴叶兰,廉小亲,石芹侠.电能计量芯片组AT73C500和AT73C501及其应用[J].电测与仪表,2002,7.

数据通信论文范文第8篇

【关键词】变电站;计算机监控系统;数据通信

1.引言

九十年代以前变电站大都是通过远动终端(RTU)实现数据的集中采集、处理、传输并接收上级调度控制中心下发的遥调、遥控命令。这种方式均为集中组屏,通过控制电缆将现场遥测、遥信、遥调及遥控信号全部引至主控楼的远动机房或控制机房内的遥信端子柜和变送器柜上,站内监视和控制通过常规仪表盘、控制盘等设备来完成,上级调度对厂站的遥调、遥控命令通过点对点远动通信方式直接发给RTU,RTU经过校核、处理再下发给现场执行机构以达到远方控制要求。八十年代后期至九十年代初期以RTU兼当地功能的方式在一些厂站开始采用,但常规仪表盘柜仍然保留,这种方式只是为现场调度员或监视人员提供一种用计算机显示画面进行监视的手段,控制操作仍采用常规方式。九十年代中后期随着计算机、网络、通信技术的发展,以及微机型继电保护装置的大量采用和变电站监控系统在功能和可靠性方面的逐渐完善和提高,变电站监控系统在新建和扩建的变电站建设中得到较为广泛采用。该系统通常采用分层分布式结构,按间隔设计,扩充性好,安装比较方便,各种控制电缆直接到继电保护小室,小室内I/O单元通过现场总线连接,并与站控层通过光纤连接,抗干扰能力强,大大地减少了控制电缆的使用和敷设数量。然而,由于生产厂家的不同,因此,所提供的系统在结构和性能方面有较大的差异,有的系统能够满足站内监控的要求,但是,在有些指标(如实时性)却不能满足上级调度控制中心的要求;有的系统虽然在指标上能够满足两者的要求,但是在系统的结构上又不尽合理。笔者将从以下几个方面对变电站计算机监控系统技术方案及其相关问题进行探讨。

2.变电站计算机监控系统技术方案

变电站计算机监控系统应采用分层分布式结构,由站控层和间隔层组成,其抗干扰能力、可靠性和稳定性要满足现场实时运行的要求,满足各调度端对实时数据的要求,且应具有较好的可扩充性。系统具有遥测、遥信、遥调、遥控、SOE功能,实时信息能以不同规约,通过专线通道或网络通道向有关调度中心传送,并接收指定调度中心的控制指令。

由于各厂家的系统不尽相同,其建议的技术方案也不同,实施后的效果也有很大差别,有些则达不到设计要求,所以如何按照电网实时调度的要求,搞好技术方案的设计,并使数据得到快速、有效、合理的处理,这些都是系统设计和实施过程中需要解决的问题,下面根据对变电站计算机监控系统的研究给出几种可行方案供参考。

此方案的主要特点是:

2.1.1 I/O测控单元支持网络功能,直接接入站控层的以太网上,实现采集数据直接上网,减少了中间转换环节,数据传输比较快,但要求数据同时向站控主机和远动通信工作站传送,远动通信工作站独立构建向有关调度中心传送的数据库;

2.1.2 与有关调度中心的数据通信采用专门的远动通信工作站完成,其实现方式有两种,一是通过专线利用串口实现数据传输,采用规约主要有DL/T634-1997,IEC870-5-101,μ4F,CDT,CDC TypeⅡ,SC1801等,二是通过路由器上网实现网络数据传输,底层采用TCP/IP,规约主要有DL476-92,IEC60870-6 TASE 2,IEC870-5-104等。

此种方案的特点是:

2.2.1 I/O测控单元通过现场总线链接,采集的数据通过数据处理单元接入站控层的以太网上,系统增加了一个中间数据处理环节,处理后的数据同时向站控主机和远动通信工作站传送,远动通信工作站独立构建向有关调度中心传送的数据库,此方案主要解决I/O测控单元不能直接上以太网的问题;另外,随着技术的发展,现场总线要逐步向以太网过渡;

2.2.2 各I/O测控单元与数据处理单元通过现场总线组成的网络传输实时数据;

2.2.3 与有关调度中心的数据通信采用专门的远动通信工作站完成,其实现方式与方案1相同。

此种方案的特点是:

2.3.1 I/O测控单元采集的数据通过数据处理单元接入站控层的以太网上,系统增加了一个中间数据处理环节,处理后的数据同时向站控主机和远动通信工作站传送,远动通信工作站独立构建向有关调度中心传送的数据库,此方案主要解决I/O测控单元不能直接上以太网的问题;

2.3.2 各I/O测控单元与数据处理单元通过串行总线传输实时数据;

2.3.3 与有关调度中心的数据通信采用专门的远动通信工作站完成,其实现方式与方案1相同。

此种方案是方案2和方案3中远传数据方式的的一种变化型式,其特点除方案2和方案3中各自具有的特点外,主要体现在数据处理单元同时负责与有关调度中心的数据通信(远动专线和网络)而不再设专门的远动通信工作站,其实现方式与上述三种方案所述相同。

这种方案也可看成是以常规RTU方式兼作站控系统的数据采集部分来实现变电站监控系统功能的。

3.几种方案的技术性能比较

第一种方案为分布式I/O采集装置通过内嵌网卡(口)直接上以太网,数据传输不经过转接,直接送往主机和远动工作站,因而速度最快,数据通信(专线、网络)由专用的远动工作站完成,不足之处是网络负荷较重,这在设计中必须予以考虑,以及对数据流进行优化。

第二、三种方案中增加了中间数据处理机,负责采集数据的集中和处理,这两种方案主要解决了I/O测控单元不能直接上以太网的问题,由于在数据的传输过程中增加了一个环节,因而数据传输的速度方面较第一、四种方案慢一些。

第四种方案中也增加了中间数据处理机,但此处理机不仅负责采集数据的集中和处理,同时也负责与远方调度中心的数据通信,由于这种方案省掉了远动工作站,故可降低造价,数据传输的速度也较快,这种方案不仅对中间数据处理机的技术性能、处理能力和处理速度要求较高,还要求该中间数据处理机具备网络传输功能以实现网络数据通信,一般来讲该中间数据处理机要具有多CPU处理机制,能实时处理多任务、多进程,这样才能适应多功能、高效率的要求。

上述四种方案中,远动工作站和中间数据处理机要求采用冗余热备用方式,以提高系统可靠性。

通过对四种方案的分析,我们认为上述四种方案在做好优化处理后均能满足要求,但综合比较来看第四种和第一种方案在数据处理、传输的效率和速度方面更为理想,而且比第二、三种方案少配两台机器(中间数据处理机或远动工作站),因而可降低一些造价。

另外,需要说明的是,上述四种方案中,均考虑了网络通信方式,在实际的工程设计和实施过程中是否采用此种方式还要根据实际通信现状来决定。

4.数据通信方式及数据传输规约

目前数据通信的方式主要有两种,一是常用的,在专线上实现的串行通信方式,采用规约主要有IEC870-5-101,DL/T634-1997,μ4F,CDT,CDC TypeⅡ,SC1801等,随着计算机网络技术的发展,特别是电力数据网络的建设使用给数据通信带来一种崭新、快捷、可靠的方式,这就是网络数据传输方式,计算机或RTU通过内部网卡(口)利用路由器上电力数据网,以TCP/IP协议实现网络数据传输,由于路由器具有自动选择、切换路由的功能,使得数据通信较专线方式更加可靠,采用的通信规约主要有DL476-92,IEC60870-6 TASE 2,IEC870-5-104等,上述两种方式中的数据通信规约,我们建议要逐步向国际标准靠拢,专线方式采用IEC870-5-101,网络方式采用IEC60870-6 TASE 2和IEC870-5-104。

5.变电站计算机监控系统需处理好与站内相关系统的关系

5.1 变电站监控系统与继电保护系统的关系

继电保护系统担负着变电站和电网安全的重要使命,是保护电力系统非常关键的一个环节,这是保电网安全稳定运行的最后一道关口,其安全性、可靠性等级是最高的,这些都要求继电保护系统必须是一个独立的系统。变电站监控系统不得影响继电保护系统的独立性,保护的控制回路不进入站内监控系统,监控系统只是用来显示,一个安全可靠性等级较低的系统,不能影响到安全可靠性要求更高的系统,这是一条原则,必须坚持。

5.2 变电站计算机监控系统与电能量采集系统的关系

在输纽变电站及关口变电站一般都安装有电能量采集系统,电能量采集系统向有关部门传送电量信息时多采用拨号方式,随着网络技术的发展以及变电站计算机监控系统的建设,给电量信息通过网络传输提供了另一种快速、方便的形式,所以电能量采集装置可通过自身的网卡或网口连接到网络接入设备上,经过路由器上电力数据网,实现网络数据传输。

5.3 变电站计算机监控系统与MIS系统的关系

变电站监控系统担负着电网实时数据的采集和处理,是个闭环系统,而MIS系统是各种生产信息、管理信息的综合利用,是非实时系统,两系统不应混为一谈。变电站监控系统与MIS系统联网,其信息流应该是单向,就是允许必要的实时信息向MIS系统输送,但是不能够反向传输,闭环控制的很多实时信息是MIS系统所不需要的,没有完全开放的必要,所以变电站监控系统必须与当地的办公自动化系统(MIS)有效隔离,以保证控制系统安全。

6.变电站计算机监控系统设计中的几点考虑

6.1 实时性要求,遥信1-2秒,遥测2-3秒(采集单元经监控系统处理到通信出口);

6.2 遥测数据精度要求(不低于常规RTU方式);

6.3 可靠性要求,一是远动通信工作站或通信网关与当地的数据服务器要相互独立,二是当地或上级调度下发的动作指令要准确可靠地执行;

6.4 标准化要求,即软硬件产品以及通信接口、规约应符合国际标准或国家标准;

6.5 正确处理计算机监控系统与变电站其它系统之间的关系,使之即有联系又能保持独立性。

7.几个需要研究和探讨的问题

7.1 变电站实时信息不仅要满足站内监控的要求,还要满足上级调度部门对信息的实时性、准确性的要求,满足调度部门对站内设备控制和操作的可靠性要求,所以监控系统的技术方案设计以及信息流的合理流向问题都是需要研究和探讨的课题,只有采用好的技术方案并使数据得到快速、有效、合理的处理,才能使系统稳定、可靠,才能满足站内和调度部门对信息的实时性、可靠性要求,才能满足电网安全的要求。

7.2 过去变电站内的RTU装置都是由调度部门直接管理和维护的,而目前变电站及站内自动化监控系统多为电力公司所属超高压公司或运行工区等单位负责运行维护和管理,也就是说运行维护、管理方式变了,这种变化为维护管理部门提出了一个问题,即监控系统出现故障影响实时数据的处理和传输时,调度部门的自动化人员如何与维护部门沟通,维护人员如何保障故障的及时解决,如何加强和提高维护人员的技术水平等等都是目前急需考虑的事情。

7.3 对于无人值守的变电站,其监控系统的要求和功能如何设计,与站内自动化系统如何考虑和结合是今后需要研究的问题。

8.结论

随着我国电网建设的发展和安全要求的不断提高,自动化技术、产品的开发要适应这种新形势下的要求,加强新技术、新思想的研究,努力开发具有自主知识产权的产品,提高市场竞争力,加强变电站计算机监控系统运行的可靠性与稳定性,保障实时数据的准确性和及时性,要积极采用硬、软件成熟、可靠的产品,变电站(开关站)的建设也要朝无人值守和少人看守的方向发展。