开篇:润墨网以专业的文秘视角,为您筛选了八篇自动焊接技术论文范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
【关键字】C02,自动焊,打底焊接,质量控制
中图分类号:TV523 文献标识码:A文章编号:
一.前言
C02焊具有很多的优点,他的焊接熔深大、热效率比较的高、并且对于焊接的变形较小,成本较低,在技术的操作上也比较的简单,比较容易的形成优质的焊接接头。这些优点就使得其在现代工业化的国家焊接工艺方面具有十分重要的作用,同时,这也决定着其具有很好的应用范围。在我们的国家,C02气体保护焊在油气管道的建设中的应用还不是十分广泛,因此,为了使其能够在我国油气管道建设中发挥更大的作用,同时降低生产成本,笔者就结合自己的实际工作经验,对于C02自动焊打底焊接的质量控制措施进行分析。
二.C02自动焊打底焊接质量控制分析
1.根焊
在进行油气的长输管道的建设中,根焊的质量,也就是指打底焊接的质量以及其焊接的速度将会严重影响整个机组的焊接质量和速度,在进行油气长输管道的焊工培训中就有很多的打底焊接的方法。但是本文笔者仅就低氢焊条向上焊进行介绍。为了能够使焊接的速度和质量得到提高,我们通常会采用短孤焊或者是小间隙的方法进行。在进行焊接的时候,焊条的倾角会随着管子位置的变化而发生变化,当焊条和管线环焊缝的夹角在10到15度时,此时就可以得到比较满意的焊接接头。
在进行打底焊时,通常会出现未融合的现象,这是因为在进行组对试件时出现了错边或者是在焊接的过程中焊口和焊条的方向没有垂直,以及电流调节不好而造成的。对此缺陷的解决措施主要有:
(一)在组对试件时要根据管径的偏差进行选配。这样就可以减少组对试件时的错变量。
(二)在进行焊接时,必须要保证焊口和焊条的方向垂直,对于焊接电流的调节必须合理,通常在60~90 A(焊条直径φ 3.2 mm)为宜,间隙3毫米。在进行焊接时,要保证摆动的较少,这样就可以使打底焊单面焊双面成形比较好,这样就不会产生店面未融合的现象。同时,在讲焊条的焊头处打磨以后才可以继续进行焊接,在钱一根焊条结束点的下方大约10到20毫米的位置引弧,在此稍作停留,这样可以使焊接接头比较圆滑,同时还可以避免在焊接过程中由于温度过高而发生烧穿或者是烧塌的事故。
2.焊道清理
对于打底焊的焊道进行清理是一项十分重要的工作,也是一项重要的工序。很多人会认为这没有直接涉及到打底焊接,因此不是很重要,但是该项工序决定着自动焊打底焊接的质量。焊道清理不仅影响着整个焊接的质量,同时如果做得不好,还会出现烧穿、烧塌或者产生夹渣等情况。对于自动焊接来说,并不是说清理的越彻底就越好,如果清理的过于彻底,必然减少打底焊缝的厚度,使烧穿的可能性变大。因此,在焊道清理时,正确的做法是要对焊道的两边的夹角处进行重点的清理,对于焊道中间的光滑地方可以不进行打磨。同时,为了使清理的质量得到提高,对于清理人员应该进行有针对性的培训,使其掌握熟练的清理手法,确保清理的质量,保证自动焊打底焊接的质量。
3.热焊
这一般是使用药芯自保护的焊接工艺进行,这主要是为了对焊道进行一次热处理以后,从而可以降低氢的含量,减少焊道中的气孔,从而减少裂纹的出现,同时这样做还可以提高焊道的强度。在进行热焊时,对于仰焊位置是焊道焊口中操作最为困难的地方,同时这也是最容易出现烧穿或者是烧塌的地方。对于这些缺陷,我们应该保证焊道的清理不应该太薄,同时对于焊接的速度要提高,对于电压的调节一定要适宜,这样方可以克服该种缺陷。对于仰焊位置,可以进行点焊,如此就可以降低熔池中的温度,避免出现烧穿的现象。在进行热焊时,首先应该检查清根的质量,特别是要注意检查焊道的两边夹角处是否符合要求,热焊中夹渣通常是这方面引起的。因此,在进行焊接时,既要注意检查,同时还要在坡口处有短暂的停留,对于电压也应该进行一些增加。
4.填充焊
该种方法主要是为了能够给坡口中填满金属,同时根据壁的厚度进行填充。在进行填充时,应该注意不要产生气孔。气孔产生的主要是由于送丝速度以及电压的调节没有匹配造成的。如果电压太大,就会使焊丝融化,就导致送丝速度比融化的速度慢,从而就会使空气进入熔池,从而产生气孔。同时,在进行焊接的时候,一定要保证熔池的畅通,不能使熔池和熔渣离得太远,这样也会产生气孔。在焊接的时候,应该将电压的调节痛送丝速度的参数保持匹配。在填充最后一层时,焊缝的表面应低于母材0.5 mm 为宜,根据坡口的大小适当摆动,使坡口两侧熔合良好均匀。
5.盖面焊
一个美观的焊道外观会给人以良好的视觉感,也是评价整个焊口质量的一个重要指标。盖面焊必须控制焊道的外观成形即焊道的高度和宽度。如何控制好这两个参数,首先,在焊接盖面焊缝之前应对填充焊的质量进行检查,由于半自动的焊肉比较厚,填充焊0 点和6 点的位置时以低于母材2 mm 左右为宜,并且最好留下原始坡口边沿为好。这样才能使盖面时0 点和6 点位置的余高不会超标,才能掐住线,从而保证焊道的宽窄一致,得到符合技术标准的、完美的焊缝。
三.结束语
Co2自动焊打底焊接的质量对于整个油气长输管道具有十分重要的作用,在进行打底焊接时,应该对每一个焊接工艺进行控制和分析,避免出现不必要的缺陷和质量问题,影响整个焊接的质量,进而对油气长输管道的建设不利。
参考文献:
[1]浅析10万立原油储罐焊接管理 全国焊接工程创优活动经验交流会论文集2011-09-16中国会议
[2]岳志宏; 杨涛; 高贵胜; 杨拥军 Q345厚壁小口径管道现场焊接试验研究金属加工(热加工)2012-11-20期刊
[3]常兴 ; 宗照峰 ; 林伟杰 ; 吴勇 ; 王文焱 我国长输管道下向焊技术的现状及发展趋势焊接2001-11-25期刊
[4]屈志伟 长输管道水田、林区沼泽地焊接质量控制中小企业管理与科技(上旬刊)2012-06-05期刊
论文摘要:三峡电站左岸1#~10#坝段压力钢管直径12.4m,材质分别为60kgf/mm2级高强度低合金调质钢和16MnR钢,具有管径大、管壁厚、技术要求高等特点。钢管在制作、运输、吊装、安装及焊接等工序中均采用了一些新的工艺,对各施工工序进行全过程控制,保证了三峡左岸压力钢管的制作安装质量。为大直径压力钢管的施工积累了经验。
1、概述:
三峡二期工程左岸厂房坝段A标段共有10个机组进水口,每个进水口分别设置有1条引水压力钢管,机组采用单机单管供水方式。引水钢管设计直径12.4m,最大设计内水压力1.4MPa,是目前世界上管径最大的引水压力钢管,结构形式为钢衬钢筋砼联合受力,布置上顺水流分为坝内段、坝后背管段及下水平段,桩号自20+024.172至20+118.00,中心轴线安装高程EL113.584~EL57.000m,坝内段(上斜直段)材质为16MnR,板厚26mm,坝后背管由上弯段、斜直段、下弯段组成,上弯段、斜直段材质为16MnR,板厚28~34mm,下弯、下水平段材质为60kgf/mm2级高强度调质钢,板厚34~60mm。1#~6#坝段压力钢管在下水平段设置弹性垫层管,其单条钢管的轴线长120.122m,工程量1446t;7#~10#坝段压力钢管在下水平段设置套筒式伸缩节,其单条钢管的轴线长112.852m,工程量1278t;1#~10#坝段工程量总计13788t。
2、引水管道与相关建筑物的关系:
2.1与大坝砼施工的关系:
因各坝段基岩高程不等,左厂1#~6#坝段部分背管予留槽采用开挖形式,左厂7#~10#坝段背管予留槽采用砼浇筑而成。坝内埋管段随大坝砼上升同步形成,当相应的坝块浇筑至钢管安装高程并有7天以上龄期,两侧非钢管坝段上升至高程110m以上,方可进行该部分钢管安装。
2.2与付厂房的关系:
引水管道的下弯段和下水平段布置于付厂房下部,当钢管坝段管边予留槽形成,两侧非钢管坝段达到高程82m以后,进行下部水平段钢管的安装,并从下弯段逐节向上安装。
2.3与坝体纵缝灌浆的关系:
由于坝体纵向分缝,管道予留槽跨越1~2道纵缝,钢管的安装待相应的纵缝灌浆完成至钢管安装高程以上,再进行钢管的安装。
2.4与予留槽的关系:
在安装之前,土建施工准备工作必须全部完成,在钢管安装结束后,进行管道的砼回填浇筑。
3、压力钢管的制作:
3.1钢管制作材料
3.1.1母材
用于钢管制造的所有钢材应符合设计技术要求和施工图的规定,钢管母材16MnR和60kgf/mm2高强钢出厂前在钢厂内按《压力容器用钢板超声波探伤》(ZBJ74003-88)100%探伤,每批钢板应有出厂合格证,母材的化学成份及性能应满足以下要求:
(1)16MnR钢板化学成份(%)
C
Si
Mn
P
S
Ni
Cr
Mo
≤0.02
0.20~0.60
1.20~1.60
≤0.035
≤0.035
(2)16MnR钢板机械性能
试样
规格
取样
位置
σs
(kg/mm2)
σb
(kg/mm2)
δs(%)
冷弯性能d=3a 180°
低温冲击韧性
VE—20℃J
按国标
横向
31
50~65
≥19
完好
≥27
(3)60kgf/mm2高强钢化学成份(%)
C
Si
Mn
P
S
Ni
Cr
Mo
≤0.09
0.15~0.30
1.0~1.6
≤0.030
≤0.030
≤0.60
≤0.30
≤0.30
(5)碳当量:
16MnR低于0.4%;60kgf/mm2高强钢低于0.42%。
(6)焊缝及热影响区硬度值:
16MnR低于300HV;60kgf/mm2高强钢低于350HV。
所有用于制造钢管的母材,到货后按《ZBJ74003-88》规定的Ⅲ级质量检验标准对钢板进行超声抽检,抽检数量为10%。
16MnR钢板为国产板。60kgf/mm2级高强度调质钢由日本进口,其中,1~6#机采用日本NKK公司生产的610U2钢板;7~10#机采用日本住友金属生产的610F钢板。
3.1.2焊接材料
16MnR钢板:手工焊采用大西洋产CHE507电焊条;埋弧自动焊采用H10MnSi焊丝;实芯焊丝脉冲电源全自动富氩保护焊采用CHW-50C6SM焊丝。
60kgf/mm2级高强钢:手工焊采用大西洋产CHE62CFLH电焊条;实芯焊丝脉冲电源全自动富氩保护焊采用ZO-60焊丝。
以上所采用的焊接材料均经过焊接工艺评定确定。
3.2钢管的制作工艺
3.2.1钢管排料、划线
根据设计图纸要求,先对钢板进行排料,绘制排料图,然后按排料图进行钢板划线,划线极限偏差应满足表⑴的要求:
排料时纵缝的布置与钢管横断面水平轴和垂直轴的夹角应大于10°,相应弧长应大于1100mm。
钢板划线后应分别标出钢管分段、分节、分块的编号、水流方向、水平和垂直中心线、灌浆孔位置、坡口角度以及切割线等符号。16MnR钢可用钢印、油漆和冲眼标记。高强钢严禁用锯或凿子、钢印作标记,不得在卷板外侧表面打冲眼;在卷板内侧表面用于校核划线准确性和卷板后的外侧表面允许有轻微的冲眼标记。
3.2.2钢板切割、加工坡口
钢板采用自动、半自动氧-乙炔火焰切割或数控切割机割去多余部分。纵缝和直管段环缝坡口用12m刨边机加工;弯管段环缝坡口用数控切割机加工,坡口加工后的尺寸应附合图样及规范的要求。
3.2.3钢板卷制
钢板端头预弯完成后,进行瓦片卷制,卷制方向应和钢板压延方向一致,钢板经多次卷制,检查达到设计弧度;瓦片卷制成型后,以自由状态立于组圆平台,用2.2m样板检查弧度,样板与瓦片的极限间隙应小于2.5mm。
3.2.4瓦片组园、焊接、调圆
将组成管节的三张瓦片立于组圆平台,利用自制专门的拉对、压缝工装进行组圆,最后一条纵缝调整后应满足设计周长要求,同时检查各项性能指标,组圆后管内壁加临时支撑增加刚性,然后进行钢管纵缝的焊接,焊接应严格按照焊接工艺指导书确定的焊接方法及焊接参数执行。纵缝焊接完成,吊到调圆平台,用头部带有液压千斤顶的米字支撑调圆,钢管调圆后,各项指标应符合表⑵要求:
3.2.5上加劲环、支腿、吊耳等附件
加劲环由1/20法兰组成,下料用半自动氧-乙炔切割机或数控切割机切割,加劲环及止水环的内圈弧度用1.5m样板抽查,间隙小于2.5mm,与钢管外壁的局部间隙应严格控制,不应大于3mm,以免焊接引起管壁局部变形,直管段的加劲环组装的极限偏差应符合表⑶的要求:
加劲环、止水环的对接焊缝应与钢管纵缝错开100mm以上。
4、钢管的运输与吊装:
4.1钢管的厂内吊装
钢管在制造厂内摞节组装成安装单元,最大安装单元的重量约80t,钢管厂内吊装一般采用厂内布置的60t门机起吊,但当吊装节重量超过60t时,采用60t门机与50t汽车吊联合吊装。
4.2钢管的运输
为三峡压力钢管的运输,专门配置有100t平板拖车,拖车外形尺寸(长×宽×高)为16.93m×3.5m×2.05m,拖板有效长度13.5m。考虑到三峡压力钢管的大直径,在不破环拖车拖板的情况下,设计制作了压力钢管专用运输托架,为减少对道路交通的影响,运输托架的四个支撑臂均采用可折叠形式。
钢管从组节平台上吊至拖车上后,用钢丝绳及3t或5t倒链固定。
4.3钢管的吊装
左岸电站引水压力钢管吊装方法汇总
序号
机组号
管节号
采用手段
备注
1
1~4#机
G1~G6
坝前EL.90平台的2#MQ2000门机
其中3#、4#机的G68、G69、G70管节采用300履带吊进行安装。
G7~G15
EL.120栈桥MQ2000门机
G16~G28
EL.120栈桥MQ2000门机和EL.82栈桥MQ6000门机双机抬吊
G29~G42
EL.120栈桥MQ2000门机或EL.82栈桥MQ6000门机
G43~G57
EL.120栈桥MQ2000门机和EL.82栈桥MQ6000门机双机抬吊
G58~G70
EL.82栈桥MQ6000门机
2
5~10#
机
G1~G6
两台缆机抬吊
G7~G15
EL.120栈桥MQ2000门机
G16~G28
EL.120栈桥MQ2000门机和EL.82栈桥MQ6000门机双机抬吊
G29~G42
EL.120栈桥MQ2000门机或EL.82栈桥MQ6000门机
G43~G57
EL.120栈桥MQ2000门机和EL.82栈桥MQ6000门机双机抬吊
G58~G70
EL.82栈桥MQ6000门机
钢管编号:从钢管进口开始,顺水流依次进行制作管节编号。
5、压力钢管的调整与压缝:
5.1根据钢管始装节位置,放出始装节里程、桩号及轴线位置,利用所放基准点,在始装节上游位置设置定位档板,用来控制其里程。
5.2钢管吊至轨道上,下准线对准基准点轴线,根据基准点对钢管里程、高程、轴线进行调整,其误差值管中心±5mm,里程偏差±5mm,垂直度3mm。复测合格后进行加固。
5.3为防止钢管在加固过程中造成位移,钢管加固采用对称加固,支撑先与锚筋焊接,然后支撑与钢管加劲环焊接。
5.4始装节验收后,进行第二节钢管安装调整,并进行环缝的压缝。钢管压缝采用压码与压缝工装进行压缝。
6、压力钢管的焊接与高强钢焊缝的消应:
6.1焊接
6.1.1焊缝分类
(1)一类焊缝:钢管纵缝,厂房内明管环缝,凑合节合拢环缝。
(2)二类焊缝:钢管环缝,加劲环、止推环、止水环对接焊缝及止推环组合焊缝。
(3)三类焊缝:不属于一、二类的其他焊缝。
6.1.2定位焊
对需要预热的60kgf/mm2级高强钢,定位焊时应以焊缝处为中心,至少应在150mm范围内进行预热,预热温度较正缝温度高出20-30℃,定位焊时,应将其焊在后焊侧坡口内,后焊坡口侧焊前用碳弧气刨刨背缝时必须清除定位焊,定位焊长度为60mm,间距为300mm,厚度6mm。
6.1.3焊接工艺
(1)对于60kgf/mm2级高强钢,焊前应用远红外线履带式加热片进行预热,预热温度60mm钢板为100-150℃,34mm钢板为80-120℃。
(2)焊接时先焊坡口内侧,采用分段退步法焊接(环缝由12名或10名焊工同时施焊)。焊接时的层间温度不低于预热温度,不高于230℃。
(3)双面焊的焊缝,一侧焊完后,对焊后焊缝进行预热,预热温度与(1)同,另一侧用碳弧气刨清根,手工电弧焊时,第一道焊缝应完全除去。碳弧气刨清根后应修磨刨槽除去渗碳层,并进行施焊;焊后将温度加至150℃-200℃,保温1h。
(4)高强钢施焊时,为有效的控制好焊接线能量,要求手弧焊用Φ4.0mm焊条焊接时,其焊接长度>90mm;用Φ3.2mm焊条焊接时,其焊接长度>70mm。焊道宽度超过12mm时,需进行分道,每层焊缝厚度不超过4mm。
(5)焊接参数
压力钢管手工焊焊接工艺参数表
材质
焊接
位置
焊条直径
(mm)
焊接参数
电流(A)
电压(V)
焊接速度(mm/s)
610U2
或
610F
平焊
Φ3.2
100~130
23~28
1.2~2.5
Φ4.0
140~180
23~28
1.4~3.0
立焊
Φ3.2
90~120
23~25
1.0~2.0
Φ4.0
130~160
23~26
1.3~2.5
横焊
Φ3.2
90~120
23~25
1.2~2.0
Φ4.0
130~170
23~28
1.3~3.0
仰焊
Φ3.2
90~120
23~25
1.0~2.0
Φ4.0
130~160
23~26
1.3~2.5
16MnR
平焊
Φ3.2
100~140
23~26
1.0~2.5
Φ4.0
140~180
23~30
1.3~3.0
立焊
Φ3.2
90~130
23~25
1.0~2.0
Φ4.0
130~160
23~28
1.2~2.5
横焊
Φ3.2
100~135
23~26
1.0~2.5
Φ4.0
135~170
23~30
1.3~3.0
仰焊
Φ3.2
90~130
23~26
1.0~2.0
Φ4.0
130~160
23~26
1.2~2.5
压力钢管富氩气体保护脉冲电源自动焊焊接工艺参数表
材质
焊接
位置
焊丝
直径
(mm)
焊接参数
电流
(A)
电压
(V)
焊接速度
(mm/s)
气体流量
(L/min)
气体比例
16MnR
或
Q345C
立焊
Φ1.2
110~150
20~24
1.4~1.8
16~20
Ar(80~85%)
CO2(20~15%)
横焊
Φ1.2
110~150
20~26
2.0~3.5
16~20
610U2
或
610F
立焊
Φ1.2
110~141
21~24
1.0~1.65
16~20
Ar(80~85%)
CO2(20~15%)
6.1.4焊缝检验
(1)所有焊缝均应进行外观检查,外观质量应符合DL5017-93规范表6.4.1的规定,无损探伤应在焊接完成24h后进行。
(2)超声波探伤按GB11345-89《钢焊缝手工超声波探伤方法和探伤结果的分级》标准评定:一类焊缝BⅠ级合格;二类焊缝BⅡ级合格。
(3)射线探伤按GB3323-89《钢熔化焊对接接头射线照相和质量分级》标准评定:一类焊缝Ⅱ级合格;二类焊缝Ⅲ级合格。
(4)检查比例:
埋管及钢衬管:一类焊缝用超声波探伤100%,用X射线复检长度为该条焊缝的5%;二类焊缝用超声波探伤50%,当超声波探伤有可疑波形而不能准确判断时,用X射线透照进行复检。
明管部位:一类焊缝用超声波探伤100%,用X射线透照50%以上,着重在丁字型接头附近的超声波探伤发现的可疑点部位;磁粉探伤30%;二类焊缝用超声波探伤检验100%,用X射线透照10%,当超声波探伤有可疑波形而不能准确判断时,用X射线透照进行复检。
(5)焊缝修补
焊缝缺陷必须彻底清除,不允许有毛刺和凹痕,坡口底部应圆滑过渡,碳弧气刨槽应磨去渗碳层,并进行渗透探伤或磁粉探伤,焊接工艺要求与正式焊缝(Ⅰ、Ⅱ类)相同。
焊接修补所采用的焊接材料、道间温度、焊接线能量等和原焊缝相同,修补时要严格监控线能量、预热温度及层间温度。
6.2高强钢焊缝残余应力的消除
根据设计技术要求,60kgf/mm2级高强度低合金调质钢板厚53~60mm的钢管纵缝、环缝以及止推环角焊缝均应进行焊缝残余应力消除。消应技术指标按两个50%要求:残余应力降低50%;最大残余应力不高于σs的50%即269MPa。
目前,消除焊缝残余应力主要有以下几种方法:振动法、热处理法、爆炸法、锤击法。根据以往施工经验及三峡工程的特点,并进行爆炸法消除残余应力的工艺试验,试验结果表明,爆炸法消应效果能满足设计要求,故最终我们选择了爆炸法消除焊缝残余应力。
7、压力钢管的防腐:
7.1表面预处理
采用喷射除锈,内壁表面清洁度达到Sa2.5级标准,外壁表面达到Sa2级标准,使用照片目视对照评定。除锈后,表面粗糙度数值达到50~90μm,用表面粗糙度专用检测量具或比较样块检测。
7.2涂料涂装
钢管内壁采用高压无气喷涂工艺,底漆为无机富锌漆,面漆为厚浆形环氧沥青漆,漆膜厚度不低于450μm。钢管外壁手工涂刷无机改性水泥浆,厚度300μm。