首页 > 文章中心 > 地基加固技术论文

地基加固技术论文

开篇:润墨网以专业的文秘视角,为您筛选了八篇地基加固技术论文范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

地基加固技术论文范文第1篇

【关键词】高速公路拓宽工程;预应力混凝土管桩;施工工艺;质量控制

1 预应力管桩概述

预制混凝土桩基工程与一般基础工程相比,具有桩材质量好、施工快、对工程地质条件适应性强、场地文明等特点,被广泛应用于各类建筑物和构造物的基础工程上;预应力管桩主要以承载力和沉降控制为主。由于预应力管桩造价较一般的水泥土桩要高,同时桩身强度大,承载力高;预应力管桩桩径变化灵活,对于软土地基常有砂层夹杂的情况,预应力管桩桩径选择不宜过小,防止当处理深度较大时出现桩体受弯断裂的现象;管桩施工工艺一般为振动法和静压法,对于扩建工程施工宜采用静压法施工;对本项目部分软基处理较深(15~24m)的情况,预应力管桩不失为一个较好的选择。

2 工程概况

佛开高速公路于1996年12月正式建成通车,是同三国道主干线中的重要组成部分。经过多年的营运,服务己接近饱和,目前正在实施拓宽扩建,见图1。佛开高速公路扩建范围谢边(K0+138)~三堡(K46+600),路线长46.462km,按八车道标准沿现有高速公路两侧或单侧加宽。由于软基路段长约16km,软基深厚,软土性质差,因此软基处理是工程的控制性因素。

佛开高速公路部分旧路堤为吹填砂路堤,从路肩钻孔观察,原填砂为细砂~中粗砂组成,松散状,较为潮湿。针对佛开高速公路扩建谢边(K0+138)~三堡(K46+600)段改建工程的路基特点,采用什么方法对新建软弱路基进行处理,是本文需解决的问题。

3 管桩地基承载力设计计算

3.1 承载力计算

PHC桩复合地基承载力特征值,应通过现场复合地基载荷试验确定,初步设计时也可按下式估算:

(1)

式中:――复合地基承载力特征值,kPa;

――面积置换率;

――单桩竖向承载力特征值,kN;

――桩的截面积,m2;

――桩间土承载力折减系数,宜按地区取值,如无经验时可取0.75~0.95,天然地基承载力较高时取大值;

――处理后桩间土承载了特征值,kPa,宜按当地经验取值,如无经验时,可取天然地基承载力特征值。

3.2 管桩复合地基沉降量计算

在各类实用计算方法中通常把复合地基沉降量分为部分图2所示图中h为复合地基加固区厚度,z为荷载作用下地基压缩层厚度。复合地基加固区的压缩量记为s1,地基压缩层厚度内加固区下卧层厚度为(z-h),其压缩量记为s2。于是在荷载作用下复合地基的总沉降为两部分之和。

至今提出的复合地基沉降实用计算方法中,对下卧层压缩量s2,大多采用分层总和法计算,而对加固区范围内土层的压缩量s1则针对各类复合地基的特点,采用一种或几种计算方法计算。加固区土层压缩量s1的计算方法主要有复合模量法和应力修正法;下卧层土层压缩量s2的计算方法主要有压力扩散法和等效实体法。

3.3 工程分析

结合本工程,管桩主要设计参数如下:管桩型号C80-PHC-A400,先张法薄壁预应力混凝土管桩。托(盖)板混凝土强度C25;褥垫层材料为碎石垫层,厚0.6m,褥垫层中铺2层TGSG20-20双向拉伸土工格栅。管桩单桩设计承载力300kN,各施工段大规模施工前,宜进行试桩及承载力试验,以确定具体工艺和参数。管桩施工工艺一般为振动法和静压法,对于扩建工程施工宜采用静压法施工。

下面对佛开高速公路管桩复合地基处理段进行计算。工程地基参数采用K40+600断面,具体见表1。该段原设计预应力管桩间距为3.0m,按正方角形布置,桩外径40cm,桩长16m,桩身模量36GPa,承台面积1.2m×1.2m=1.44m2。碎石褥垫层厚60cm,垫层模量55MPa。填土高度4.68m。

4 施工质量控制

4.1 桩长控制及检查

根据地质资料的桩长对每个桩进行配桩,同时在每个桩的施工前,对第一条桩适当地配长些,以便掌握该地方的地质情况,其它的桩可以根据该桩的入土深度或加或减,使能合理地使用材料,节约管桩。PHC桩属地下隐蔽工程,保证每根桩都达到设计深度。在PHC桩压入前,检查其长度规格和长度组合是否满足设计文件要求,可以在PHC桩的端部用红色油漆做出长度和桩位标记。压桩按“从内侧向外侧、先长桩后短桩”的顺序施工,在压后一排桩之前要检查前一排桩的偏位情况。压桩结束后,通过锤球法来检查桩的打入深度,并记录每个桩位的实测深度。

4.2 桩身垂直度控制及检查

压桩过程中,桩身必须始终保持垂直。施工时应在距桩机约20m处,成90度方向设置经纬仪各1台,检查桩身垂直度并记录。

4.3 施工过程控制及检查

PHC桩起吊时,现场检查堆放场地、起吊方法,防止桩断裂或环裂。施工过程中,施工人员检查和记录静压机压力表读数、压桩速度,若出现异常应及时停止并报告监理。接桩、焊接时,应检查桩身垂直度、焊缝质量。送桩时应检查送桩深度,并复核桩头标高是否达到设计要求。

4.4 压桩标准

在施工前,先详细的研究地质资料,选择有代表性的三个桩位,进行试桩,第一条连续压到设计极限单桩承压力,第二、第三条只压到设计值的60%左右,(每入±lm读取压力值),停机30~60分钟后复压,记录复压值(吨位)。等待7~15天后进行静压试验,由建设、设计、勘察、监理单位人员参加,合格后设计部门即可制定本工程的终压条件。

4.5 终止压桩的标准

一般情况下,对于摩擦桩以达到持力层(管桩的设计标高)作为管桩终压的标准。但当静压力显著增加时要注意提前终止,其标准定为:对于本工程中的PHC400A管桩,设计要求的承载力特征值为70t,静压力≥168t时可终压。

5 结束语

通过该工程的设计和施工实践,掌握了高强度预应力混凝土管桩在高速公路拓宽中的施工技术和控制措施。虽然预应力管桩复合地基在工程中己经被广泛的应用,但理论研究还很不成熟。由于时间和能力限制,本文只是对其进行了初步的研究和探讨,在很多方面需要改进和进一步提高。

参考文献:

[1]朱红兵,预应力管桩竖向承载力的研究.浙江大学硕士学位论文,2001年

[2]柴振超.高速公路改扩建工程软土地基处治技术研究.华南理工大学工程硕士论文,2009年

地基加固技术论文范文第2篇

1.1 碳纤维加固技术的研究现状及发展趋势

我国在利用碳纤维加固技术的研究和应用起步较晚,发展却很迅猛。1997年国家工业建筑诊断与改造工程技术研究中心率先开始了“碳纤维材料加固修补混凝土结构”的试验研究开发与应用,并被定为国家“九五”重点科技攻关项目.随后通过采用进口的碳纤维材料在北京、上海、辽宁、江苏等省市进行了一些实际工程结构的补强加固,并取得了较好的效果。

1.2纤维复合材料嵌入式加固技术

纤维复合材料嵌人式加固技术是将加固材料放人结构表面预先开好的槽中,并向槽中注人粘结材料使之形成整体。目前国外已经有了一定规模的研究和应用,国内在国家工业建筑诊断与改造技术研究中心开展了这项技术的试验研究,但尚未应用于工程实践。

2.砖混结构裂缝种类及其产生的原因

2.1干缩裂缝:多发生在墙面抹灰层内,一般沿墙面长度方向每隔一段距离形成一条裂缝,这种裂缝开始随时问而发展,以后逐渐稳定。另一种干缩裂缝则呈不规则的龟裂或呈放射状裂缝,此类裂缝宽度较小。产生的原因有:①抹灰用砂过细或含泥量较大;②水泥安定性不好;③砂浆过稀,抹灰不实;④抹灰层失水过快,养护不好等造成抹灰层收缩较大而形成裂缝。

2.2砖墙温度裂缝:一般有如下规律:① 顶层重,下层轻;两端重,中间轻;向阳重,背阳轻;且这类裂缝与温度变化有关。②砖墙温度裂缝随部位不同而呈不同的形状。产生的原因有:① 屋面保温层,隔热保温性能差;② 砖墙砂浆标号较低,砌筑质量较差;③结构构造上处理不当,如采用半圈梁 。

2.3地基下沉裂缝:一般共同规律是:下层多,上层少;纵墙多,横墙少;外墙多,内墙少;斜向多,竖向少。产生的原因有:①地基不均匀下沉;②房屋过长未留缝,沉降不一;③平面复杂,转角较多;④ 高低层相差较大,未留沉降缝;⑤荷载与分布不均匀;⑥ 使用不当,地基浸水或地下水位上升(多发生于湿陷性黄土地区);⑦ 地基施工质量。

3.砌体裂缝的类型和防治方法

砌体结构裂缝的类型有斜裂缝、水平裂缝和竖向裂缝三种。斜裂缝有的发生在有现浇混凝土挑檐的平屋顶房屋和无保温屋盖的房屋顶层纵墙面的两端,一般长度在1开间~2开间范围内,外纵墙两端有窗时,裂缝沿窗口对角方向裂开。有的发生在底层至二层外纵墙的两端,斜裂缝通过窗口的两个对角向沉降量较大的方向倾斜,裂缝下大上小。水平裂缝有的发生在平屋顶屋檐下或顶层圈梁下2皮~3皮砖的灰缝位置,一般沿外墙顶部连续分布,两端较中间严重。有的发生在底层至二层窗间墙的上下对角处,成对出现,沉降量大的一边裂缝在下,沉降量小的一边裂缝在上。竖向裂缝发生在纵墙中央的顶部和底层窗台处,裂缝上宽下窄。

根据裂缝产生的原因,要消除砌体裂缝。必须从根源上进行防治,尽可能在夏季或温暖季节,浇灌屋顶挑檐及圈梁混凝土,一般不要冬季施工。挑檐上最好做保温层,并达到规定的厚度:这样就能减小钢筋与混凝士和砌体之间的温差,避免顶部出现裂缝。根据建筑物的实际情况设置沉降缝、伸缩缝,提高结构刚度和施工质量,都能减少裂缝的发生。当然,处理好地基是防止墙体底部出现裂缝最有效的方法。

4.常用建筑补强加固方法

4.1 加大截面加固法

加大截面加固法是采用与原有构件同类的材料,通过增大截面的面积,提高构件的承载能力和刚度,达到对原构件进行加固的目的。

4.2 外包钢加固法

外包钢加固法是把型钢或钢板等材料包在被加固(钢筋混凝土)构件的外侧,通过外包钢与原有构件的共同作用,提高构件的承载能力和刚度,达到加固的目的。

4.3 外加预应力加固法

外加预应力加固法是采用外设预应力拉杆或撑杆对结构构件或整体进行加固的方法。它通过改变原结构的内力分布、降低结构原有应力水平来间接提高结构的承载能力。

4.4 改变受力体系加固法

粘钢加固法方法是以减小结构的计算跨度和变形,间接提高承载能力的一种加固方法。为了减小构件的计算跨度,常采用增设支点(包括柱支座和弹性支座)和采用托梁技术,从而改变结构的受力体系,使承载能力得以提高。

4.5 粘钢加固法

粘钢加固法是将钢板用结构胶粘贴在混凝土构件的外部,以提高结构承载能力的一种方法。论文参考。这相当于构件的体外配筋。该项技术目前已趋于成熟。

4.6粘贴纤维复合材料法

粘贴纤维复合材料加固方法与贴钢加固法相似,只是加固用的材料是纤维复合材料,如玻璃纤维(GFRP)、碳纤维(CFRP)、芳纶纤维(AFRP)等。

5.结论

地基加固技术论文范文第3篇

关键词:水泥土搅拌桩;软基处理;灰浆稠度;质量检验

中图分类号: TQ172 文献标识码: A 文章编号:

一、研究背景

随着我国基础设施建设的规模愈来愈大,在城市中,大型的工程项目越来越多,这些工程问题涉及到各类软弱地基与不良地基的处理问题以及恶劣环境条件下的地基处理问题,地基处理问题的研究也由此成为土力学及岩土工程工作者研究的一个热点与难点。各类软弱不良地基需要进行地基处理才能满足建造建筑物、构筑物的承载力及变形要求,对这些不良的软弱土和特殊土进行地基处理,其目的是为了提高地基的强度和保证地基的稳定性、降低地基的压缩性、减少地基的沉降和不均匀沉降变形、消除地震时地基土的震动液化以及消除这些特殊土的湿陷性、胀缩性和冻胀性。

二、水泥土搅拌法的发展概况

水泥土搅拌法可以分为喷浆型搅拌法和喷粉型搅拌法。

1、喷浆型搅拌法

喷浆型搅拌法指以水泥浆状态拌入软土中的水泥土搅拌法。美国在第二次世界大战后曾研制开发成功一种就地搅拌桩—MIP 工法,即不断回转的、中空轴的端部向周围已被搅松的土中喷出水泥浆,经翼片的搅拌而形成水泥土桩,桩径 0.3~0.4m,长度10~12m。

2、粉型搅拌法

粉型搅拌法是通过专用的粉体搅拌机械,用压缩空气将水泥粉均匀的喷入所需加固的软土地基中,凭借钻头翼片的旋转搅拌使水泥粉和软土充分混合,形成水泥土搅拌桩。我国铁道部第四勘测设计院于 1985 年开发成功石灰粉体喷射搅拌法后,在 1988年与上海探矿机械厂联合研制成功 GPP-5 型粉体喷射搅拌机,并通过铁道部和地矿部联合鉴定后投入批量生产。以后铁道部武汉工程机械研究所和上海华杰科技开发公司也先后制造出既能喷粉、又能喷浆,全液压步履式的 PH-5 和 GPY-16 型单轴粉喷桩机,使国内喷粉桩的施工长度达到 20m。1

三、水泥土搅拌法的优点

水泥土搅拌法加固技术,其有以下独特的优点有:①将固化剂和原地基软土就地充分搅拌混合,最大限度地利用了原土;②搅拌时不会使地基土侧向挤出,所以对周围原有建筑物的影响很小;③桩长可以灵活调整,长短桩布置,以控制不同部位的沉降差;④土体加固后重度基本不变,对软弱下卧层不致产生附加沉降;⑤与钢筋混凝土桩基相比,节约了大量的钢材,并降低了造价;⑥可根据上部结构的需要,灵活地采用柱状、壁状、格栅状和块状等加固形式。由于存在着上述诸多优点,所以在我国得到了非常广泛的应用。

四、水泥土搅拌桩施工技术方案设计

1、水泥掺入比

水泥土搅拌桩施工前应根据加固土的性质及单桩承载力要求,确定水泥掺入比。水泥掺入比一般在15%~18%之间,且不能低于55.0Kg/m。

2、技术参数

施工工艺中的各项技术参数包括最佳的灰浆稠度、工作压力、钻进和提升速度等。一般情况下,水灰比为0.5:1;钻进、提升时管道工作压力为0.1~0.2Mpa,喷浆时管道工作压力为0.4~0.6 Mpa;钻进速度≤1.0m/min,提升速度≤0.5m/min。

3、施工机具选择

若采用单搅拌头机具,采用四搅两喷工艺;若采用双搅拌头机具,则采用两搅一喷工艺。

五、水泥土搅拌桩施工准备及工艺

1、水泥土搅拌桩施工准备

(1)施工场地准备

水泥土搅拌桩施工前应进行打坝、排水并清除淤泥及其他障碍物,对场地低洼区域进行回填粘土,确保地面标高高于桩顶50cm,并保证凿除软桩头后桩长及桩顶标高符合设计要求。

(2) 基础设施准备

人员进场搭建生活设施、仓库,做好水泥罐的基础,搭好搅拌台。

(3)完善施工现场供水供电系统

施工用水采用检验合格的淡水,施工用电采用发电机并要求备用发电机一台以防断电,并做好夜间照明工作。施工便道应提前修整,须满足施工材料及机械设备进场需求。

(4)原材料的检测及进场储存

水泥采用PO42.5级普通硅酸盐水泥。水泥进场后立即取样检验,检验合格后方可投入水泥土搅拌桩施工。水泥进场后采用下垫上盖,以防受潮和淋雨。

(5)机械设备的检验保养

组织机械设备进场,并立即对其进行调试、检验,使设备处于良好的工作状态,以保正常运行。

2、水泥土搅拌桩施工工艺

该工艺采用二次喷浆,四次搅拌,具体步骤如下:

(1)定位放线、机具就位对中;(2)水泥浆液配置 ;(3)喷浆搅拌下沉;(4)提升搅拌;(5)重复喷浆下沉;(6)重复上提;(7)清洗。

六、质量控制措施

1、水泥质量:水泥采用P.O42.5,进场水泥必须有出厂合格证和质保单,现场应架空垫高,并有防潮措施。试验部门及时对进场水泥进行抽检、复验,质量合格后方可使用。

2、桩径:必须采用相应规格的钻头,因磨损达不到要求时应予更换,一旦发现桩径小于设计要求须按相同置换率在桩边补桩。

3、为确保压浆时不发生断浆现象,严格控制喷浆和搅拌速度,机头提升速度不超过0.5m/min,控制重复下沉和提升速度。

4、由专人负责水泥土搅拌桩的施工,全过程旁站水泥土搅拌桩的施工过程。确保人员到位,责任到人。

5、 水泥土搅拌桩开钻前,应用水清洗整个管道并检验管道中有无堵塞现象,待水排尽后方可下钻。

6、为保证水泥土搅拌桩桩体垂直度满足规范要求,在主机上悬挂一吊锤,通过控制吊锤与钻杆上、下、左、右距离相等来进行控制。

7、第一次下钻时为避免堵管可带浆下钻,喷浆量应小于总量的1/2,严禁带水下钻。第一次下钻和提升时一律采用低档操作,复搅时可提高一个档位。每根桩的正常成桩时间应不小于40分钟,喷浆压力不小于0.4MPa。

七、结论

通过研究,对水泥土搅拌桩加固软土的机理有了更加深入的认识,并对桩基检测结果进行了分析总结,为以后同类型工程的施工提供了一定的参考。

参考文献

1、李翔军.水泥搅拌桩复合地基技术研究与工程实践.硕士论文, 天津大学,2003.

地基加固技术论文范文第4篇

关键词:路桥施工 软土路基 处理

中图分类号: TU471 文献标识码: A 文章编号:

我国地质构造复杂多变:有处于青藏高原的常年冻土;有位于滨海平原的软土等等。针对不同的土质在道路施工上也就有着不同的要求,这是对我国土木工程的一项巨大的考验。本文针对软土路基的处理,做出如下分析:

一 软土与软土路基的概念

(一)软土的概念

软土,即淤泥和淤泥质土的总称,主要是由天然含水量高,承载力低,压缩性高的淤泥沉积物与腐殖质组成。这类土质主要分布于沿海城市,珠江三角洲等含水量较大的地区。这种土质孔隙大,压缩性强,土里往往沉积大量天然水。这类土质如不好好治理,会严重影响路基的坚固。

(二)什么是软土路基?

软土路基是指强度低,压缩量较高的软弱土层.多数含有一定的有机物质。这类地基每层之间的物理力学性质差别较大,土层层状分布也相对复杂。对于这种路基的处理,需要针对每层土壤的不同特性找出合理化的解决方案。

二 软土路基处理的一般原则

软土路基的处理通常有两种办法:一种自然沉降;另一种是采用相应的技术方式对地基进行处理。自然沉降在这两种方式中是比较经济的一种,但是其本身的实施度要困难得多。自然沉降的方法仅限用于工程量较大的、工期较长的项目。然而采用相应的技术这种处理方法可以在工程有限制时确保工程的质量与安全性,从而被更广泛的应用。

三 路桥施工中软土路基的处理

(一)填换法

填换法是针对浅层土壤而言的,首先要将土层较浅位置的土挖出去,继而用一些强度较高的、抗腐蚀性的、质地坚硬的石头、砂砾等重新分层填充。再用人工或者机械等手段去夯实、压实,将材料充分混合,从而达到道路路基坚实的要求。

(二)垫层法

垫层法有两种,一种是在地基表面铺设一定厚度的垫层使路基达到应有的强度。另一种是把表面部分软弱土层挖去,置换成强度较大的砂石素土等。垫层的最终目的是:提高路基的承载力;加速土质的固结;防止路基冻胀;使路基的刚度均匀化。垫层的材料一般有砂垫层材料,粉质粘土垫层材料等。在垫层施工中常用的为砂石垫层材料,即用各种砂石混合良好,且不能含有垃圾或者植物残体等影响稳固的物质存在,铺设的厚度一定要适中,不要影响上层的排水效果,从而确保路基的稳定性与强度。

(三)压实法

压实法是通过挤压或夯实将土壤的孔隙变小,多半是通过物理方法或者化学原理将其实现。孔隙变小了,路基的强度也就相对变高。

1 灰土挤密桩对路基的处理

灰土挤密桩对于黄土路基的处理还是比较奏效的。其原理在于生石灰吸水后膨胀,使桩间的土脱水,膨胀后的生石灰挤压路基上的土壤,从而使土壤间的密实度增大,继而增强了路基的强度,这种方法试用与路基中含水较多的土壤,如:湿陷性黄土、素填土、杂填土等。这种处理方式的好处在于:生石灰可以就地取材,材料不难找到;工程的难度不是很大,可以在时间上缩短工期。

2 强夯法

顾名思义,强夯法就是利用重锤提升到一定高度并使其自由下落,达到夯实路基的效果。这种夯实是为了提高路基的强度,降低压缩性。夯实法被广泛使用在我国沿海城市。当然,夯实法也有不适用的土质,它不适用于较厚的淤泥质与淤泥土壤。因为强夯法的加固效果取决于路基的渗透程度,所以必须要有良好的排水通道。

(四)排水固结法

排水固结法是针对天然地基,或先在地基中设置砂井等竖向排水体,然后利用建筑物本身重量分级逐渐加载;或在建筑物建造前在场地上先行加载预压,使土体中的孔隙水排出,逐渐固结,地基发生沉降,同时强度逐步提高的方法。排水固结法分为堆载预压法、真空预压法、降水预压法、电渗排水法。需要针对不同的软土土质选用不同的排水固结法。

(五)化学固结法

1搅拌桩法

是指利用特质的搅拌机械,用水泥或其他材料作为固化剂,在深层进行搅拌。将软土与固化剂进行强制的搅拌,通过一系列的物理化学性质的变化,形成坚实的桩体并与原来的地基融为一体。从而起到复合地基的作用。

2灌浆法

灌浆法是将某些固化的浆液注入土壤路基的孔隙中。这些浆液通常是利用液压、气压等因素被注入的。从而改善路基的物理性质,增强路基的抗压性等。

(六)土工合成材料加固法

土工合成材料是土木工程应用的合成材料的总称。这种材料是人工合成的,放置在路基上能使各种材料良好的融合在一起,不论是从表层还是深层,都起着加固的作用。具备防渗,排水,加固,过滤等多种特性,是一种新型的岩土工程材料。

四 对软土路基处理的一些意见与建议

综上所述,我国对软土路基的处理与研究已经达到一定的水平并初具规模。但是从现状来看,仍有一些不足的地方需要关注,根据软土路基的现状,提出以下几点意见与建议。

深入研究路桥软土的基本特点

根据我国不同地区的不同地质,分析出该段路基软土的具体特性:并以此作为模板,找到加强路基稳固的最适宜的方式方法;并从工程角度出发,分析着重研究影响工程进度的因素,从而更好的应付突发事件。

深入开展软土路基沉降计算方法的研究

路基沉降的计算方法是处理路基沉降的核心内容之一,开展软土路基沉降计算方法的研究就刻不容缓。

加强路桥软土路基处理的系统化研究

近年来,针对软土路基处理的系统化的研究的论文并不少见,我们所要做的就是对这些论文进行具体的、系统化的分析与研究,这对软土路基的处理不论是理论上还是实际施工上都有很好的帮助。

提高路桥软土路基处理的智能化研究

在工程领域,很难找到一个最好的答案,那么,换一种思路,“退而求其次”不失为一种明智的选择。人工智能方法是解决软土路基处理智能化的最好的办法之一,也是最有效的方式之一。

我国路桥软土路基处理的研究还会继续不断深化,这就需要我们土木人将全部的热忱投入其中,尽力弥补路基处理的不足,争取完善路桥软土路基的处理。

总结:

在路桥施工中,不注重软土路基的处理是很危险的。作为技术人员,一定要充分的掌握其特性与相应的应对措施,还要加强技术理论的学习,从理论与实际两方面共同保障软土路基的安全问题。从而让我国公路建设更有保障性与安全性。

参考文献:

[1]孙连军,冯勇.地基处理方法综述[J].山西建筑.2007 (4).

[2]袁得富,史建党.公路工程软土地基处理[J].河南科技.2006 (10).

[3]李阳.高等级公路软土地基处理技术[J].四川建材.2007 (1).

[4]赵金健.郭建军.软土地基处理技术[J].中国高新技术企业.2008 (6).

地基加固技术论文范文第5篇

【关键词】盾构隧道,水中进洞,施工技术

中图分类号:TU71文献标识码: A

一、前言

随着当今施工水平的不断提高,施工中对盾构隧道水中进洞施工技术的要求也日渐提高。因此,如何积极采用科学的施工技术,不断完善施工技术管理就成为当前一项十分紧迫的任务。

二、盾构隧道的介绍

采用盾构法建造隧道或各种地下管道,一般是在预先建造好的工作井内进行盾构的安装、调试和试运转,并将其准确地搁置在符合TRANBBS设计轴线的基座上,待所有施工准备工作就绪后,开始沿设计轴线向地层内掘进施工,当盾构将要到达终点时,应准确测定盾构的现状位置,并调整和控制其的姿态,使盾构正确无误地进入预先建造安装好的接收井内的基座上。

盾构的进出洞工序是盾构法建造隧道的关键工序,该工序施工技术的优劣将直接影响到建成后隧道或管道的轴线质量、进出洞口处环境保护的成效及工程施工的成败。

盾构的进出洞施工技术必须根据工程所处地层的土质、水文、环境条件和环境保护要求的等级而制定,如何科学、合理地运用各种不同的进出洞技术,使其符合各工程的特定工况条件要求。

三、盾构隧道水中进洞施工中存在的问题

1、高水压问题

在高水压条件下盾构施工,必须能够防止地层发生突涌水而引起地层坍塌;盾构机必须具有很好的密封性能,包括主轴承的密封、盾尾密封和铰接密封等;管片结构要有良好的密封防水性能;此外,在需要停机检查、更换刀具时具有足够的可靠、可行的安全措施。

2、软硬不均地层问题

盾构一般适用于软土施工,当地层较硬时掘进比较困难,效率较低;地层软硬不均匀对刀盘、刀具也有不利影响,磨损加大甚至出现非正常损坏;并且对盾构行进姿态控制也会造成不利影响。

3、洞门处土体涌入井内

洞口封门拆除后,井外土体不能自立,井内洞圈的密封装置还不能阻挡洞外的土体,所以洞口外土体随之进入井内,造成地面沉陷,影响附近地下管线和地面建筑物的安全使用,如情况严重,则造成井下无法施工。

4、洞口周圈涌泥水

由于在出洞施工时损坏了洞口密封装置,盾构出洞后没有及时做好洞口防渗漏处理,故在盾构未全部通过工作井洞圈或已经脱出洞圈时,井外泥水不断从洞圈与盾构或隧道之间的间隙涌入井内。如不及时处理,将导致地面沉陷及洞口处已建造好的隧道产生过量沉降。

5、盾构出工作井洞口

上抬或下沉盾构出工作井洞口后,就失去了基座的支撑,若在施工中对正面平衡压力值的设定和控制不当,则极易产生盾构的上抬或下沉,这将使刚建成的隧道偏离设计轴线,甚至无法正常施工。进土部位和进土量控制不当,易使盾构上抬,于是地面也随之隆起;正面土体流失过量,超量出土,易使盾构产生下沉。管片产生碎裂、环面不平、内外张角严重、纵缝喇叭大、环向旋转等不良现象。

6、盾构出工作井洞口时上抬或下沉

盾构出工作井洞口后,就失去了基座的支撑,若在施工中对正面平衡压力值的设定和控制不当,则极易产生盾构的上抬或下沉,这将使刚建成的隧道偏离设计轴线,甚至无法正常施工。

进土部位和进土量控制不当,易使盾构上抬,于是地面也随之隆起;正面土体流失过量,超量出土,易使盾构产生下沉。

四、盾构隧道水中进洞施工技术

1、建立推进施工的良好后盾系统

后盾系统由后盾管片、支撑体系及反力架等组成,其不但要稳固牢靠,同时必须有一个准确的后座支承面和适应施工的垂直与水平运输的转折通道。

2、确保洞口处土体稳定

当盾构机从洞门始发,或盾构机到达接收井,在穿洞门时都必须先凿除端头井洞门口的围护墙。一旦围护墙凿除后,洞门口就暴露出地下的自然土体,该土体在地下10余米深,洞门直径达6m甚至更大,肯定不能自立,并且地下水丰富,如果不采取措施,洞门口连土带水涌入端头井内而形成事故。因此洞门口的土体必须作加强处理,以保证洞门口围护墙凿除后土体能自立。其次还要保持洞外土体与洞门外井壁处于密封状态,使地下水也不会流入井内。以达到安全施工之目的。洞门口土体的加固方法选择是根据端头井洞门外土层物理力学指标、隧道直径和埋深、洞门结构、拆除方法、地面及周围环境等因素,来选用合理、安全的地基加固处理方法和范围。常可采用:高压旋喷桩、水泥土搅拌桩、SMW桩、注浆法、冻结法、降水法等。

3、对洞门外土体进行加固或稳定处理

采用土体稳定措施后,洞门外土体能稳定自立相当长时间,可大胆拆除封门,盾构即可进出洞,但在施工时必须对加固处理后的土体实际性能作检测,确认其达到施工所规定的要求,方可拆洞口封门。当前常用的土体稳定技术有降水、地基加固、冻结法等。

(一)、降水

降水可有效地疏干砂性土中的地下水,提高该层土的密实度,但不能大幅度提高土体的强度。如洞口敞开面积大、埋深深、敞开时间长,仍会有土体失稳坍塌的问题存在,此时降水仅能作为辅助措施;再则降水效果还受到降水深度、土质条件、周围环境条件等的限制,只能在许可条件下使用。

(二)、地基加固

地基加固可采用深层搅拌、注浆、旋喷桩等方法,目的是将洞口处一定范围内土体预先固结起来,达到进出洞时所需的强度,能使洞口封门拆除后洞口处暴露的土体自立。但地基加固后的土体强度均匀性差,特别是在软土地层中尤为突出,所以必须加强检测,使加固土体的强度,使其均匀性、加固范围等均符合加固设计的标准。

加固设计时要考虑到工程所用盾构的性能,如网格盾构是挤压性的正面无切削设备,则不宜采用加固技术;对于全断面切削刀盘,则应考虑加固土体的强度及出渣输送的可能性。

(三)、冻结法

使土体中水分冻结,整个冻结范围内土体暂时形成具有相当强度的冻结固体,在这种冻结固体支护下,拆除洞口封门,待掘进设备进入洞门圈内、洞口密封装置安装完毕、洞口施工时的密封性能建立后再解冻,进入正常进出洞施工。这种技术在煤矿建井施工中已广泛应用,国外用于隧道施工已有许多实例,我国在隧道施工中亦已开始应用。

4、洞门破除

始发井围护结构中的钢筋对盾构机刀具的危害极大,盾构机始发掘进前必须破除。掘进前洞门处土体已经进行了加固,抽芯检查证实,加固效果非常好,但为减小土体扰动,保持土体的稳定性,决定用人工破除围护结构的钢筋混凝土,且保留一层钢筋和混凝土保护层作为外部支护,待盾构机顶到洞门时再割除掉钢筋,盾构机迅速向前推进,顶住土体,防止洞门处土体坍塌。出洞时,当盾构机刀盘顶到钢筋时再进行割除,防止土体坍塌。

5、采用自动导向系统进行盾构机姿态与线形控制

运用自动导向系统进行盾构机姿态和管片位置的实时监测,并计算显示盾构机和安装管片的正确位置以及线路的校正数据。据此,通过分区控制推进油缸来控制盾构机的姿态,必要时辅以铰接油缸和超挖刀进行纠偏;为防止盾构机滚动,利用设于盾体上的稳定器来加以控制或使刀盘反转来纠正。管片排版则根据导向系统的测量计算结果,通过排版系统来选择与实际线型最为匹配的管片类型,以保证拼装精度并控制线路拟合误差。

五、结束语

施工技术管理作为工程项目施工管理的核心工作之一。对施工方面具有十分重要的作用。我们必须将科学的盾构隧道水中进洞施工技术管理融合到项目管理工作中。

参考文献

[1]丁光莹;杨国祥;万波;首台国产大型泥水平衡盾构在打浦路隧道复线工程的应用[A];2009中国城市地下空间开发高峰论坛论文集[C];2009

地基加固技术论文范文第6篇

关键词:复合地基、液化判别、应力集中

1概述

碎石桩具有抗砂土液化的能力,因此碎石桩复合地基在加固液化地基方面得到广泛的应用,在实际地震中,也证实了这种加固方法的有效性。但是在实际工程中如何判别碎石桩复合地基桩间土的液化可能性仍然是一个没有很好解决的问题。

文献[1]利用Seed]提出的碎石桩复合地基排水方程,分析了复合地基的振动孔隙水压力,郑建国[2]通过现场试验并考虑排水和桩体效应,提出了修正标准贯入击数的方法,何广讷[3]在此基础上对其进行了修正,方磊[4]在前人工作的基础上提出了适用于碎石桩复合地基的修正seed简化法。

本文在现有的研究的基础上,提出了考虑碎石桩体排水效应和桩体应力集中效应的瑞利波法复合地基液化判别。

2天然地基液化的判别

目前在实际工程中对天然地基液化的判别方法主要归为两大类:一类是根据标准贯入试验建立的判别方法,如现行的《建筑抗震规范》Gb50011-21;另一类是根据场地土的剪切波速或者瑞利波速度判别。

2.1规范法

《建筑抗震设计规范》(GB50011-2001)给出了天然地基液化判别标准贯入试验法:在地面以下15m深度范围内,液化判别标准贯入锤击数临界值可按下式计算:

(1)

在地面下15~20米范围内,液化判别标准贯入锤击数临界值可按下式计算:

(2)

式中 —液化判别标准贯入锤击数临界值;

—液化判别标准贯入锤击数基准值;

——饱和土标准贯入点深度(m);

——粘粒含量百分率,当小于3或为砂土时,应采用3。

2.2瑞利波速度液化判别法

近十年来瑞利波勘探技术在国、内外得到广泛的应用。瑞利波速度Vr与剪切波速度Vs具有如下的关系:

(3)

式中, 为介质的泊松比。一般土层的泊松比 =0.45~0.49,所以有如下关系:

(4)

标准贯入击数N与瑞利波速度的关系:

(5)

将式(5)代入式(1)、(2)中得到:

(6)

(7)

式中

——计算的临界瑞利波速度

——瑞利波测点的深度

——常数

其它参数同上

3碎石桩复合地基的液化判别

碎石桩具有应力集中作用和排水作用,在实际地震中证实了碎石桩复合地基抗液化有效性。国、内外研究者采用数值分析的方法对这方面的问题进行了很多的研究。

3.1桩体应力集中作用

由于碎石桩桩体的剪切模量比桩间土剪切模量大,在水平动剪应力作用下,桩间土分担的剪应力减小,从而将影响地震孔隙水压力的产生。

按照复合地基理论中的变形协调性原则,地基在承受应力时,桩身和桩间土上的应力比可以近似按刚度比分配,即:

(10)

因此,可以推导出:

(11)

式中 , ——分别为桩身和桩间土的剪应力;

——应力比。

——面积置换率

桩体应力集中作用的修正系数为:

(12)

天然地基经碎石桩加固后,桩间土得到振密和挤密,标贯击数与天然地基相比得到很大的提高,因此,桩间土或复合地基的临界标准贯入锤击数可按下式计算[22]:

(13)

式中 ——加固后复合地基的标准贯入锤击数

——桩间土加固后的标准贯入锤击数(未经杆长修正)

——桩土应力比,一般为2~4

——面积置换率

3.2桩体的排水作用

碎石桩复合地基的排水作用是随着置换率和地震烈度的增大而加大。在实际工程中,碎石桩的置换率一般为m=0.082~0.25,地震烈度为7~9度。文献[3]给出碎石桩的排水作用系数 为:

(14)

式中I为判别场地的地震烈度。

4.瑞利波速度判别法

本文在天然地基瑞利波法判别液化的基础上综合考虑复合地基的挤密、振密桩体效应和排水效用,给出了复合地基液化判别式:

(15)

式中 ——计算的复合地基临界瑞利波速度;

——分项系数,

——桩体效应折减系数,

——瑞利波测点的深度

——地下水位深度

——复合地基瑞利波速度基准值 。

5工程实例

某建筑工程场地位于VII度设防区 ,采用振冲碎石桩对地基进行了加固处理,场地地层由上之下分别为:杂填土厚度约1.0~1.5m,细砂,厚度2.5~6.4m,存在液化现象,以下为粗砂和砾砂。地下水位于地表下1.2m。碎石桩桩径为0.8m,桩长大于8.5m,桩间距为1.16m。碎石桩处理前、后标贯击数见图1,处理前、后的瑞利波速度见图2。从图1和图2可以看出:加固处理前标贯击数N值和瑞利波速度较低,6.0m以内存在液化现象,加固处理后标贯击数N值和瑞利波速度增值较大,但是用天然地基液化判别式(1)、(6)进行判别,4.5m以内仍然存在液化现象。考虑桩体的应力集中作用和排水作用后用 式(15)进行判别,则不存在液化现象。

6.结语

本文利用瑞利波速度在天然地基液化判别的基础上考虑碎石桩桩体的应力集中作用和排水作用给出了碎石桩复合地基液化的判别的工程方法。

参考文献

[1]徐志英.用砾石排水桩抗地震液化的砂基孔压计算[J].地震工程与工程振动,1992,12(4)88~92

[2]郑建国. 碎石桩复合地基液化判别方法的探讨[J]. 工程勘察,1999,(2):5~8

[3]何光讷,振冲碎石桩复合地基液化势的判别,辽宁工程结构,东北大学出版社,2000

地基加固技术论文范文第7篇

关键词:高层建筑,基础施工,建筑施工

 

引言

多数情况下多层房屋惯用的基础形式、设计与施工方法,不能简单地搬用于高层建筑,而必须在认识高层建筑地基基础工作特性的基础上选择和创造与高层建筑特性及要求相适应的基础形式、设计理论与设计方法。因此,本文主要对高层建筑中基础工程的地位、现状及进展进行了论述。

1高层建筑中基础工程的地位

基础是高楼正常使用和稳定与安全的根本。高层建筑基础工程需要保证建筑物具足够的稳定性,同时要求基础和地基具有足够的刚度使沉降和倾斜控制在允许的范围内。因此高层建筑基础工程设计与施工的情况更复杂,难度更大,技术要求更高更严、责任更重。由于它的高、重、大、深的特征,一旦考虑不周或处理不当,将导致远比一般多层房屋更为严重的不良后果。轻则产生难以纠正的过大沉降、倾斜和不均匀沉降,造成结构局部损坏或几乎永久地影响使用功能和美观;重则导致整个建筑的倾覆或破坏,造成比一般多层房屋大许多倍的经济损失。例如,上海某宾馆,地基为深厚软土,采用振冲碎石桩加固地基,箱型基础。由于这种加固方法在软土中的设计理论尚不够成熟,对施工质量与加固效果还缺乏完善的检测手段,加之承包商施工管理不严,偷工减料,致使该建筑物建成后产生不能允许的沉降与倾斜,裙房局部挤压损坏,不得不采取昂贵的地基加固措施。又如南美洲某大厦,设计时未查明地质情况,桩长不足,未达到坚硬土层,桩基承载力也不足,结果当结构施工到顶尚未装修时便开始倾斜,几天后,一夜之间整个大楼倾覆于地面。

很多高层建筑出问题的例子有力地说明了基础工程的设计与施工质量乃高层建筑安全之所系,设计、施工人员必须给予极度重视。此外,高层建筑基础工程的造价和施工工期在建筑总造价和总工期中所占的比例,与上部结构形式和层数、基础结构形式、桩型以及地质复杂程度和环境条件等因素有关。论文大全。除了钢结构和直接建造在基岩上的浅基础以及岩层埋藏很浅的桩基础以外,就钢筋混凝土结构和一般地质条件而言,采用箱形基础或筏基的高层建筑,其基础工程(包括基坑支护与开挖施工)的费用约占建筑总造价的1/10-1/5,相应的施工工期约占建筑总工期的1/5-1/4,因此在高层建筑中,基础工程设计与施工的合理与否对整个高层建筑工程总造价与总工期的影响是很显著的。可将高层建筑中基础工程的地位概括成两句话:基础工程的设计与施工是高层建筑正常使用与稳定安全的根本,其造价与工期对高层建筑总造价与总工期有举足轻重的影响。

2高层建筑基础施工发展现状

高层建筑是随着社会的经济发展与技术进步而发展起来的,而高层建筑基础工程则是随着现代高层建筑的大量兴起和设计理论研究的发展而产生的新兴科学。我国现代高层建筑是从20世纪70年代后期,随着改革开放和大规模的现代化建设的推进而迅速兴起的。在短短30多年的时间,千百幢各种类型的高层建筑在各大中城市中迅速地兴起。我国地域辽阔,各地区的地质条件差别极大、地震区覆盖面又很广,因而各地高层建筑的基础形式多种多样。有采用筏形基础、箱形基础及少数条形基础的,也有采用大直径嵌岩桩、中长混凝土预制桩和超长钢管桩的。建造在良好地基上采用筏(或箱)形基础的高层建筑已达52层170米(广东国际大厦)和67层190米以上(北京京城大厦);建造在深厚高压缩性软层土地基上的箱形基础高层建筑达到14层41.6米(上海陆家宅高层住宅)。

近30余年来高层建筑在我国各地迅速发展的事实有力地说明,我国工程技术人员成功地解决了广大地域内各种地质条件下高层建筑基础工程的设计与施工问题,积累了丰富的经验。无论是设计理论还是试验研究,都有长足的进步,取得了丰硕的成果。论文大全。

近20年来在我国召开了多次有关高层建筑的国际会议。在全国性高层建筑学术会议上,基础工程总是讨论的重要议题之一,高层建筑基础工程的设计与施工问题也往往是人们最关注的热门话题,有关这方面的理论与试验观测的研究成果,以及新技术成果的报导从未间断过,显示出高层建筑基础工程是一个非常活跃的技术领域。

这些经验与成果已陆续反映到《建筑地基基础设计规范》《建筑桩基技术规范》和各地区的地基基础设计规范中,表明我国在高层建筑基础的设计与施工方面已逐步形成整套的理论与经验,并在今后将继续不断地发展。

3高层建筑基础设计的进展

地基基础上部结构相互作用,即地基、基础和上部结构三者实际上是相互联系成静力平衡、变形连续协调、彼此不可分离的整体系统来承担荷载而发生变形的,在这个整体系统中每一部分的刚度均对自身及其他部分的工作性状产生影响,每一部分的工作性状都是自身及其他部分(三者)共同作用的结果。高层建筑基础工程也是如此,它在上部结构荷载作用及上部结构刚度和地基压缩性及均匀性等因素影响下的力学性状(例如它的变形挠曲特征、基底反力和截面内力分布等)都与地基、基础及上部结构的相对刚度特征有关。

高层建筑基础的分析与设计不能不研究这个整体系统的共同作用性状并进行计算分析。共同作用分析就是把上部结构、基础和地基看成是一个彼此协调工作的整体,在连接点和接触点上同时满足静力平衡和变形协调条件下求解整个系统的变形与内力。只有这样才能揭示它们在外荷作用下相互制约、彼此影响的内在联系,从而达到安全、经济、合理和先进的设计目的。论文大全。

整体共同作用分析是相当复杂的,这意味着不但要建立能正确反映结构刚度影响的分析理论与有效的计算方法,而且还要研究选用能合理反映土的变形特性的地基计算模型及其参数。而且整体共同作用分析是一个高维与无穷维的超静定问题,只有在计算机技术与数值分析方法的迅、应变关系研究不断深入的当代,共同作用的分析研究才能得以开展受到重视。

4 结论

利用共同作用理论可根本上提高和改善高层建筑基础设计的水平与质量,取得比以往设计更大的经济效果。有效地利用上部结构的刚度,使基础的结构尺寸减小到最小程度。把上部结构与基础作为一个整体来考虑,箱形基础高度可大为减小;当上部结构为剪力墙体系时,有可能将箱基改为筏基。在一定的地质条件下,考虑桩间土的承载作用,得以加大桩距、减少桩数,合理布桩、减少基础差异沉降及内力,从而在整体上降低基础工程的造价。

参考文献

[1]咸大庆.基础工程事故的主要原因剖析[J]. 岩土工程界, 2004, (4) .

[2]田德武.地基基础工程事故分析[J].大众科技, 2006, (5) .

[3]徐海航.建筑结构地基与基础工程缺陷事故的分析与预防[J].内蒙古科技与经济,2006,(7) .

[4]田允寿,吴义梅.工程事故实例剖析[J]. 工业建筑, 1993, (7) .

[5]王雷,刘芳.地基基础工程事故分析[J]. 民营科技, 2009, (4) .

地基加固技术论文范文第8篇

关键词:路基,强夯法,施工技术

Abstract: this paper with an actual project from the parameters in the dynamic compaction, the dynamic compaction construction points for attention are introduced in this paper and two dynamic compaction method to reinforce old roadbed technology.

Keywords: roadbed compaction method, construction technology

中图分类号:U213.1 文献标识码:A 文章编号:

1引言

路基是整个公路构造的重要组成部分。路基承受由路面传来的行车荷载以及路基本身及路面的重力,均可能使路基产生各种变形,直接导致路面的破坏。路基的强度和稳定性,是保证路面强度和稳定性的基本条件。对原有高速公路进行加宽以及将低等级的道路改建成高速公路,旧路基的利用问题则是关键的技术问题。通过强夯可以加快新地基的固结速度,提高老路基的压实度,从而避免新老路基的不均匀沉降。因此强夯法成为旧路改造过程中一种切实可行的方法。

2强夯法原理

众所周知,土体是由土的固体颗粒、土中水及土中气体组成的三相分散体。土体的压缩主要是由于土中气体的压缩和土中水的排出导致的,土颗粒本身的变形可以忽略不计土体中孔隙体积愈小,亦即土中水和气体所占体积愈小,土体的压缩性愈小,强度愈大。因此,对土体进行强夯处理的目的可归结为减小土体中气体和水所占体积。对于土体中水来讲,其本身的压缩性可忽略不计,只有畅通的排水通道才有可能使其排出,只有受到外界施加的压力才能摆脱重力、毛细作用力以及土颗粒表面分子引力的约束作用而被排出。

强夯法对路基土的加固作用概括为如下几方面:

(1)压实作用。巨大的强夯冲击能不仅使土中空气所占体积被压缩,也使水中的封闭微气泡被压缩。

(2)土体局部液化。当能量以反复冲击荷载的形式施加于土体时,气体逐渐被压缩;土颗粒表面的结合水膜被扰动,使其摆脱分子引力的约束。当含气量为零时,土体中孔隙水压力急聚上升,局部发生液化。

(3)孔隙水从裂隙中排出,土体固结。在巨大的强夯冲击能作用下,土中产生裂隙;结合水的转化也导致土体的渗透性增大。因此,土体得以排水固结。

(4)土体触变的恢复过程。强夯期间,土体强度大幅度降低。当土体接近或产生液化时,强度处于最低值,此时土体处于完全破裂的状态。同时土体中结合水部分地转化为自由水。在孔隙水压力逐渐消散的同时,土颗粒间进一步靠近以及新的结合水膜逐渐形成,抗剪强度和变形模量随之恢复和增加。

3工程概况

该汽车专用线始建于八十年代末期,当时修建标准为二级汽车专用公路,路基宽度为18米,高度一般在1-6米。老路堤的土质复杂,且受当时规范和施工条件的影响,该路边坡压实不充分,边缘不稳定,高填土路段基底压实不足,有沉陷,特别是其中一路段的主要压实机械为链轨车,且路堤修筑时间仅为一个月,压实度很难保证。深层取芯结果证实,路堤土的压实度绝大部分在80%以下。原设计方案是将老路堤全部清除后重新填筑碾压形成新路堤。这一方案尽管可有效保证路堤的施工质量,但却会形成对旧路资源浪费和新的土地资源的侵占,并且会增加路堤土石方工程量,延长工期,增加工程造价。

4强夯参数确定

强夯参数包括单次夯击能、夯击数、夯点间距及两次夯击之间的时间差等。试夯前我们将对其中的部分关键参数进行研究并初步拟定。

在新地基上进行试验,对地基中产生的超静孔隙水压力和动土压力进行了研究,通过分析试验数据得到了强夯的一些关键参数。为研究强夯引起的超静孔隙水压力的瞬态长消规律,试验中使用了三个动态水压力传感器;为研究强夯后超静孔隙水压力的长时消散规律,试验中使用了两个静态水压力传感器。

我们在对水位较高的地基进行强夯时,击数控制在4击左右,并且点夯与铺底夯间隔时间最少为两天。这样做既能满足要求,并有一定的安全储备,又不至于浪费能量。

夯击击数也是一个很重要的强夯参数,目前还没有确定路堤加固次数的经验公式和理论解。但是,对一些地基强夯工程实例的统计结果表明:一般加固l0米深度范围内的非饱和地基土夯击次数大于5时己达到80%以上的加固程度(即在给定的单击功能下完成夯沉量的80%以上);夯击次数大于10时已基本达到较理想的加固程度。在此初步拟定路堤点夯次数为8、l0、12击,对它们分别进行试验。

5强夯施工的注意事项

试夯结果表明,强夯法是一种非常适用于旧路改造的经济、快捷、有效的方法。但在具体实施时。有些环节需要特别重视,否则会起到负面影响。在试夯过程中,我们得到了一些教训,同时积累了丰富的经验。下面简单论述一下,希望能为以后的强夯施工提供借鉴和帮助。

1)强夯后,为防止降雨,要及时将夯坑推平。一般情况下,即使经过推土机整平,也不可避免的会产生一些坑洼地带,这将导致下雨后雨水不能立即派走,路面易形成积水地带。强夯法施工应提前规划好施工季节,尽量避开雨季,如确因工期等因素的影响非施工不可,要采取相应的措施,如:根据天气预报,及时掌握天气情况,降雨时间及强度。防止因车辆反复碾压产生“橡皮土”,当局部出现“橡皮土”时可将其挖除,换填干土或砂石料补夯,当“橡皮土”较薄且面积较大时,可用推土机的松土器将地表层翻松、凉晒后补夯,当“橡皮土”较厚且面积较大时,可用生石灰进行处理。

2)由于强夯施工机械一般大且笨重,它的爬坡能力很差,而强夯处理的高速公路路段一般为高填方,如果夯机频繁的爬上爬下,将延误工期,并易出现安全事故。因此应做好施工组织管理,尽量使一台夯机在同一路段内作业,以减少夯机爬坡次数。

3)强夯法施工中,夯锤在瞬间给路面以强大的冲击力,此冲击力在地基和路堤内以波的形式向外传播。所以,强夯施工前应首先考察周围情形,务必使强夯点在建筑物和人员的安全距离之外,必要时挖防震沟。同时在夯锤落地的瞬间会溅起土石或泥浆,所以在施工时应加强安全措施,确保行人和居民的人身安全和财产安全。

4)当靠近松铺路堤边坡进行强夯作业时,重达几十吨的夯机极易引起边坡失稳,从而酿成翻车事故。而且严禁在雨后对路堤边坡进行强夯,因为此时路堤土体潮湿,抗滑稳定性差。

6结语

通过原位试验测得老路堤的原始参数,然后在施工现场开展试验段施工,最后科学合理的提出新地基、老路堤和新地底的强夯施工参数,并且对强夯施工现场的安全距离作了测试和分析。这对以后的类似的施工具有积极的借鉴意义。

参考文献

[1]冯洪波.强夯技术在旧路基利用中的工程技术研究[D].山东大学硕士论文,2007.