首页 > 文章中心 > 无功功率补偿

无功功率补偿

开篇:润墨网以专业的文秘视角,为您筛选了八篇无功功率补偿范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

无功功率补偿范文第1篇

关键词:无功功率平衡 优化补偿

电压是电能质量的重要指标之一,电压质量对电网稳定及电力设备安全运行、线路损失、工农业安全生产、产品质量、用电单耗和人民生活用电都有直接影响。无功电力是影响电压质量的一个重要因素,电压质量与无功是密不可分的,电压问题本质上就是一个无功问题。解决好无功补偿问题,具有十分重要的意义。

1 无功功率平衡

1.1 补偿容量不足时的无功功率平衡

进行系统无功功率平衡的前提是保持系统的电压水平正常,否则,系统的电压质量就得不到保证。在图1所示的系统无功功率负荷的静态电压特性曲线中,在正常情况下,系统无功功率电源所提供的无功功率QGCN,由无功功率平衡的条件QGCN - QLD - QL = 0决定的电压为Un,设此电压对应于系统正常的电压水平。但假如系统无功功率电源提供的无功功率仅为QGC(QGC

1.2 系统无功功率电源充足时的无功功率平衡

在正常情况下(系统电压为额定电压),如图2所示。系统无功电源Q同电压U的关系为曲线1,负荷的无功电压特性为曲线2,两者的交点a确定了负荷节点的电压Ua。

当负荷增加时,如曲线2’所示,如果系统的无功电源没有相应增加,电源的无功特性仍然是曲线1,这时曲线1和曲线2’的交点a’就代表了新的无功功率平衡点,并由此决定了负荷点的电压为Ua’,显然Ua’

2 配电网无功优化补偿

由于电网的线损主要是线路损耗与变压器损耗,所以配电网的降损节能,也就是对电网中所有的电力线路和变压器进行优化。无功优化的目的是通过调整无功潮流的分布降低网络的有功功率损耗,并保持最好的电压水平。无功优化补偿一般有变电所无功负荷的最优补偿、配电线路最优补偿以及配电变压器低压侧最优补偿,而配电变压器低压侧最优补偿是配电网无功优化的重点之一。

配电变压器一般实行随器补偿,是将低压补偿电容器直接安装在配电变压器低压侧,与配电变压器同投同切,用以补偿配电变压器自身励磁无功功率损耗和感性用电设备的无功功率损耗。采用传统的无载配电变压器结合低压侧并联电容器装置,在实际运行中因配电变压器不能自动调档,出口端电压一般在110%~115%之间,并联的电容器装置受出口端电压影响电容投运率较低,配电网中大量的感性负荷得不到补偿,用电高峰时压降达30~40 V左右,直接影响着电力企业供电质量及经济效益。

解决这一问题,可采用有载配电变压器自动调压和合理的无功自动补偿,能保证配电网供电电压质量,改善功率因数,达到无功就地平衡的目的,提高电力系统的供电能力,使配电网系统在经济合理、稳定安全的状态下运行。

2.1 自动调压补偿控制原理

在实际运行中,使用无功自动补偿装置进行就地补偿,可以在实现减少线损的同时,对电压质量起到一定的改善作用。但是,实践证明由于公用配变负荷变化大,带来电压波动也大,往往单纯依靠无功补偿并不能很好地解决电压质量问题,因此采取以无功和电压作为二元的控制变量,以“九区图”作为基本的控制算法,进行自动跟踪补偿和自动调压相配合的措施,可实现进一步改善电能质量的目的。

为了使电压U与无功Q达到所需的值,通过改变有载配电变压器分接开关档位和投切电容器组来改变配电系统的U和Q。有载配电变压器分接头档位的变化不仅对U有影响,而且对Q也有一定影响,同样,电容器组投切对Q影响的同时,也对U有一定的影响。

运行控制区域见图1, 每个指向正常区域的箭头代表一种调节方案,共有9种方案。(具体内容以前有过详细介绍,这里不再赘述)

2.2 配变自动调压补偿系统工作原理方框图(如图2所示)

2.3配变自动调压补偿系统一次接线图(如图3所示)

3 配网无功补偿的效果

3.1 提高功率因数和设备的供电能力

在电网运行中,由于大量非线性负载的运行,除要消耗有功功率外,还要消耗一定的无功功率。负荷电流在通过线路、变压器时将会产生电能损耗。由电能损耗公式可知,当线路或变压器输送的有功功率和电压不变时,线损与功率因数的平方成反比。功率因数越低电网所需无功就越多,线损就越大。因此,在受电端安装无功补偿装置,可减少负荷的无功功率损耗,提高功率因数,提高电气设备的有功出力。

3.2 降低电网中的功率损耗和电能损失

由公式I = P/(3Ucosφ)可知当有功功率P为定值时,负荷电流I与cosφ成反比,安装无功补偿装置后,功率因数提高,使线路中的电流减小,从而使功率损耗降低:P = I2R降低电网中的功率损耗是安装无功补偿设备的主要目的。我省某市供电公司在实施配网无功优化方案后,同比降低网损率0.05个百分点,节电590 MWh/y,取得了明显的降损节能效益。

3.3 改善电压质量

在线路中电压损失DU的计算公式如下

U = (PR +QXL)/Ue

式中 U——线路中的电压损失(kV);

P——有功功率(MW);

Q——无功功率(Mvar);

Ue——额定电压(kV);

R——线路总电阻(W);

XL——线路感抗(W)。

无功功率补偿范文第2篇

【关键词】:无功功率 无功功率补偿 并联电容器 静止补偿装置

中图分类号:TM7 文献标识码:A 文章编号:1003-8809(2010)05-0120-01

一、无功功率的定义及无功补偿原则

接在电网中的许多用电设备都是根据电磁感应原理工作的。例如:通过磁场,变压器改变电压并将能量送出去,电动机转动并带动机械负荷。磁场所具有的磁场能是由电源供给的,电动机和变压器在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫做感性无功功率。电容器在交流电网中接通时,在一个周期内,上半周的充电功率和下半周的放电功率相等,不消耗能量,这种充放电功率叫做容性无功功率。所谓的“无功”并不是“无用”的电功率,只不过它的功率并不转化为机械能、热能而已,因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。电网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,在一定的有功功率下,当用电企业cosφ越小,其视在功率也越大,而我们希望的是功率因数越大越好,这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。

无功补偿应尽量分层(按电压等级)和分区(按地区)补偿,就地平衡,避免无功电力长途输送与越级传输,在提高用电自然功率因数的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止无功电力倒送。

二、无功功率补偿的基本原理

把具有容性功率负荷的装置与感性功率负荷并联接在同一电路中,当容性功率负荷释放能量时,感性功率负荷吸收能量;当感性功率负荷释放能量时,容性功率负荷吸收能量;两种负荷之间互相进行能量交换。由此,感性功率负荷所吸收的无功功率可由容性功率负荷输出的无功功率中得到补偿,这就是无功功率补偿的基本原理。

三、无功功率补偿的方法

无功功率补偿的方法有很多种,主要是采用电力电容器或是采用具有容性负荷的装置进行补偿。

1.同步电动机补偿。这种方法是改善用电的功率因数,但设备复杂,造价高,只适用于在具有大功率拖动装置时采用;

2.调相机补偿。这种装置调整性能好,在电力系统故障情况下,也能维持系统电压水平,可提高电力系统运行的稳定性,但造价高,投资大,损耗也较高,且运行维护技术较复杂,宜装设在电力系统的中枢变电所,一般用户较少用。

3.异步电动机同步化补偿。这种方法有一定的效果,但自身损耗大,一般都不采用。

4.加装并联电力电容器补偿。这种方法具有安装方便、建设周期短、造价低、运行维护简便、自身损耗小等优点,是当前国内外广泛采用的补偿方法。并联补偿是把电容器直接与被补偿设备并接到同一电路上,以无功就地平衡为原则。安装并联电容器补偿无功功率时,可采取个别补偿、分散补偿和集中补偿三种方式。

四、无功补偿装置

同步电机、静电电容器、静止无功补偿器以及静止无功发生器,这四种装置又称为无功补偿装置。目前所指的静止无功补偿装置一般专指使用晶闸管的无功补偿设备,主要有以下三大类型:

1.具有饱和电抗器的无功补偿装置

具有饱和电抗器的无功补偿装置分为两种,即自饱和电抗器和可控饱和电抗器无功补偿装置。具有自饱和电抗器的无功补偿装置是依靠电抗器自身固有的能力来稳定电压,利用铁心的饱和特性来控制发出或吸收无功功率的大小。可控饱和电抗器是通过改变控制绕组中的工作电流控制铁心的饱和程度,从而改变工作绕组的感抗,进一步控制无功电流的大小。具有饱和电抗器的静止无功补偿装置目前应用的较少,一般只用在超高压输电线路中。

2.静止无功补偿装置

静止补偿器的基本作用是连续而迅速地控制无功功率,即以快速的响应,通过发出或吸收无功功率来控制它所连接的输电系统的节点电压。静止无功补偿器由晶闸管所控制投切电抗器和电容器组成,可分为晶闸管控制电抗器和晶闸管投切电容器两种补偿装置。

⑴晶闸管控制电抗器(TCR)

晶闸管控制电抗器由两个相互反向并联的晶闸管与一个电抗器相串联,其三相多接成三角形。这种具有TCR型的补偿器反应速度快,灵活性大,目前在输电系统和工业企业中应用最为广泛。

⑵晶闸管投切电容器(TSC)

晶闸管投切电容器是为了解决电容器组频繁投切的问题而产生的。两个相互反向并联的晶闸管只是将电容器并入电网或从电网中断开,串联的小电抗器用于抑制电容器投入电网运行时可能产生的冲击电流。TSC补偿装置用于三相电网中,一般负荷对称网络采用星形连接,负荷不对称网络采用三角形连接。TSC补偿装置可以很好的补偿系统所需的无功功率,如果级数分得足够细化,基本上可以实现无级调节。

3.新型静止无功发生器(ASVG)

静止无功发生器的主体是一个电压源型逆变器,由可关断晶闸管适当的通断,将电容上的直流电压转换成为与电力系统电压同步的三相交流电压,再通过电抗器和变压器并联接入电网。适当控制逆变器的输出电压,就可以灵活地改变其运行工况,使其处于容性、感性或零负荷状态。静止无功发生器响应速度快,谐波电流少,而且在系统电压较低时仍能向系统注入较大的无功。由于ASVG在改善系统电压质量,提高稳定性方面具有SVC无法比拟的优点,因此ASVG是今后静止无功补偿技术发展的方向。针对电力有源滤波器在滤除谐波的时候与电力系统不发生谐振的特点,今后的发展将是电力有源滤波与ASVG相结合以消除传统ASVG设备中并联无源滤波器的所产生的谐振问题。

五、结束语

随着电力电子技术的迅猛发展及其在电力系统中的更广泛应用,无功功率补偿装置将向着管理系统化、补偿准确化、操作简单化的方向发展,远程无功功率补偿控制管理系统将是今后发展的潮流。

参考文献

[1] 米勒.电力系统无功功率控制。

[2] 王庆林.无功功率快速自动补偿装置设计探讨。

[3] 姜齐荣,等.采用GTO的±120kvar新型静止无功发生器。

无功功率补偿范文第3篇

关键词: 无功功率补偿; 控制方式选择; 经济效益

中图分类号: TM761+.1 文献标识码: A 文章编号: 1009-8631(2011)02-0047-02

1 无功功率补偿控制概述

1.1无功功率的产生和影响

在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。电能的用户(负荷)在需要有功功率(P)的同时还需要无功功率(Q),其大小和负荷的功率因数有关;有功功率和无功功率在电力系统的输电线路和变压器中流动会产生有功功率损耗(ΔP)和无功功率损耗(ΔQ),也会产生电压降落(ΔU)。无功功率在输电线、变压器中的流动会增加有功功率损耗和无功功率损耗以及电压降落;由于变压器、高压架空线路中电抗值远远大于电阻值,所以无功功率的损耗比有功功率的损耗大,并且引起电压降落的主要因素是无功功率的流动。

1.2无功补偿的作用

无功补偿可以收到下列的效益:①提高用户的功率因数,从而提高电工设备的利用率;②减少电力网络的有功损耗;③合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力;④在动态的无功补偿装置上,配置适当的调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性;⑤装设静止无功补偿器(SVS)还能改善电网的电压波形,减小谐波分量和解决负序电流问题。对电容器、电缆、电机、变压器等,还能避免高次谐波引起的附加电能损失和局部过热。

1.3无功补偿装置

除发电机和输电线外的无功电源主要有:①并联电容器组是一种静态的无功补偿装置。用它进行的补偿称为并联电容补偿。②同步调相机;③静止无功补偿器。后两者属于动态的无功补偿装置。

另外,在远方水电站和坑口火电厂等的出线母线上,长距离输电线的两侧线路上,以及长距离输电线的开关站等地方接有并联电抗器,也是一种无功补偿装置。用其进行的补偿称为并联电抗补偿。远方电站出口母线上的并联电抗器主要是吸收发电机所发的无功功率,以使发电机能运行在合理的功率因数下而又避免无功的长距离输送。长距输电级上配置的并联电抗器,主要是吸收线路空载和轻载时的充电功率,使沿线电压分布合理并降低工频稳态和暂态过电压。

鉴于电力生产的特点,用户用电功率因数的高低对发、供、用电设备的充分利用、节约电能和改善电压质量有着重要影响。为了提高用户的功率因数并保持其均衡,以提高供电用双方和社会的经济效益,特制定功率因数的标准值与功率因数调整电费。如表一。

2 补偿方式的选择

2.1 个别补偿

即在用电设备附近按其本身无功功率的需要量装设电容器组,与用电设备同时投入运行和断开,也就是再实际中将电容器直接接在用电设备附近。

适合用于低压网络,优点是补偿效果好,缺点是电容器利用率低。

2.2分组补偿

即将电容器组分组安装在车间配电室或变电所各分路出线上,它可与工厂部分负荷的变动同时投入或切除,也就是再实际中将电容器分别安装在各车间配电盘的母线上。

优点是电容器利用率较高且补偿效果也较理想(比较折中)。

2.3集中补偿

即把电容器组集中安装在变电所的一次或二次侧的母线上。在实际中会将电容器接在变电所的高压或低压母线上,电容器组的容量按配电所的总无功负荷来选择。

优点:是电容器利用率高,能减少电网和用户变压器及供电线路的无功负荷。

缺点:不能减少用户内部配电网络的无功负荷。实际中上述方法可同时使用。对较大容量机组进行就地无功补偿。

3 控制方式的选择

3.1个别补偿的控制方式

3.1.1 启动不频繁的设备

启动不频繁的设备可选择空气自动开关、熔断器作为保护设备

3.1.2启动较频繁的设备

启动较频繁的设备可选择FKA系列智能复合开关(投切间隔时间大于30s)、TSC动态投切开关。选型如表2、表3.

3.2分组补偿、集中补偿的电力电容器柜

装置中使用了交流接触器、投切专用交流接触器、可控硅功率模块、固态继电器、复合固态继电器等作为并联电容器的投切开关,由于并联电容器的投切开关对装置的性能具有决定性的影响,因而合理的选择投切开关就显得十分重要。

3.2.1交流接触器和投切专用交流接触器

交流接触器是传统的低压补偿并联电容器的投切开关,优点是成本低、控制简单、使用方便,缺点是投切时会产生较大的涌流和过电压,其大小与感性负载的大小(如变压器的短路容量)、阻抗、电容器的容量,交流接触器的性能有关。切除时易产生电弧,触点易于烧毁、寿命较短,不适用于频繁投切的场合。

电容器投切专用交流接触器是为了减轻涌流对交流接触器的影响而设计的,其与普通交流接触器的不同之处是将普通接触器触点加以改善,配上抑制投切电流的电阻,采用并联开关分步投切的方法,先合上带电阻的开关再合上不带电阻的开关来减少投切过程中产生的涌流和过电压。由于其只能降低投切过程中产生的涌流和过电压,并不能从根本上解决问题,在电容器容量相对较大时,仍然会产生很大的涌流,因而其应用仍然受到一定的限制。

由于上述两种交流接触器在应用于低压并联电容器投切时存在着不可克服的涌流问题和触点的烧蚀问题,对电容器和装置的寿命有较大的影响,所以其在电容器投切领域的应用越来越少,正逐步被功率电子开关所替代。但由于其价格低廉,在某些技术要求较低、电网波形畸变严重不适于应用电力电子开关的场合仍有使用,需安排人巡查、定时更换。

3.2.2 可控硅开关、固态继电器

反并联可控硅开关加上具有过零检测功能的驱动电路,即成为一个典型的具有“零压差”投入,零电流退出功能的电力电子投切开关,具有较高的dV/dt和dI/dt承受能力,可有效的抑制电容器投入时的浪涌电流和过电压的产生及退出时的拉弧电流。常规的做法是将反并联的可控硅模块外部配装专用的触发线路板。

投切专用的固态继电器是将上述开关的反并联的可控硅模块及外部配装专用的触发线路板的全部器件以固态继电器的标准封装形式封装在一个壳体内,内置阻容吸收,故结构紧凑,综合成本较低,外形上有方型或长条型以适合不同用户的联接需要。具有体积小、耐蚀防潮、安装使用方便等特点,是目前可控硅开关的常用封装形式。

上述两种电力电子投切开关的工作原理完全相同,都是以具有零检测功能的触发电路控制反并联的可控硅无触点开关。优点是投切电容器时“零压差"投入、零电流切除,实现无涌流或小涌流投切,提高了电容器寿命,无触点无拉弧,开关速度高、反应时间快,干扰小、体积小、耐腐蚀,寿命长、可靠性高,易于与计算机接口、适用于智能型无功控制器或配电综测仪对电网进行动态无功补偿和远程控制。另外可方便地实现单相分相补偿或三相共补。缺点是工作中功耗较大,使用时需加装散热器,成本也比适用交流接触器高许多。但由于其性能优越,应用者众多。

3.2.3复合投切开关、复合固态继电器

交流接触器投切开关压降小、发热少,但涌流大、寿命短,电力电子投切开关涌流小、寿命长,但压降高、功耗大、需要散热,各有优缺点。能否整合它们的优点,优势互补,制造出具有“零压差”投入、零电流切除、低压降保持特性的投切开关,科技人员采用电力电子开关负责控制电容器的投入和切除,交流接触器负责保持电容器投入后的接通的方法制造出了复合投切开关。这种投切开关同时具备了交流接触器和电力电子投切开关的优点,不但抑制了涌流,避免了拉弧,而且功耗较低,不再需要配备笨重的散热器和冷却风扇。尤其是复合固态继电器将复合投切开关集成一体,体积小、重量轻、性能优良,是低压无功自动补偿装置中并联补偿电容器的理想投切开关。

4补偿容量测量与计算

4.1测量方法

采用双钳相位表测量(以单相为例)A相电流、电压值以及电流电压角,譬如电流53A、电压224V、电压超前45°,则:

总功率S=I*U=53*224=11.87(kW)

有功功率P=I*U*COSΦ=53*224*COS45°=8.393(kW)

无功功率Q=I*U*SINΦ=53*224*SIN45°=8.393 (kva)

若将功率因数由目前的0.707分别提高到0.9和1需要并联多少千乏电容器, Q1=P*SINΦ/ COSΦ=8.393*0.43/.09=4.06(kva)

ΔQ=8.393-4.06=4.333(kva)

故:提高到0.9和1需要并联4.333和8.393千乏电容器,由上式可知功率因数由0.707提高到0.9需要4.333千乏功率因数由0.9提高到1需要4.06千乏。这说明功率因数由低提高到高投入容量较小,而由较高水平提高到更高则投入容量大。所以,要合理选择功率因数提高的水平。

4.2 根据电度表及负荷工作时间计算方法

已知:某工厂有功功率月耗电量15000kWh,月平均功率因数为0.65,30天日平均负荷工作时间为6小时。欲把功率因数提高到0.95,需配多大容量电容器。

平均有功功率P=15000/30*6=83.33kW

无功功率Q=P*tgφ=83.33*1.169=97.42(kav)

功率因数提高到0.95时,S=P/COSφ=83.33/0.95=87.72KVA

Q=S*SINφ=87.72*0.31=27.2(kva)

故补偿电容量ΔQ=97.42-27.2=70.22(kva)

5 无功补偿投资与经济效益

以上述为例,选择20kva,380V,50Hz电容器6只(每千乏10元),控制器一只(约700元),FKA系列智能复合开关6只(每只300元),控制屏一个(约1200元),共计4900元,每月无功功率调整电费15000*0.6*0.15=1350(元)

投资回收期(月)=4900/1350=4(月)

一般来说无功补偿投资回收期应小于2年为宜。

结语

随着电力电子技术的迅猛发展,造价低廉,控制精度高,稳定性好的可控硅开关、固态继电器、复合固态继电器将不断面世,为无功功率补偿的应用提供了更好的前景。大力推广无功功率补偿技术必将为企业带来良好的经济效益和创建节约型社会做出贡献。

参考文献:

[1] 钱平主编.交直流传动控制系统[M].北京:高等教育出版社,2007.

[2] 黄坚主编.自动控制原理极其应用[M].北京:高等教育出版社,2001.

[3] 刘春华主编.工业企业电器调整手册[M].北京:冶金工业出版社,2001.

无功功率补偿范文第4篇

关键词:无功补偿 在线监测

一、电力系统无功补偿在线监测技术

1.数据监测功能及抄表功能

实时监测电网的三相电压、电流、功率因数等运行数据,并通过抄表机或无线通讯传送到微机中的数据处理系统,可完成对整个低压配电线路的监测、统计分析、报表输出等综合管理,为低压配电线路的科学管理提供第一手可靠数据。

2.设置功能:

2.1设置和修正本机时钟;

2.2设置口令;

2.3设置通讯波特率;

2.4设置如下控制参数:电压高限值(伏);延时时间(秒);投入门限无功电流值(安);切出门限无功电流值(安);

2.5具容错功能及软件闭锁功能;

2.6输出回路设置功能;每路均可设置其补偿方式及控制参数。

3.显示功能:

3.1工作状态显示:电源指示灯;滞后、过压、超前、投切状态等工作状态指示。

3.2瞬时测量数据显示:三相电压,三相电流及三相功率因数。

3.3显示其它主要运行数据,包括:频率,三相电压总谐波畸变率,三相电流总谐波畸变率,三相2-19次电压、电流谐波分析,实时日历时钟、当时日历时钟、当前累计有功电量、当前累计无功电量等、CT变比、支路号等。

3.4显示刷新时间:1-10秒,可设置。

4.保护功能:

4.1欠压保护:电压≤设定下限(0.85-0.93UN范围内可调)时,欠无功不投,已投的全切(每5秒切一组);切除总时间不超过60秒;

4.2过压保护:电压>设定上限(1.0~1.15UN范围内可调)时,欠无功不投,已投的全切(每5秒切一组);切除总时间不超过60秒;

4.3失压保护:装置在断电后控制开关自动断开,保证在再通电时各电容器组处于分断状态;

4.4缺相保护:当相电压低于65%额定值时,视为断相,由控制器切除输出回路。

4.5谐波保护:当电压或电流谐波超过电压或电流谐波畸变率上限值(可设定)后,控制器发出指令将各电容器组逐组退出。

5.自检复归功能:

每次通电后,控制器进行自检并复归输出回路使之处于断路状态。

6.防止投切振荡功能:

在每次投入与切出的动作间保持最小5分钟(300秒)的动作间隔,以确保补偿装置在负荷较轻时不出现频繁投切的不良状态。

7.延时功能:

7.1电容器投切延时:10~120秒,可设定;

7.2同一组电容投切时间间隔:≥300秒;

7.3过压时在60秒内将所有电容器组退投

8.谐波监测

可存贮最大谐波电压畸变及对应相和出现时间,最大谐波电流畸变率及对应相和出现时间、最大谐波电压畸变率时对应相的电压的电压基波幅值、最大谐波电流畸变率时对就相对相的电流基波幅值及2-19次谐波电流幅值、实时各相电压电流的基波及2-19谐波幅值、实时各相电压电流的畸变率,在控制器显示屏上可实时显示各次谐波的分量图和分量比。

配电运行综合监测管理系统由配电监测无功补偿控制器、抄表机以及后台综合管理软件等几部分组成。

二、无功功率补偿技术检测存在的问题

1.以重庆市为例,截止到2009年年底,重庆市电力公司直属单位低压无功补偿装置近21000台,分布区域广,其中具备无功监测功能的非常少。

2.巡检难度大、成本高

巡视不具备无功监测功能的无功补偿装置,一般只有两种方法,一是上杆开箱检测,二是目测法。上杆开箱检查耗时长,安全隐患大,且受资金、人力和物力的限制,多数基层供电单位巡视时未采取此方法。

3.出现故障的设备发现不及时,增加了电网的损耗

目测法主要通过巡视人员目测装置外壳是否受损或根据指示灯判断投切情况。由于低压无功补偿装置安装高度较高,运行一段时间后外壳表面灰尘积压较厚,白天光线充足时很难观察到指示灯的状态,也就很难判断投切情况。由于无法及时掌握无功补偿装置的运行情况,已损坏的装置维修更换也不及时,这就导致低压无功负荷无法补偿,配变功率因数低,损耗增大。

三、无功功率补偿技术的发展趋势

1.基于智能控制策略的晶闸管投切电容器(TSC)补偿装置

将微处理器用于TSC,可以完成复杂的检测和控制任务,从而使动态补偿无功功率成为可能。基于智能控制策略的TSC补偿装置的核心部件是控制器,由它完成无功功率(功率因数)的测量及分析,进而控制无触点开关的投切,同时还可完成过压、欠压、功率因数等参数的存贮和显示。TSC补偿装置操作无涌流,跟踪响应快,并具有各种保护功能,值得大力推广。

2.静止无功发生器(SVG)

静止无功发生器(SVG)又称静止同步补偿器(STATCOM),是采用GTO构成的自换相变流器,通过电压电源逆变技术提供超前和滞后的无功,进行无功补偿,若控制方法得当,SVG在补偿无功功率的同时还可以对谐波电流进行补偿。其调节速度更快且不需要大容量的电容、电感等储能元件,谐波含量小,同容量占地面积小,在系统欠压条件下无功调节能力强,是新一代无功补偿装置的代表,有很大的发展前途。

3.电力有源滤波器

电力有源滤波器是运用瞬时滤波形成技术,对包含谐波和无功分量的非正弦波进行“矫正”。因此,电力有源滤波器有很快的响应速度,对变化的谐波和无功功率都能实施动态补偿,并且其补偿特性受电网阻抗参数影响较小。

电力有源滤波器的交流电路分为电压型和电流型。目前实用的装置90%以上为电压型。从与补偿对象的连接方式来看,电力有源滤波器可分为并联型和串联型。并联型中有单独使用、LC滤波器混合使用及注入电路方式,目前并联型占实用装置的大多数。

4.综合潮流控制器

综合潮流控制器(unified power flow controller,UPFC)将一个由晶闸管换流器产生的交流电压串入并叠加在输电线相电压上,使其幅值和相角皆可连续变化,从而实现线路有功和无功功率的准确调节,并可提高输送能力以及阻尼系统振荡。UPFC注入系统的无功是其本身装置控制和产生的,并不大量消耗或提供有功功率。UPFC技术是目前电力系统输配电技术的最新发展方向,对电网规划建设和运行将带来重要的影响。

四、谐波测量与保护技术

现在的电网中,电力电子元件的使用越来越多,从而导致系统中的谐波电流含量越来越大。无功补偿装置中的电容器对谐波电流非常敏感,很容易产生谐波放大导致电容器损坏。大部分无功补偿装置中使用热继电器来保护电容器。

电容器属于电流稳定型元件,其电流只与电压和频率有关,与变压器的负荷电流无关,在电压正常没有谐波的情况下电容器不会过载。 在电压过高的情况下完全可以由控制器来实现保护功能,不需要由热继电器来实现保护功能。

在谐波超标的情况下,电容器会出现过载,虽然热继电器可以将电容器切除,但是如果控制器不能够测量谐波,那么就会继续投入新的电容器,出现新的过载现象。如果热继电器设置在自动复位状态,则过一会被切除的电容器还会重新投入运行,继续过载状态,并且会干扰控制器的运行,因为控制器不知道哪些电容器已经被热继电器切除,哪些电容器电容器即将恢复运行。如果热继电器设置在手动复位状态,则最终所有的电容器将统统被切除,在手动复位之前,即使谐波消失,电容器也无法重新投入运行。因此,在谐波严重的情况下,热继电器的保护效果远不如控制器具有谐波保护功能效果好。

综上所述,无功补偿控制器具有谐波检测以及谐波过载保护功能,不仅可以观察系统中的谐波含量,还可以省略热继电器,即提高性能又节约成本。

五、小结

无功功率补偿范文第5篇

关键词:无功功率 无功补偿 功率因数 电容器

线损是电流在输变电设备和线路中流动产生的,因而它由线路损耗和变压器损耗两部分组成。按损耗的变化情况可划分为可变损耗和固定损耗。前者指当电流通过导体和变压器所产生的损耗,包括变压器的铜损和电力线路上的铜损,它与负荷率、电网电压等因素有关,约占电网总损耗的80%—85%。后者指只要接通电源电力网就存在的损耗,包括变压器的铁损,电缆线路、电容器及其他电器上的介质损耗及各种计量仪表、互感器线圈上的铁损,它与电网运行电压和频率有关,占总损耗15%~20%。我国与发达国家相比,线损较大。发达国家的线损约为2%—3%,而我国在2006年的线损统计为7.l%,所以线损的解决显得越来越重要。

1、无功功率

1.1无功功率的定义

电网中电力设备大多是根据电磁感应原理工作的,他们在能量转换过程中建立交变的磁场,在一个周期内吸收的功率和释放的功率相等。电源能量在通过纯电感或纯电容电路时并没有能量消耗,仅在负荷与电源之间往复交换,在三相之间流动,由于这种交换功率不对外做功,因此称为无功功率。

1.2无功功率的作用

无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。

1.3无功分类

感性无功:电流矢量滞后于电压矢量90°,如电动机、变压器、晶闸管变流设备等;容性无功:电流矢量超前于电压矢量90°,如电容器、电缆输配电线路等;基波无功:与电源频率相等的无功(50HZ);谐波无功:与电源频率不相等的无功。

2、无功补偿

在电力系统中,不但有功功率需要平衡,无功功率也需要平衡。

2.1无功补偿的作用

无功补偿的主要作用就是提高功率因数以减少设备容量和功率损耗、稳定电压和提高供电质量,在长距离输电中提高输电稳定性和输电能力以及平衡三相负载的有功和无功功率。安装并联电容器进行无功补偿,可限制无功功率在电网中的传输,相应减少了线路的电压损耗,提高了配电网的电压质量。

(1)提高变压器的利用率,减少投资;功率因数由cosΦ1提高到cosΦ2提高变压器利用率为:

(2)减少用户电费支出;可避免因功率因数低于规定值而受罚。可减少用户内部因传输和分配无功功率造成的有功功率损耗,电费可相应降低。

(3)提高电力网传输能力;有功功率与视在功率的关系式为:

P=ScosΦ

2.2功率因数

实际供用电系统中的电力负荷并不是纯感性或纯容性的,是既有电感或电容、又有电阻的负载。这种负载的电压和电流的相量之间存在着一定的相位差,相位角的余弦cosΦ称为功率因数,又称力率。它是有功功率与视在功率之比。

2.3无功补偿的基本原理是

把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。

2.4无功补偿的常用装置

(1)同步调相机;早期的无功功率补偿装置主要为同步调相机,多为高压侧集中补偿。同步调相机目前在现场仍有少量使用。

(2)静止补偿装置;静止补偿器的基本作用是连续而迅速地控制无功功率,即以快速的响应,通过发出或吸收无功功率来控制它所连接的输电系统的节点电压。静止补偿器由于其价格较低、维护简单、工作可靠,在国内仍是主流补偿装置。

2.5无功补偿的主要方式

配电网无功补偿的主要方式有五种:变电站补偿、配电线路补偿、随机补偿、随器补偿、跟踪补偿。

变电站补偿:针对电网的无功平衡,在变电站进行集中补偿,补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是平衡电网的无功功率,改善电网的功率因数,提高系统终端变电所的母线电压,补偿变电站主变压器和高压输电线路的无功损耗。

配电线路补偿:线路无功补偿即通过在线路杆塔上安装电容器实现无功补偿。线路补偿点不宜过多;控制方式应从简,一般不采用分组投切控制;补偿容量也不宜过大,避免出现过补偿现象;保护也要从简,可采用熔断器和避雷器作为过流和过压保护。

随机补偿:随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电动机同时投切的一种无功补偿方式。县级配电网中有很大一部分的无功功率消耗在电动机上,因此,搞好电动机的无功补偿,使其无功就地平衡,既能减少配电线路的损耗,同时还可以提高电动机的出力。

2.6电容器直接补偿的危害

电网谐波与并联电容器的运行有较大的关系,因为电容器可能使电网中的谐波电流放大,有时甚至在电网中产生谐振,使电器设备受到严重损坏,破坏电网的正常运行。在供电系统中作为无功补偿用的并联电容器,对于某次谐波若与呈感性的系统电抗发生并联谐振,则可能出现过电压而造成危害。过大的谐波电流可能使电容器寿命缩短、鼓肚、熔丝群爆甚至烧损。

3、无功补偿容量的确定

电容器的补偿容量与采用的补偿方式、未补偿时的负载情况、电容器的接法有关。

4、结语

电力系统中线路损耗和变压器损耗对电网电压及电能质量形成了很大影响,无功功率补偿在电力系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。通过合理的选择无功补偿装置,不但可以最大限度的减少电网的损耗,而且可以电提高网质量。本文对无功功率、无功补偿等各方面的基本定义及工作原理进行了详细的的介绍,提出了电容器直接补偿的危害,深入探讨了无功补偿容量的计算方法。

参考文献:

[1]王正风.无功功率与电力系统运行[M].中国电力出版社.

无功功率补偿范文第6篇

【关键词】无功补偿技术;分类与应用研究

0.前言

无功电源如同有功电源一样,是保证电力系统电能质量、电压质量、降低网络损耗、节能以及安全运行所不可缺少的部分。在大系统中,无功补偿还用于调整电网的电压,提高电网的稳定性;在小系统中,通过恰当的无功补偿方法还可以调整三相不平衡电流。电力系统中无功要保持平衡,否则将会使系统电压下降,严重时会导致设备损坏、系统解列,此外,网络的功率因数和电压降低,使电气设备得不到充分利用,促使网络传输能力下降,损耗增加。

1.目前我国电网中常见的无功补偿方式分类及其特点

1.1按补偿方式进行分类

(1)在变电站集中补偿:在高低压配电线路中安装并联电容器组,用以补偿主变的空载无功损耗并适当补偿输电线路的无功功率损耗,以改善输电网的功率因数,提高终端变电站电压;(2)随线补偿:在高压配电线路上分散安装并联电容器,主要补偿配电线路的无功功率,以提高配电网功率因数,达到降损升压的目的;(3)随器补偿和随机补偿:在配电变压器低压侧和用户车间配电屏或电动机上直接安装并联补偿电容器,接线简单,投资少,安装容易,配置方便灵活,维护简单,事故率低,但易产生铁磁谐振;(4)低压集中补偿:在用户专用变压器及农网中广泛采用,但在公用变压器上由于管理、维护问题,容易成为生产安全隐患而难以采用,而且无法减少低压线路上的无功传输;(5)低压分散补偿:在节能降损、改善电压质量、提高线路供电能力方面效果明显,但容易造成补偿容量和地点较难选择,电容器在轻载时闲置,使设备利用率不高;(6)单台电动机就地补偿:在单台电动机处安装并联电容器等无功补偿设备,不仅可使功率消耗小,功率因数提高,还可以充分挖掘设备输送功率的潜力。

1.2按补偿设备进行分类

(1)同步调相机:同步调相机实质是一种不带机械负载的同步电动机,它在过激运行时向系统供应感性无功功率,欠励运行时从系统吸收感性无功功率,对提高电力系统的稳定性有很大好处;(2)静止补偿装置:该装置主要由并联电容器和饱和电抗器组成,能平滑无级地调节无功功率和电压,可实现在几个周波内进行快速调节;(3)同步电动机:同步电动机过激运行时向系统供应感性无功功率,欠励运行时从系统吸收感性无功功率,能明显改善系统的功率因数,但设备投资成本高,维护工作量大;(4)移相电容器:移相电容器设备投资少,有功损耗小,维护工作量小,不会增大系统的短路容量,但只能分级补偿,不能吸收无功功率,且对环境温度及运行电压要求较高。

1.3按网络类型分类

按网络接线方式还可分为输配电网络的无功补偿优化和配电线路及用户的无功补偿优化。为了提高电力系统的供电可靠性,在中压系统中通常把不同的两回中压配电线路的末端或中部连接起来构成环式,但在实际应用中,为了避免产生电磁环路,简化继电保护,网络一般采用开环方式运行。

1.4按无功优化的使用目的分类

(1)系统规划设计的最优配置:在配电网规划建成前期或现有的配电网需要重新配置无功补偿设备时,对无功补偿方式、补偿设备的最佳安装地点和最佳配置容量的确定;(2)系统在线运行的最优控制:对系统已配置的无功补偿设备最佳出力的确定和投切的控制。

2.无功补偿技术在电气自动化中的应用与分析

2.1无功功率补偿技术的原理及作用

在交流电路中,有功功率将电能转换为机械能、光能、热能;无功功率则用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场。凡是有电磁线圈的电气设备,要建立磁场就要消耗无功功率。无功功率决不是无用功率,它的用处很大,电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的;变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压,如果没有无功功率电动机就不会转动,变压器也不能变压,交流接触器不会吸合。

2.2应用无功功率补偿技术的必要性

无功功率补偿的主要目的是为了提高功率因数,常用电气设备的功率因数除白炽灯、电热器等接近1外,电动机、变压器、架空线及电气仪表的功率因数均小于1,如交流异步电动机,在空载时的功率因数只有0.2-0.3;在轻载时均为0.5;在额定负载时均为0.7-0.89。负载时功率因数低对供、用电设备会产生一定的不良影响,具体为:(1)降低发电机有功功率的输出;(2)降低输、变电输电线路供给的无功功率,使得供电质量降低;(3)造成线路电压损失增大和电力系统电能损耗的增加;(4)造成低功率因数运行和电压下降,使电力系统和用电企业的电气设备不能被充分利用。

对电力系统输配电线路来说,当输送同样大小的有功功率P=IUcos?准时,功率因数cos?准越低,输电线路中的电流I=P/Ucos?准就越大,势必造成线路中电压降增大,这将导致线路末端的电压降低,所以在电网中要设置一些无功补偿装置来提高功率因数是非常必要的,这样可保证用电设备在额定电压下工作及用户对无功功率的需求,不仅提高电力系统和用电企业设备的利用率,减小电能损耗,也是提高用电质量、节约用电的一项很重要的技术措施。

2.3 电力系统无功补偿技术的现状和策略

在电力系统中一个非常重要的评价标准是电能质量,而电压是电能质量的最核心的影响因素。近些年,我国对电气自动化中的无功补偿技术做了很多深入的研究,采用的无功补偿技术主要有:(1)真空断路投切电容器;(2)可控饱和电抗器;(3)有源滤波器;(4)固定滤波器、电容器和电抗器的调压;(5)有源滤波器和无源滤波器等,应用在变电站方面居多,一般的220KV变电站有较多的无功调节功能,其调节的容量根据地区的不同而有所不同,负荷功率因数在最高峰时可以达到0.98左右,要根据实际情况来对变压器合理地进行调整和补偿,还需要有具体细化的应用方案来提升无功补偿的应用效果。我国的电气化铁路对无功补偿的应用主要方式是AT供电方式,用的是SCOTT变压器,用晶闸管电子开关来控制电容的投切,这个策略在我国铁路的现状上来看,能够很大程度地降低较长辐射线路上存在的负序问题,既降低了资源浪费的可能性,也提高了电气自动化系统的安全性。

3.结束语

无功补偿技术不仅降低了资源浪费的可能性,也提高了电气自动化系统的安全性,全面提升了经济效用,降低了故障处理的预算,在电气自动化中应用无功功率补偿技术,能够使得电气自动化系统得到更好的优化。

【参考文献】

[1]王李杨.浅析无功补偿技术在电气自动化中的应用[J].价值工程,2011(06).

[2]谢常华.电气自动化的发展[J].企业导报,2010(11).

无功功率补偿范文第7篇

关键词:无功功率 负面影响 改善措施 应用设备

中图分类号:TM7 文献标识码:A 文章编号:1674-098X(2013)01(a)-00-01

1 无功功率的性质分析

无功功率在一定的时间内会从电气设备上获得能量,也会在某个时间内将电气舍不得电磁能量以感应电流的方式补偿给电源,如果在理想状态下,无功功率是不会消失的,而是在电源与电气设备之间进行电磁转换。交流电的大小和指向是较为复杂的,因此在交流电路中会出现电磁场的复杂变换,从而在存在线圈的元件两端产生电动势,这就导致了电感参数的变化。变化的电磁场在电路中会引起电荷的移动,也会导致电容参数的改变。所以无功功率有感性与容性的区别。如电动机的消耗即为感性,而电容器则是容性。在电网中因为存在大量的电感元件,因此需要消耗的无功功率也就随着增加,因此需要在电力工程中充分考虑对无功功率的补充。

2 电力工程中无功功率的影响和无功补偿

2.1 无功功率的影响

如前分析,电磁线圈的电气设备必须在工作中附加电气元件削弱其产生的无功功率。如电动机的转子磁场需要电源取得的无功功率来建立,变压器也会消耗无功,才能让一次绕组工作并产生感应电压,因此无功功率在电力工程中会产生以下影响:因为传输中的无功功率的影响会导致有用功功率出现消耗,如客户需要的有功功率一定时如果电网的无功功率增加则电网的损耗也就会增加;无功功率对电压也会造成损耗增加;无功功率会导致变电设备的供电能力下降;会造成发电机的有功功率下降;造成功率因数降低,而影响电网的运行环境,使得电气设备不能发挥作用。基于以上的影响,不论是从节电层面还是供电质量上都应当对电力工程中存在的无功功率进行补偿,以此改变运行中的功率因数,从而提高电力供应的能力与经济性。

2.2 无功功率补偿

无功补偿就是在电网的感性负荷中设置相应的电容设备,以此补偿电感性负荷引起的无功功率,从而降低无功功率在电网中出现的数量,改变功率因数而提高供电质量。在交流电路中,单纯的电阻元件负载电流与电压的相位应是一致的,纯电感负载电流滞后电压为90 °,也就是纯电容中电流与纯电感中的电流相位差180 °,可以实现抵销,即电源向外部供电,感性负载向外释放的能量在两种负荷间相互变换,感性负荷所需要的无功功率就可以在容性负荷产生的无功功率上获得补偿,这就实现了补偿的目标。

3 电力工程背景下的无功补偿与装置

3.1 无功功率补偿的形式

通常在电力工程中配电网络的无功补偿有以下几种措施,即电站补偿、低压补偿、杆塔补偿、用户补偿等,具体的方式为:(1)变电站补偿方式:对无功功率进行平衡需要在变电站进行集中控制与补偿,这样的补偿目的就是从源头改变电网配电的功率因素,最终达到提高终端变电所电压的效果,对主变压器无功损耗进行补充。这些补偿设备通常连接在变单站的母线上,从工程角度看管理与维护都较为方便,但是对于配电网的损耗降低意义不大。(2)低压补偿方式:在我国采用较多的就是低压补偿,即在变压器的低压侧进行补偿。补偿的设备主要根据用户的情况进行选择,投入与数量相对应的电容器即可完成跟踪补偿。主要的目的就是提高网络中变压器用户的功率因数,以此达到补偿的效果。低压补偿可以对电网和变压器的损耗进行补充,同时也可保证用电客户的电压水平。此类补偿设备一般是以功率因数或者无功功率为基础的电容器投切系统,其补偿的原则就是保证用户的用电质量。但是在应用中无功功率投切的量有可能会与实际需要相差较大,这样就会导致无功功率补偿不足或者过大的情况,对电力系统的运行也有一定的负面影响。(3)杆塔补偿方式:配电网络分布广阔,多数的公用变压器并没有低压补偿,使得无功功率补偿受到了一定的限制,所以产生的无功功率的缺口还需要在发电厂或者变电站进行补充,大量的无功功率会沿着线缆进行流动,从而影响了最终的配电效率。这样就需要在杆塔上进行无功功率补偿,如在10 kV用户外并联电容器置于杆塔上进行无功补偿,从而改善电网的功率因数,使之达到降低电压损耗的效果。但是因为在杆塔上设置电容器距离变压器的距离较大,使得系统的保护措施不易实施,因此提高了对其进行远程控制的成本,保养与维护的工作量也随之增加,工程中施工的环境也受到限制。最后在轻载的情况下运行还应防止配电线路上的过电压与过补偿的情况出现。所以杆塔上的补偿点应因网络而异不易过多,且不设置分组投切来控制其容量。(4)在终端进行补偿的方式:之所以采用终端补偿就因为成真的范围扩大,而低压用户不断增加,企业和工厂对于无功功率的需求量较大,因此直接对终端进行补偿也成为了无功功率补偿的一种方式。这样可以在最为需要的地方进行补偿从而提高电网的运行损耗,同时也保证了电压水平。终端补偿的缺点就是过于分散,管理不易实现集中,且负荷的波动会导致大量的电容器在轻载是闲置,而降低了设备利用

效率。

3.2 功率补偿采用的设备

无功功率补偿的装置应根据网络的性质与电压情况进行合理选择,对于各类无功功率补偿装置和计算应进行综合考虑并采用。配电网络中常见的补偿装置有以下几种。(1)高压装置:在高压配电网络中此类装置被广泛应用,其以高压并联电容器最为主要的补偿装置。在应用中被安装在主变压器的一侧,作为对主变无功损耗的降低措施,同时改善功率因数,对变电站出站端的电压有较强的改善作用,从而发挥供电设备应有的效率。(2)中压装置:在中压补偿装置中,我国使用较为广泛的是干式自愈型并联电容器,利用其对中压网络进行无功功率补偿。此类设备的电容元件利用金属薄膜卷制,卷绕后在顶端进行喷漆,同时利用导线焊接并引出,其元件的外部则利用树脂进行封灌,以此保证其隔绝空气。(3)低压装置:低压补偿装置是无功功率补偿中应用较为广泛的一种,应用中将其安装在配电变压器的低压侧,也可在电动机的附近安装,并与之进行同步运行来进行补偿,同时也可在工厂配电房或者楼宇的配电房内进行无功补偿。

4 结语

综合的看,无功功率补偿是电力工程中不可或缺的运行技术之一,其控制的电网内的无功功率损耗,并以此提高功率因素的稳定性,保证电网运行与用电设备的安全与经济性。

参考文献

[1] 赵楠楠.浅谈电网中无功功率补偿[J].中小企业管理与科技(上旬刊),2009(2).

无功功率补偿范文第8篇

关键词:AT89C51;功率因数;补偿器;电容器

中图分类号:TM343 文献标识码:A 文章编号:1006-8937(2012)11-0011-02

一般来说,供电部门一般要求用户的月平均功率因素达到0.9以上。而用户的用电设备功率因素一般较低,很难满足要求,这就要求我们想办法提高功率因素,装设无功功率补偿设备,补偿电容器的投切方式分为手动和自动2种,本系统为自动投切方式。

1 系统设计概述

无功功率补偿一般采用并联电容器补偿方式,为尽量减少线路损耗和电压损失,宜就地平衡补偿,即低压部分的无功功率宜由低压电容器补偿。本设计主要应用单片机技术,实现对低压电力系统的检测,然后依据检测所得数据进行分析,控制电容器的投切,从而实现对电力系统的功率因数的补偿。

无功补偿控制器是本设计的核心部分,它根据检测的功率因数分析计算,然后按照设定的程序进行电容器的投入或者切除,从而达到对整个系统无功功率的补偿,实现功率因素的提高。

2 功率因数补偿系统的设计

2.1 无功功率补偿器设计的总体框图

图1是该设计的系统框图, AT89C51是本系统的处理核心,实现数据处理、输入、输出控制等功能。系统包括检测部分、计算和处理部分、显示部分以及通讯部分组成。首先我们通过计数器8031得出系统的功率因数的大小,再通过比较器将得出的功率因素与设定的功率因素进行比较,计算出所需补偿的无功功率,然后通过控制系统自动投切电容组。对于三相功率因数显示电路,可以考虑用LED数码管。投切电容电路中用过零固态继电器来作为控制开关来实现柔性投切;还接上RS-232C接口,与上位机传递系统通讯,实时交换信息。

2.2 AT89C51单片机的硬件结构及性能参数

AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS 8位微处理器。AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器。

2.3 功率因数的计算

在交流电力线路中,因为线路感抗的影响,会消耗掉一部分的无功功率,而交流电路中相电压和相电流之间存在相位差,其角度大小取决于负载所呈现的感性或容性的程度。

2.4 电力电容器补偿、控制及安装方式的选择

①采用并联电力电容器作为无功补偿装置时,为了尽量减少线损和电压损失,宜分散补偿和就地平衡补偿,即低压部分的无功补偿由低压电容器补偿,高压部分的无功补偿由高压电容器补偿,并不得向电网倒送无功。

②电容器的投切方式分为手动和自动2种,为避免过补偿或在轻载时电压过高,宜选用自动补偿。

③无功自补偿的调节方式:以节能为主者,采用无功功率参数调节;当三相负荷平衡,也可采用功率因素调节;以改善电压偏差为主进行补偿者,应按电压参数进行调节。

2.5 相位差检测单元电路的设计

本系统的相位差检测单元电路的设计主要包括以下几部分:

①采集部分:通过电压、电流互感器分别采集电路中的电压U和电流I,其中电流I,我们通过I/V转换器,可将其转换为U2信号,送至比较部分。

②比较部分:将采集到的U和U2信号送至电压比较器进行分别比较,再将比较信号送至鉴幅电路。

③鉴定部分:将2个电压比较器得到的两组方波信号送至鉴相电路。输出信号μ0的大小反映出了两信号之间的相位差。电压比较器将输入的交流信号送到鉴相电路进行比较后会有一输出信号μ0,而输出信号μ0的宽度则反映出了两组信号之间的相位差。

④处理部分:将鉴相电路得出的μ0信号输入计数器8253处理,并将8253与单片机AT89C51进行通信。AT89C51单片机检测到计数结束信号后,通过总线从8253读出计数值,供单片机处理,并和上位机进行通信。

3 投切电容电路的设计

电容器的投切控制元件采用大功率的过零型固态继电器SSR,由于该元件本身封装有过零触发模块且自行工作不需CPU控制,既满足了补偿电容无冲击电流投切的要求,同时也有效地克服了执行元件采用晶闸管控制模块所带来的控制复杂及易受干扰而产生误动作的弊端,提高了系统的可靠性。

3.1 过零型固态继电器

一般来说单片机测控系统都会要对工业现场的各种电气设备进行控制, 这样, 就会有一个单片机的电子电路和电气电路互相连接的问题, 一方面要使单片机的控制信号能够控制电气电路的执行元件(如电动机、电磁铁、继电器、灯泡等负载) , 另一方面, 又要为单片机的电路和电气电路提供良好的电隔离, 以保护单片机电路和人身的安全, 固态继电器(So lidState Relay,简称SSR)能很好地完成这一桥梁作用。

3.2 电源电路设计

现在通用的单片机系统中很大部分都是采用了交流220V,50Hz的电源。供电电源的可靠性将直接影响到实时控制系统的可靠性,稳定性。所以我们的单片机系统在和供电电源进行配备时必须采取稳压和防干扰措施以及常规保护措施。

如图2所示,我们通过变压器先把交流电源由220 V转变为12 V,交流的12 V电压通过整流电路整流后,得到12 V的直流电源就可以给继电器提供电源了。然后通过7 805把12 V的电源变为单片机所需的+5 V电源。但这时电源的干扰可能较大,我们需用滤波电路将干扰滤掉,所以我们在整流电路后加上滤波电容,以达到排除干扰的目的,电路图详见图2。

4 RS-232C串行通信接口

RS-232C标准是美国电子工业协会(EIA)与BELL等公司一起开发的1969年公布的通信协议。它适合于数据传达室输率在0~20 kb/s范围内的通信,它具有以下特性:

RS-232C接口是单端发送,单端接收,传输线上允许一个驱动器和一个发送器。RS-232C标准接口有25条线。其中4条数据线,11条控制线,3条定时线,7条备用线未定义线。它所采用的电缆传输长度与传输的电容有关。它的最大传输路离可达30 M,最大速率20 kb/s,适于相距较近设备的通信

5 结 语

为适应国家节能减排的政策,本设计旨在节省电力,用途广泛,适应性强。本设计功能明确,适用范围广,操作简单,防干扰能力强,可普遍用于各个电力行业。国家电力行业要求功率因素必须大于0.9,本设计既可以节省成本,也可以满足国家法律要求,避免企业违法。本系统考虑到企业的后期发展,也有扩容功能,能满足以后发展的需求。

参考文献:

[1] 王兆安.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998.

[2]陈国发.单片机功率因数补偿控制器[J].电力电子技术,1990,(1).

[3] 程启明.8098单片机控制的功率因数自动补偿器[J].电工技术杂志,1996,(3).