开篇:润墨网以专业的文秘视角,为您筛选了八篇函数教案范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
过程:一、提出课题:“三角函数”
回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。
二、角的概念的推广
1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”
2.讲解:“旋转”形成角(P4)
突出“旋转”注意:“顶点”“始边”“终边”
“始边”往往合于轴正半轴
3.“正角”与“负角”——这是由旋转的方向所决定的。
记法:角或可以简记成4.由于用“旋转”定义角之后,角的范围大大地扩大了。
1°角有正负之分如:a=210°b=-150°g=-660°
2°角可以任意大
实例:体操动作:旋转2周(360°×2=720°)3周(360°×3=1080°)
3°还有零角一条射线,没有旋转
三、关于“象限角”
为了研究方便,我们往往在平面直角坐标系中来讨论角
角的顶点合于坐标原点,角的始边合于轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)
例如:30°390°-330°是第Ⅰ象限角300°-60°是第Ⅳ象限角
585°1180°是第Ⅲ象限角-2000°是第Ⅱ象限角等
四、关于终边相同的角
1.观察:390°,-330°角,它们的终边都与30°角的终边相同
2.终边相同的角都可以表示成一个0°到360°的角与个周角的和
390°=30°+360°-330°=30°-360°30°=30°+0×360°1470°=30°+4×360°-1770°=30°-5×360°3.所有与a终边相同的角连同a在内可以构成一个集合
即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和
4.例一(P5略)
五、小结:1°角的概念的推广
用“旋转”定义角角的范围的扩大
2°“象限角”与“终边相同的角”
1.1.理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2.2.通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3.3.通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。
教学过程设计:
一.一.创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式
答:S=πR2.①
2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
答:S=L(30-L)=30L-L2②
分析:①②两个关系式中S与R、L之间是否存在函数关系?
S是否是R、L的一次函数?
由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
二.二.归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),
那么,y叫做x的二次函数.
注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.
练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如:;;;的形式。)
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
三.三.尝试模仿、巩固提高
让我们先从最简单的二次函数y=ax2入手展开研究
1.1.尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?
请同学们画出函数y=x2的图象。
(学生分别画图,教师巡视了解情况。)
2.2.模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。
解:一、列表:
x
-3
-2
-1
1
2
3
Y=x2
9
4
1
1
4
9
二、描点、连线:按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.
对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。
练习:画出函数;的图象(请两个同学板演)
X
-3
-2
-1
1
2
3
Y=0.5X2
4.5
2
0.5
0.5
02
4.5
Y=-X2
-9
-4
-1
-1
-4
-9
画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数y=ax2的图象是一条抛物线。
(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)
三.三.运用新知、变式探究
画出函数y=5x2图象
学生在画图象的过程中遇到函数值较大的困难,不知如何是好。
x
-0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5
Y=5x2
1.25
0.8
0.45
0.2
0.05
0.05
0.2
0.45
0.8
1.25
教师出示已画好的图象让学生观察
注意:1.画图象应描7个左右的点,描的点越多图象越准确。
2.自变量X的取值应注意关于Y轴对称。
3.对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。
四.四.归纳小结、延续探究
教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:
一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。
五.五.回顾反思、总结收获
在这一环节中,教师请同学们回顾一节课的学习畅谈自己的收获或多、或少、或几点、或全面,总之是人人有所得,个个有提高。这也正是新课标中所倡导的新的理念——不同的人在数学上得到不同的发展。
(在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人补充,直到完成整个例题。这样上课气氛非常活跃,学生之间常会因为某个观点的不同而争论,这就给教师提出了更高的要求,一方面要控制好整节课的节奏,另一方面又要察言观色,适时地对某些观点作出判断,或与学生一同讨论。)
二次函数的教学设计
马玉宝
教学内容:人教版九年义务教育初中第三册第108页
教学目标:
1.1.理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2.2.通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3.3.通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。
教学过程设计:
一.一.创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式
答:S=πR2.①
2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
答:S=L(30-L)=30L-L2②
分析:①②两个关系式中S与R、L之间是否存在函数关系?
S是否是R、L的一次函数?
由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
二.二.归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),
那么,y叫做x的二次函数.
注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.
练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如:;;;的形式。)
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
三.三.尝试模仿、巩固提高
让我们先从最简单的二次函数y=ax2入手展开研究
1.1.尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?
请同学们画出函数y=x2的图象。
(学生分别画图,教师巡视了解情况。)
2.2.模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。
解:一、列表:
x
-3
-2
-1
1
2
3
Y=x2
9
4
1
1
4
9
二、描点、连线:按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.
对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意。
练习:画出函数;的图象(请两个同学板演)
X
-3
-2
-1
1
2
3
Y=0.5X2
4.5
2
0.5
0.5
02
4.5
Y=-X2
-9
-4
-1
-1
-4
-9
画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数y=ax2的图象是一条抛物线。
(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)
三.三.运用新知、变式探究
画出函数y=5x2图象
学生在画图象的过程中遇到函数值较大的困难,不知如何是好。
x
-0.5
-0.4
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4
0.5
Y=5x2
1.25
0.8
0.45
0.2
0.05
0.05
0.2
0.45
0.8
1.25
教师出示已画好的图象让学生观察
注意:1.画图象应描7个左右的点,描的点越多图象越准确。
2.自变量X的取值应注意关于Y轴对称。
3.对于不同的二次函数自变量X的取值应更加灵活,例如可以取分数。
四.四.归纳小结、延续探究
教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进,互相完善。最终得到如下性质:
一般的,二次函数y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当a>0时,图象的开口向上,最低点为(0,0);当a<0时,图象的开口向下,最高点为(0,0)。
五.五.回顾反思、总结收获
1.使学生了解反函数的概念;
2.使学生会求一些简单函数的反函数;
3.培养学生用辩证的观点观察、分析解决问题的能力。
教学重点
1.反函数的概念;
2.反函数的求法。
教学难点
反函数的概念。
教学方法
师生共同讨论
教具装备
幻灯片2张
第一张:反函数的定义、记法、习惯记法。(记作A);
第二张:本课时作业中的预习内容及提纲。
教学过程
(I)讲授新课
(检查预习情况)
师:这节课我们来学习反函数(板书课题)§2.4.1反函数的概念。
同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?
生:(略)
(学生回答之后,打出幻灯片A)。
师:反函数的定义着重强调两点:
(1)根据y=f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);
(2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。
师:应该注意习惯记法是由记法改写过来的。
师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?
生:一一映射确定的函数才有反函数。
(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。
师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)
在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,请同学们谈一下,函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在什么关系呢?
生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。
师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。
从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:
(1)由y=f(x)解出x=f–1(y),即把x用y表示出;
(2)将x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。
(3)指出反函数的定义域。
下面请同学自看例1
(II)课堂练习课本P68练习1、2、3、4。
(III)课时小结
本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。
(IV)课后作业
一、课本P69习题2.41、2。
二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。
板书设计
课题:求反函数的方法步骤:
定义:(幻灯片)
注意:小结
一一映射确定的
函数才有反函数
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.
(2)能从数和形两个角度认识单调性和奇偶性.
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明.
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.
函数的奇偶性教学设计方案
教学目标
1.使学生了解奇偶性的概念,回会利用定义判断简单函数的奇偶性.
2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.
3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.
教学重点,难点
重点是奇偶性概念的形成与函数奇偶性的判断
难点是对概念的认识
教学用具
投影仪,计算机
教学方法
引导发现法
教学过程
一.引入新课
前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.
对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?
(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等.)
结合图象提出这些对称是我们在初中研究的关于轴对称和关于原点对称问题,而我们还曾研究过关于轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于轴对称的吗?
学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称.最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律.
二.讲解新课
2.函数的奇偶性(板书)
教师从刚才的图象中选出,用计算机打出,指出这是关于轴对称的图象,然后问学生初中是怎样判断图象关于轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时教师明确提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?
学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)
从这个结论中就可以发现对定义域内任意一个,都有成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.
(1)偶函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做偶函数.(板书)
(给出定义后可让学生举几个例子,如等以检验一下对概念的初步认识)
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.
(2)奇函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做奇函数.(板书)
(由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识)
例1.判断下列函数的奇偶性(板书)
(1);(2);
(3);;
(5);(6).
(要求学生口答,选出1-2个题说过程)
解:(1)是奇函数.(2)是偶函数.
(3),是偶函数.
前三个题做完,教师做一次小结,判断奇偶性,只需验证与之间的关系,但对你们的回答我不满意,因为题目要求是判断奇偶性而你们只回答了一半,另一半没有作答,以第(1)为例,说明怎样解决它不是偶函数的问题呢?
学生经过思考可以解决问题,指出只要举出一个反例说明与不等.如即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意性的重要)
从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性.
教师由此引导学生,通过刚才这个题目,你发现在判断中需要注意些什么?(若学生发现不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有-1,有-2,就必有2,有,就必有,有就必有,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?
可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.
(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)
由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.
经学生思考,可找到函数.然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?
例2.已知函数既是奇函数也是偶函数,求证:.(板书)(试由学生来完成)
证明:既是奇函数也是偶函数,
=,且,
=.
,即.
证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现,只是解析式的特征,若改变函数的定义域,如,,,,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类
(4)函数按其是否具有奇偶性可分为四类:(板书)
例3.判断下列函数的奇偶性(板书)
(1);(2);(3).
由学生回答,不完整之处教师补充.
解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数.
(2)当时,既是奇函数也是偶函数,当时,是偶函数.
(3)当时,于是,
当时,,于是=,
综上是奇函数.
教师小结(1)(2)注意分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可.
三.小结
1.奇偶性的概念
2.判断中注意的问题
四.作业略
五.板书设计
2.函数的奇偶性例1.例3.
(1)偶函数定义
(2)奇函数定义
(3)定义域关于原点对称是函数例2.小结
具备奇偶性的必要条件
(4)函数按奇偶性分类分四类
探究活动
(1)定义域为的任意函数都可以表示成一个奇函数和一个偶函数的和,你能试证明之吗?
(2)判断函数在上的单调性,并加以证明.
课型:新授课
主备人:
课堂笔记
【课标要求】
理解正比例函数的定义以及性质。
【考纲要求】
理解正比例函数的定义以及性质。
【学习目标】
1、经历用函数解析式表示函数关系的过程,进一步发展符号意识;经历从一类具体实例中抽象出正比例函数概念的过程,发展数学抽象概括能力.
2、会画正比例函数的图象;
3、能根据正比例函数的图象和表达式
y
=kx(k≠0)理解函数图像特征及其性质,
【学习重点】正比例函数图象性质
一情景导入
下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:
(1)圆的周长l
随半径r的变化而变化.
(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化。
(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n的变化而变化.
(4)冷冻一个0°C的物体,使它每分钟下降2°C,物体问题T(单位:°C)
随冷冻时间t(单位:min)的变化而变化.
认真观察这四个函数解析式,说说这些函数有什么共同点?
一般地,形如
__________的函数,叫做正比例函数,其中k
叫做比例系数
二.教材预习
学法指导:课前独学教材预习内容,总结本节课的重点、难点、注意点。课堂再以小组为单位交流,找出还存在的问题,并在小黑板上扼要展示本节重点内容和存在的问题。注意双色笔的使用,书写工整。
【预习自测】
1.下列式子,哪些表示y是x的正比例函数?如果是,请你指出正比例系数k的值.
(1)y=-0.1x
(2)
(3)
(4
)
(5)y=-4x+3
(6)
2.如果y=(k-1)x,是y关于x的正比例函数,则k满足____________
.
3.如果,是y关于x的正比例函数,则
k=__________.
4.如果y=3x+k-4,是y关于x的正比例函数,则k=_________.
三.合作探究
学法指导:小组交流,形成共识,进行课堂大展示。展示时要讲清所用知识点、易错点。展示到小黑板的题要标清所用知识点、易错点;注意双色笔的使用,字体工整
合作探究一
1.
画正比例函数
y
=x
、y
=2x
的图象.
问题1 对一般正比例函数y
=kx,当k>0时,它的图象形状是什么?位置怎样?
问题2 当k<0
时,正比例函数的图象特征及性质又怎样呢?
探究二:正比例函数的性质
画正比例函数y=-x和y=-2x的图象.
四、达标测评
基础达标
1、在平面直角坐标系中,正比例函数y
=kx(k<0)的图象的大致位置只可能是(
)
2、用你认为最简单的方法画出下列函数的图象:
(1)
y=-3x;
(2)
能力测试
3、对于正比例函数y
=kx,当x
增大时,y
随x
的增大而增大,则k的取值范围
(
).
A.k<0
B.k≤0
C.k>0
D.k≥0
五、小结提升1、对照学习目标找差补缺。
关键词:教案;学案;比较
目前,我国全国各地已进入新课程改革,新的教学方法、教学模式犹如雨后春笋,与之相适应的教学方法各地也都在探索之中。新课程改革以先批判后建构的形式从理论到实践对现存的教育教学状态表达出全方位的颠覆意愿,现在的课程结构与教学内容、教学方法以至教师的课堂活动都直面着社会的种种诘责,甚至于沿用了数十年的“教案”也成为一种落后的代名词,“学案”已不仅仅停留在理论阶段,还被赋予了革命性教育改革的使命。
教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。有的教案还列有教具和现代化教学手段的使用、作业题、板书设计和课後自我分析等项目。由于学科和教材的性质教学目的和课的类型不同,教案不必有固定的形式。编写教案有利于教师熟悉教材内容,准确把握教材的重、难点,以至于教师科学、恰当的选择教学方法和教学策略组织教学,有利于教师科学合理的支配课堂时间,有条不紊的组织教学活动,提高教学效率,完成教学目标和任务。
学案是与通常所说的教师教案相对应的学生学习方案。它是在教师广泛调研学生的学习状况,充分了解学情、课标和教材的基础上从学习者的角度设计研究学生建构自主学习诸种因素及可能性的前提下,集思广益,精心编写的指导学生自主学习的教学辅助材料。内容包括学习目标、重点难点、知识结构、学法引导、思考讨论、技能训练等。
有些教师没有真正理解什么是学案,把教案和学案的形式混淆,将教案简单的汇编成电子稿,重新印制,认为就是学案,其实这是一种认识上的误区。教案是教师在教授新课之前的教学规划与实施方案,更多的偏重于怎么教,并没有突出怎么学,教案的重点在于如何激发学生的学习兴趣,在学生的最近发展区激活学生的思维,引导学生去探究新知,掌握基础知识、基本技能与基本学科的思想方法,遇到难点时进行点拨、引导。
学案的核心是指导学生怎么学,其本质上突出了以学生为主体,重在导学,以培养学生自主学习能力为主旨,通过学案降低学生在疑难问题上的学习难度,为学生的学习铺垫台阶,要体现知识的形成、发展和应用的过程。学案栏目的设计要进一步着眼于引导和指导学生通过课前自学扫除认知障碍,并在课上导学环节突破难点,在课后知识梳理环节进一步反思学、巩固学。
在传统数学概念教学中有一个很重要的教学环节就是课堂练习,也就是应用概念解决问题的阶段,这些练习要么是为了突出数学概念的本质属性,从而对概念进行再创造。在传统数学教学方式别强调“精讲多练”、“变式练习”。如教师在介绍“求函数y=(x2-x+2)/(x+1)(-10)的最小值;(3)求函数y=(x2-x+2)/(x+1)(x>-1)的最小值。容易看出这些练习循序渐进,它们虽然解法相同,但却能起到深化概念内涵的作用。所以,传统数学教学中的课堂练习使学生在外部实践活动中经过不断的概括化、言语化、简缩化而逐渐向思维的抽象化转化,从而达成学生认识和思维水平的深化,真正实现对知识的掌握。也是脱离了“机械练习(drillandexercise)”,“死记硬背(rotelearning)”,“灌输式教学”等的教学方式的典型,它能够以活动促进学生发展,使学生的数学思维得到强化。
而在学案教学中教师为了能使最主要的数学内容呈现出来,避免学生走太多的弯路,教师在师生互动环节上多采取教师问、学生答的模式,教师精心设计问题让学生思考,然后由学生得出答案。在数学概念教学别强调揭示概念的本质属性和理解概念的外延。如在“函数的概念”教学中教师这样引入:(1)先给出实例:设火车以80千米/时的速度行驶,行驶的路程、(千米)与行驶的时间(时)有怎样的关系?(2)问:其中哪些量数值保持不变,哪些量可以取不同数值?由此引出常量和变量的概念。(3)通过几个例子说明常量和变量是相对的。(4)创设情境引入函数的概念。可以看出学案数学教学是一种创造性的劳动,它不仅是教师通过自己的教学活动向学生展现“活生生”的数学研究工作,而不是死的数学知识,而且是指教师通过自己的“理性重建”使之真正成为“可以理解的”,并通过提出内在的思想方法使之成为“可以学到手的”和“可加以推广应用的”。
在新课程背景下,从“教案”到“学案”的改革,必须把教学重心由老师如何教转移到如何让学生学,用具有双向交互性和开放性的“学案”来沟通师生之间的教学关系。为此,必须做好三个转变,即:由主要考虑“教什么?”转到考虑“学什么?”;由注重“读懂”转到注重“会读”;由“关注教师的成功感”转到“关注学生的成功感”。“学案”教学法具体做法是:根据学生现有知识,自学能力水平和教学、考试的要求,编制出指导学生每一课时学习方案,称之为“学案”。是建立在教案基础上针对学生学习而开发的一种学习方案,通常要提前印制完成,发放到学生手中,让学生知道老师的授课目标、意图,让学生学习能有备而来,给学生以知情权、参与权。学生借助“学案”自主学习,初步掌握基础知识、概念、理清知识线索,并尝试用掌握的知识解答“学案”中的问题,进行自我能力训练或讨论交流,并在“学案”上作相关的学习记录。学生能自主完成的内容,就可以先学习掌握;剩余部分在课堂教学讨论中解决,从而提高课堂教学效率。而且还鼓励学生在自学中探索发现新的问题,提出新的思考,又反过来促进老师的教学。教学过程中,学生是学习的主人,教师扮演的不仅是组织者、引领者的角色,而且是整体活动进程的调节者和局部障碍的排除者角色。
教案的优势:
(1)有利于教师主导作用的发挥,有利于按教学目标的要求来组织教学。
(2)减少教学活动的盲目性和随意性,提高教学活动的有效性和可控性。
(3)对培养教师养成课前备课的良好习惯有督促的作用。
(4)对树立教师的威严有促进作用。
学案的优势:
(1)有利于教学目标转化为学习目标。
(2)有利于提高课堂教学的效率。
(3)有利于造就师生之间朋友式的合作关系。
(4)有利于培养学生自主学习的能力。
关键词:农村初中;数学教学;高效教学
中图分类号:G633.6 文献标志码:A 文章编号:1674-9324(2014)38-0069-02
数学是很多学生的难点,让学生爱上数学,从被动学习到主动学习数学,才能从根本上改善数学教学质量,提高学生整体成绩。这就要求初中数学教师提高课堂效率,设计新颖可行的教学方案、建立和谐的师生关系,让学生在轻松的环境下提高成绩。总结笔者在农村初中多年的执教经验,笔者发现,在新的环境下,农村生源持续下降,生源质量不佳,成绩两极分化现象极其严重。因此,作为数学教师,笔者认为在农村初中数学的教育中,应积极进行改善,以促使教学的高效性。
一、转变教学观念,以人为本
传统的教学中,教师按照教学目标,根据自己的主观理解进行教学,这个过程中,学生往往会处于一种被动的地位。尤其是在农村地区,教育不够发达,学生在传统的教学模式下会形成依赖思想,导致难以获得学习上的突破。新时期的课程改革核心理念为“以人为本”,强调突出学生的教学主体性地位,引导学生真正以学习的主人翁身份进行主动学习。例如,在小学知识平面图形的基础上教授立体图形时,教师便可让同学们按照课本中立体图形的不同平面图,自行制作立体图形,并对各类立体图像进行讨论,得出其一般特征、与平面图形的关系等。学生通过自己动手操作,一方面能提高课堂参与度,做课堂教学的主人,同时还可以在已有知识的基础上对新的知识有更深程度的掌握。
二、按照学生实际状况设计教案
教案是教学进行的方向标,好的教案设计能对教学起到巨大的促进作用。而农村教学的状况又不同于城市,基础设施落后,无法得到多媒体技术的支持;学生对学习的重视程度不同,部分学生学习不够积极,以致成绩参差不齐,因此,教师在教案设计的过程中,要充分结合学生的实际状况,有层次、目标明确地开展教学。在设计教案的过程中,教师首先得对教学的内容进行一个全面的了解和梳理,筛选教学的重难点,有针对性地进行教案设计;其次,要充分结合学生的实际状况,如基础状况、学习能力等,对于农村初中来说,大部分学生的底子薄,因而教师要更加注重新旧知识的串合,如函数与二次函数,在教授二次函数时,教师在教案设计中要合理引入一次函数,让学生首先对新知识在已学知识的基础上有所了解,再循序渐进地采用其他教学方法进行教学。
三、建立和谐的师生关系,让学生在轻松的状态下学习
和谐的师生关系能带来和谐的课堂气氛,从心理上能对学生的学习起到一定的激励作用。因此,在教学时教师积极打破传统的师生关系模式,积极塑造和谐、平等的师生关系。对农村初中来讲,课堂气氛很大部分取决于师生之间的关系状况。由于农村学生思想潜意识里较为传统,对于教师的态度也较为谦卑,因此在课堂上教师一人在讲,全堂无声,学生极容易开小差,跟不上教师的节奏,造成数学学习成绩的下降。同时由于知识具有连贯性,一堂课没掌握好,会对后续的其他学习造成较大的影响。因此,师生之间和谐的课堂气氛的建立极其重要。教师应积极主动地融入到学生的互动中,主动关心学生、尊重学生、鼓励学生,构建和谐的师生关系,引导学生进行主动的学习,取得全面进展。
四、对学生做出积极的评价,鼓励学生努力学习
教师的评价是对学生一定时期内学习状况的总体看法,能对学生起到一定的激励或打击作用。对农村学生来说,由于其生长的环境及条件的影响,学生极度渴望积极的评价。这种评价能对学生的成长起到极大的促进作用,但是相反,若学生得到的是消极评价,则会打消其学习积极性,甚至出现自暴自弃的状况,导致最后放弃学习或者辍学。因此,教师在数学教学的过程中,要对学生做出积极的评价,即使学生存在学习上的问题,例如学习态度不积极、作业完成糟糕等情况,教师也应首先进行积极的评价,如“你又进步了,继续加油!”“这个题虽然做错了,但是思路是正确的,只要再仔细一点就能做对题目。”发现学生的闪光点,并且多做出正确、积极的评价,多给孩子一些微笑,然后再根据学生存在的问题,提出相关的改正意见,以鼓励学生积极参与课堂教学,改正存在的学习问题,学有所成,并顺利协助教师完成教学任务。
五、引导学生进行知识的归纳总结,巩固课堂教学
学习需要得到巩固,才能加强所学知识在脑海中的印象,灵活运用知识,“熟能生巧”,掌握知识运用的技巧。有些学生学习成绩差,并不是不够努力,而是由于没有掌握正确的学习方法,因此,在学习的过程中,教师要充分发挥主导作用,引导学生积极进行知识的归纳总结,以巩固课堂教学。例如,在教授等边三角形的相关中线与高的性质之后,让学生利用一定的工具对已学三角形进行探究,作出相关三角形的高与中线,并进行对比讨论,对已学知识进行一定的归纳总结,得出一般结论。巩固的环节是教学中极其重要的环节,能有效培养学生概括、总结能力,检验学生对已学知识的掌握程度,并加以巩固,以此提高课堂教学的效果。
一、创设恰当的课堂导入,促成灵动有效的数学课堂
新课导入是数学课堂教学中不可或缺的重要环节,在整个课堂教学中具有极其重要的作用。如在设置新课引入时,从学生已有的生活经验和知识经验出发创设教学情境,让学生发现问题――提出问题,既能激发学习兴趣,又具有可接受性和探索性。如《推测植物的生长与温度的关系》中,由科幻小说《实验室的故事》中的一个情节提出一个问题,推测出植物高度的增长量l与温度t的函数,并由它推测出最适合这种植物生长的温度。能想出科学家是怎样推测的吗?将此作为新课引入,引发了学生的共鸣。这是不是已学过的一次函数或反比例函数呢?若不是,又是哪种类型的函数?这就使学生产生了认知上的冲突,学习兴趣大增。再如《概率与中奖》,笔者将它稍作改编,作为章前引入。教无定法,新课导入也同样没有固定的模式去套用。但是,教师必须以学生为本,在新课程理念的指导下,在遵循学生年龄特征和心理特点的前提下,结合教学内容,尽可能地创设恰当的新课导入,从而激发其兴趣和求知欲,真正达到“转轴拨弦三两声,未成曲调先有情”的教学境界。
二、巧用教学资源,打造灵动有效的数学课堂
在我们周围有很多教学资源,例如多媒体课件、教具、学具、各种资料图片等都是教学资源,合理利用这些资源,是提高课堂效率的基本策略。课堂教学不仅仅是一种过程,更是师生生命活动的一种状态。师生的精神状态和情感状态就是课堂教学效果的直接体现。这里体现着师生的动机,表露出师生的情绪是愉悦还是消沉、是激情还是冷漠;传递着师生的意志,勇于求新的、敏于发现的、乐于探究的那份执着和顽强。正是这样的状态中,我们要关注课堂上不经意间的一个表情、一个动作,关注真实状态下即时生成的一种引导、一道错题甚至调皮学生的某种犯错现象,关注我们的一句评价、一声鼓励……只有敏锐地抓住它,深入地挖掘它,准确地把握它,才能给课堂注入鲜活的养份,让课堂散发出和谐美丽,让课堂更灵动有效。
三、精心设计教案,酿造灵动有效的数学课堂
一部高品位的影视剧需建立在优秀的剧本之上;每节课能否获得好的教学效益,关键取决于教案质量的高低与否。教案是教师课堂上的“施政纲领”,教师纵有滔滔不绝的口才而不得要领则于事无补,即使抓住了要领而缺少必要的深入浅出、循序渐进的教学流程也只能事倍功半,只有提高教案的内在质量,才能实现二者有机的统一。我们要精心设计课堂导入、课堂提问、课堂练习、教具和学具的使用等。数学课程教学的基本知识目标和能力目标具体体现在每一个知识点的教学活动和每一项能力训练活动中,即要明确教学活动中要“学什么”和“练什么”。与传统教学目标所不同的是:新课程在强调“双基”教学的同时,更突出学生自主探究的学习过程的组织,即要强调学生“怎样学”的设计,而不是“怎样教”的设计。
如“幂的乘方”一节,教学目标设计为:1.掌握幂的乘方运算法则,能够运用法则准确进行幂的乘方运算;2.通过本节内容的学习过程,培养学生综合运用已知的数学知识探究数学规律来获取新知的意识;3.让学生体验从“一般到特殊,再从特殊到一般”的数学思想。目标1是基础目标,要求每个学生必须达到;目标2是发展目标,鼓励学生通过自主探索与合作交流后,大部分学生能达到;目标3是给已经具备一定能力的学生提出的,引导学生体验数学知识及其它学科知识都蕴含着的普遍规律性,进而激励学生从诸多的特殊现象中探究一般规律的兴趣。