首页 > 文章中心 > 工业烟气论文

工业烟气论文

开篇:润墨网以专业的文秘视角,为您筛选了八篇工业烟气论文范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

工业烟气论文范文第1篇

    关键词:脱硫,烟尘,石膏浆液密度,石膏

    我国二氧化硫排放总量居世界首位,火电行业二氧化硫排放量占我国二氧化硫排放量的50%左右。我国能源结构的特点决定了燃煤生产的二氧化硫仍要增加。论文参考网。随着环境标准提高,石灰石-石膏法、喷雾干燥法、电子束法、循环流化床烟气脱硫法等必定会广泛应用于火电厂的烟气脱硫中,随着科技进步会有很多其它脱硫工艺应用于工业实践。

    1.石灰/石灰石—石膏法脱硫方法的发展及应用原理

    1.1 石灰/石灰石—石膏法脱硫方法的发展

    自20世纪70年代初日本和美国率先实施控制SO2排放以来,许多国家相继制定了严格的SO2排放标准和中长期控制战略,加速了控制SO2排放的步伐。日本是应用烟气脱硫技术最早的国家,石灰/石灰石一石膏法烟气脱硫技术最早是由英国皇家化学工业公司提出的。迄今为止,国内外火电厂烟气脱硫技术主要采用石灰/石灰石—石膏法,此方法最为成熟、最为可靠且应用最为广泛,占世界上投入运行的烟气脱硫系统的85%以上,我国大型燃煤发电机组的脱硫方式以石灰/石灰石—石膏法工艺为主已成为必然的趋势。

    1.2 石灰/石灰石—石膏法脱硫方法的该方法脱硫的基本原理是用石灰或石灰石浆液吸收烟气中的SO2,先生成亚硫酸钙,然后将亚硫酸钙氧化为硫酸钙。论文参考网。副产品石膏可抛弃也可以回收利用。

    反应原理:用石灰石或石灰浆液吸收烟气中的二氧化硫分为吸收和氧化两个工序,先吸收生成亚硫酸钙,然后再氧化为硫酸钙,因而分为吸收和氧化两个过程。

    (1)吸收过程在吸收塔内进行,主要反应如下

    石灰浆液作吸收剂:Ca(OH)2+SO2一CaSO3·1/2H2O

    石灰石浆液吸收剂:Ca(OH)2+1/2SO2一CaSO3·1/2H2O+CO2

    CaSO3·1/2H2O+SO2+1/2H2O一Ca(HSO3)2

    由于烟道气中含有氧,还会发生如下副反应。

    2CaSO3·1/2H20+O2+3H2O一2CaSO4·2H20

    (2)氧化过程在氧化塔内进行,主要反应如下。

    2CaSO3·1/2H20+O2+3H2O一2CaSO4·2H20

    传统的石灰/石灰石一石膏法的工艺流程是:将配好的石灰浆液用泵送人吸收塔顶部,经过冷却塔冷却并除去90%以上的烟尘的含Sq烟气从塔底进人吸收塔,在吸收塔内部烟气与来自循环槽的浆液逆向流动,经洗涤净化后的烟气经过再加热装置通过烟囱排空。石灰浆液在吸收SO2后,成为含有亚硫酸钙和亚硫酸氢钙的棍合液,将此混合液在母液槽中用硫酸调整pH值至4左右,送人氧化塔,并向塔内送人490kPa的压缩空气进行氧化,生成的石膏经稠厚器使其沉积,上层清液返回循环槽,石膏浆经离心机分离得成品石膏。论文参考网。

    2.影响脱硫的主要因素及其主要对策

    脱硫系统在运行过程中,影响系统脱硫效率的因素很多,如石灰石粉的粒度、浆液的浓度及吸收塔浆液活度/密度、PH值、浆液的流量、进入脱硫系统的烟气中 SO2的浓度等。这里只探讨烟气中粉尘及浆液浓度等对脱硫效率的影响及其主要对策。

    2.1 烟尘对脱硫效率的影响及对策

    (1)烟尘对脱硫效率的影响主要有:①烟尘对脱硫设备的磨损。在实际运行中由于脱硫系统前面的电除尘效果不好,使进入脱硫系统的烟尘含量远远超过起设计要求,对引风机、增压风机的通流部分严重磨损。②烟尘在脱硫系统烟道内存积致使烟气流速变小。③烟尘对脱硫系统设备GGH的灰堵影响,使得吸收塔部分起到了除尘的作用。④对吸收SO2反应的影响。由于烟尘被浆液截留,使得浆液的PH值不好控制,直接影响对 SO2的吸收效果;同时由于浆液中混有大量的烟尘,使得对浆液的密度控制也很不准确。⑤影响石膏品质。在进行脱硫石膏脱水时,这些烟尘转入到石膏中,从而影响着对脱硫石膏的有效利用。

    (2)治理烟尘的对策主要有:①加强电除尘设备的运行维护或改造电除尘。由于煤种的变化较多,烟尘的比电阻特性变化也较大,因此应根据烟尘的比电阻特性来调整除尘电场的工作电压;同时加强对电除尘的设备的运行维护,确保其运行参数能在正常范围之内,尤其是真打除灰设备必须工作正常。③加强对GGH运行管理与冲洗。加强对GGH运行管理,正常情况下吹灰器能全部覆盖GGH,能有效地起到减少积灰对GGH运行效果的影响;对GGH的冲洗需要停运GGH,由于环保的要求,可能只有在停机时才可进行冲洗工作。

    2.2循环浆液浓度对脱硫效率的影响及其主要对策

    (1)循环浆液浓度对脱硫效率的影响主要有:浆液浓度的选择应控制合适,因为过高的浆液浓度易产生堵塞、磨损和结垢,但浆液浓度较低时,脱硫率较低且pH值不易控制。

    (2)控制循环浆液浓度的主要对策:在磨机循环泵出口的循环管路上设有一段旁路管路,在这段旁路管路上安装有密度计,磨机系统就是通过这只密度计控制旋流器分配至成品浆液箱的浆液密度,循环管内的浆液密度与成品浆液密度有着对应关系,正常情况下成品浆液的密度控制在1220kg/m3左右,此时需将浆液循环管浆液的密度控制在1450 kg/m3左右,旋流器入口压力为120kpa。密度左右偏差不宜超过30kg/m3,浆液循环管的密度过大,成品浆液的颗粒度就会变大,还会造成管道堵塞,浆液循环管浆液的密度过小,又会影响成品浆液的浓度,降低磨机出力,因此需要控制循环箱补水流量来控制浆液循环管浆液密度在一个合理范围,保证成品浆液的品质。石灰浆液浓度一般为10%—15%。石灰石浆液浓度为20%—30%。

工业烟气论文范文第2篇

关键词:风机,煤气,自动回收,气柜,CO,O2

 

0.概述

转炉炼钢生产过程产生大量烟气,其主要成分是煤气,其中CO约占60% ~70%,短时间内接近80%;其次是CO2,约占10%;若氧枪或烟罩漏水,会产生部分H2;包含在烟气中的其他气体含量很少。转炉煤气是一种有毒、有害、易燃、易爆的危险性气体,也是一种用途很广很好的化工原料和工业生产能源,它的回收和利用是减少烟气排放和治理大气环境污染的一项有力措施,在保证安全的前提下,最大限度回收和利用煤气,减少大气排放,对节能环保有着巨大的经济和社会效益。

红钢厂40T转炉2座,60T转炉1座,一次除尘风机3台,风机电机原来由耦合器改成ABB中压变频器,煤气回收储存柜为30000m3柜。根据煤气分析仪检测CO和O2含量值是否合格,进行回收煤气相关操作。从2009年开始改造,经1年多运行,各种检测和阀门调节、联锁控制准确可靠,上位机HMI显示清楚,基本上无需人工干预,自动化程度达到国内先进水平,达到改造目的和效果。

1. 生产工艺和控制要求

转炉煤气风机系统由风机、中压变频器、油系统等组成;转炉煤气回收系统由旁通阀、三通阀、水封逆止阀、煤气放散点火系统、总测量系统等组成。生产工艺流程如图1所示。

图1 生产工艺流程简图

1.1 风机控制要求

风机调速控制由耦合器改成ABB中压变频器,速度可根据工艺调节,转炉不炼钢时,风机低速运行,转速为700r/min;转炉开始吹炼,风机高速运行(2250r/min);吹炼结束后由高速降为700r/min。1炉钢的吹炼周期为35~40分钟,其中煤气回收时间在7分钟左右。

1.2 煤气回收控制要求

当转炉开始吹炼时,风机速度在1450r/min以上,当煤气中O2含量小于2%、CO含量大于35%、三万煤气柜不满即容积小于30000 m3、无故障允许回收、无设备故障等条件都满足时,打开水封逆止阀,到位后三通阀回收侧打开,转炉煤气经水封逆止阀、V型水封,进入转炉煤气总管,通过管道送入三万煤气柜,转炉煤气被回收储存,经过加压机送到25MW发电站。免费论文参考网。当煤气中O2含量大于2%、CO含量小于35%、转炉煤气柜容积大于30000 m3、加压站拒绝回收、出现设备故障等任一条件满足时,三通阀放散侧打开,到位后关闭水封逆止阀,转炉煤气经三通阀送入燃烧放散塔,经点火装置点燃放散。

2.电气自动化控制设计项目

2.1 煤气回收条件

(1)转炉吹炼开始;

(2)转炉降罩;

(3)三通阀位置正常;

(4)烟气中CO含量大于35%;氧含量小于1.5%;烟气温度小于65℃;

(5)气柜允许回收煤气。

当同时满足上述条件时,水封逆止阀所带电磁阀得电,7~15s后,三通切换阀电磁阀得电打开,煤气处于回收状态;当上述条件有一项不满足时,三通切换阀电磁阀失电,由回收位置转向放散,煤气处于放散状态,15~20s后,水封逆止阀所带电磁阀失电关闭。

2.2 紧急放散阀控制

在回收或放散时,如三通切换阀发生故障,即行程开关不到位时,煤气由旁通阀进行排放;旁通阀由电磁阀控制,分自动和手动控制两种方式。当旁通阀停止使用,且风机处于低速运行时,冲洗水电磁阀得电,进行水冲洗,设手动、自动控制两种方式。

2.3 氮气吹扫切断阀与三通切换阀联锁

当三通切换阀电磁阀失电,煤气处于放散状态时,迅速打开氮气,对切断阀进行氮气吹扫,30s后阀门自动关闭,切断阀控制分自动和手动两种方式。

2.4 风机叶轮、三通切换阀冲洗水控制

当风机处于低速运行时,打开冲洗水管上的电磁阀进行水冲洗,冲洗5min后,阀门自动关闭。

2.5一次风机工艺监控操作站

一次风机监控操作站和一个DCS框架,是转炉煤气回收的主操作站。免费论文参考网。我们将原来的一次风机工艺监控操作站的数据和煤气回收操作站合二为一。DCS使用ABB-AC800F系统,采集所有一次元件检测的数据,包括一次风机转速、电流、温度、压力、流量指示记录,风机CO、O2分析检测,三通阀、紧急放散阀、水封逆止阀的状态,电动盲板阀开关状态,中压变频器运行状态;以及由控制网、现场总线传输过来的信号,如炉前净化回收系统,一文、二文水的流量、压力、温度,管道烟气流量,炉口微差压压力,R—D阀开度,烟罩位置,管道前端O2浓度,吹氧时间;煤气柜柜位高度,煤气柜活塞上升下降速度,入口CO、O2分析浓度等。免费论文参考网。

2.6 三万煤气柜监控操作站

三万煤气柜DCS使用浙大中控系统,采集所有一次元件检测的数据,包括煤气回收管道内温度、压力、流量指示记录,电动盲板阀开关状态,柜前水封阀、三通阀位置,及风机CO、O2分析检测,三通阀、水封逆止阀的状态;煤气回收在必备条件和回收条件都具备的情况下,煤气送到柜前,由三通阀放散,当柜前管道的CO、O2检测合格时,水封逆止阀打开三通阀关闭,气柜开始回收。如到不达回收CO、O2检测条件,由三通阀放散水封逆止阀关闭,柜后电除尘器运行是O2含量不能超标准,O2检测也同时起安全保护作用。 经过煤气加压机送到25MW发电站。

3.实际应用效果

2009年3月完成1#和2#风机煤气回收改造,7月完成3#风机的改造。9月对3个风机煤气回收又做了提罩继续回收的改造,回收时间为原来的2倍,煤气回收全部改造完成。2×25MW发电站单机于2009年4月2日投入运行并网发,9月8日两台机组投入并网发电,由于煤气回收提罩继续回收的改造,转炉煤气回收遂月上升,到9月28日止,转炉煤气回收已达103立方/吨钢,比昆钢总部要求55立方/吨钢提高了48立方/吨钢,比红钢公司要求80立方/吨钢要求提高了23立方/吨钢,超额完成公司下达的发电任务,累计发电 77,241,369KWh,两台机组日发电量最高为 968,640KWh。2009年转炉煤气回收量为1.03亿m3。按照每度电0.2元计算,按转炉煤气和高炉煤气各供50%,发电直接收益为7921万元,转炉煤气的效益也在3500万元。

转炉煤气回收系统在2009年1月进行改造,自投入运行以来,从一次试车成功,实现全自动回收。到目前为止,各种仪表检测参数、显示,计算机控制阀门执行器动作情况,主要运行参数、安全联锁、历史纪录、趋势分析、报警信息均工作正常。煤气回收自动化程度高,安全可靠,减少CO排放,更重要的是每年可以减少外排烟尘,对改善环境质量等效果是极为明显的。实际吨钢回收煤气能力在100m3以上,达到国内一流水平。

参考文献:

[1]骊秀萍,蔡九菊,王爱华,王鼎,周庆安.转炉煤气回收量极限值的研究,节能,2004,(5).

[2]翁宇庆.我国钢铁工业节能环保工作现状与展望,中国冶金 2003,(11).

[3]胥昌第.转炉炼钢应注重合理匹配和优化调整,中国冶金报2008,5(057).

工业烟气论文范文第3篇

关健词:煤矸石;烧结砖;污染源;治理

中图分类号:F270文献标志码:A文章编号:1673-291X(2010)01-0189-02

引言

煤矸石烧结多孔砖、空心砖生产技术是中国综合利用煤矸石的一项成熟技术,自20世纪80年代末,中国在消化吸收国外先进生产技术的基础上,研究开发出适合中国国情的煤矸石烧结多孔砖、空心砖生产技术。利用煤矸石生产烧结多孔砖、空心砖,达到了节能、保护耕地、保护环境的良好效果,同时也取得了较好的经济效益和巨大的社会效益。但由此也产生了一些污染问题,现以淮北双林煤矸石烧结砖厂为例,探讨煤矸石生产烧结砖产生的污染及治理方案。

一、煤矸石化学成分

该厂为利用煤矸石自身能源焙烧产品,生产能力为年产5 000万标块煤矸石烧结砖。煤矸石年用量为14.5万吨。原料用临涣选煤厂的矸石,该煤矸石的发热量为2 472 kJ/kg(干基),主要化学成分(见表1)。

表1 原料化学成分表(%)

二、工艺流程及产污节点图

整个工艺流程由四部分组成:原料制备;成型及切坯;干燥与焙烧;成品检验与堆放。具体工艺流程及排污节点如下(见下页图1):

三、污染源治理方案

从下页产污节点图可以看出,该厂在运行的过程中会有废气、噪声和固体废物产生,固体废物主要为切条及切坯工序产生的废泥坯、出窑时产生的废砖及除尘灰等。切条及切坯工序产生的废泥坯及除尘灰,可返回生产工序,废砖经破碎后也回用于生产工序。噪声治理通过将破碎机、搅拌机、空压机、真空机等机械噪声比较大的设备基础底座上安装减振垫,加装隔声罩,风机安装消声器,经过治理后,对厂界噪声影响较小。破碎车间的粉尘可以通过袋式除尘器处理,其除尘效率≥95%,收集下来的粉尘可以进行回收利用作为制砖的原料。

主要污染源来自于焙烧窑废气。焙烧窑正常燃烧后是利用原料本身的热值就能够满足生产过程中的热能消耗,不需添加其他燃料,产生的污染物主要有烟尘、SO2。

淮北市是一座以煤为主要能源结构的工业城市,SO2的总量控制指标已经接近饱和,对于该厂,根据淮北市产品质量监督检验所提供的检验报告,煤矸石中硫的含量为0.256%,煤矸石砖中残留的硫含量为0.16%,每年需要用煤矸石14.5万吨,如果不进行烟气治理,经计算,SO2产生浓度407mg/m3,SO2产生量为278.4t/a,烟尘产生浓度为42.9mg/m3,产生量为32.5t/a。烟气必须进行除尘脱硫。

隧道窑烟气经干燥窑及烟道降尘,污染物被坯垛过滤、吸附、沉降后,尾气采用脱硫除尘器处理。

脱硫除尘采用双碱法,当炉、窑尾气由引风机牵引进入一级反应室与钠型碱雾得以充分混合、碰撞,反应室液气比达2L/m3,尾气中的粉尘颗粒以及二氧化硫被碱溶液充分吸收,其反应方程式:

SO2+H2OH2SO3,H2SO3+Na(OH)2NaSO3+H2O

然后被碱雾充分混合的尾气在通过立式文丘里管时被充分压缩,细小的粉尘湿颗粒以及反应的产物相互碰撞、混合而结合成粒径相对增大的颗料,质量也相应增加,通过文丘里管后进入到脱硫除尘器内的二级置换反应室,进入置换反应室后混合烟气与石灰浆溶液发生混合反应,细小的颗粒进一步增大,二氧化硫与碱溶液进一步反应,钠盐溶液与氢氧化钙溶液也产生反应,其方程式 :

Na2SO3+Ca(OH)2CaSO3+ CaSO4+NaOH

H2SO3+Ca(OH)2CaSO3+H2O

酸碱反应沉淀物、废气中的颗料以及湿烟气从置换反应室进入到分离反应室,干净烟气进入脱水室经二级脱水后外排,颗粒与沉淀物进入初沉池沉淀反应。整个过程由于NaOH最终被置换出来,故消耗量很少。主要脱硫剂为石灰Ca(OH)2,生成物为稳定的硫酸钙及亚硫酸钙。经过双碱法进行脱硫除尘处理后,烟气排放中除尘效率达到50%以上,脱硫效率达到80%以上,烟气林格曼黑度

隧道窑烟气经脱硫除尘后,烟尘排放浓度为21.5mg/m3,排放量为16.25t/a,烟(粉)尘排放量为23.65t/a。放浓度为81.4mg/m3,排放量为55.7吨/年。这样,SO2的一年排放量减少了222.7吨,符合了达标排放和总量控制的要求。

结束语

采用煤矸石生产烧结砖,是有利于城市环境和生态的好项目,通过对固体废物的利用,既消除了污染源,又节约了烧砖用的耕地和煤,但生产中产生的SO2会严重污染环境空气,因此,只有通过切实可行的治理措施,才能做到达标排放并符合总量控制的要求。为企业的可持续发展也奠定了良好的基础,同时也为同类型的企业烟气治理提供了有益的借鉴,具有较好的环境效益和社会效益。

参考文献:

工业烟气论文范文第4篇

[关键词]球团;烟气脱硫;石灰-石膏法;设计参数

中图分类号:X701.3 文献标识码:A 文章编号:1009-914X(2016)15-0173-01

1、前言

近年来随着我国城市雾霾等极端天气增多,大气污染物排放已得到广泛关注。钢铁行业能耗以煤和煤炭为主,是我国大气污染物的排放大户,其中球团过程造成的SO2排放占钢铁生产全流程的50%以上,与烧结同为是钢铁企业SO2控制的重点[1-4]。我国颁布了较为严格的政策和标准来控制钢铁行业的大气污染物。目前,国内大、小型钢厂已经逐步上马了一系列脱硫装置,主要有石灰/石灰石―石膏法以其脱硫效率高,运行稳定等优点在钢铁行业中占有重要的份额。

本文通过设计唐山银水球团石灰-石膏湿法烟气脱硫工艺,该工程的成功运行表明,此工艺适合球团烟气的脱硫、除尘。

2、项目设计

唐山银水实业集团球团厂为消减2-8m2竖炉烟气中的SO2排放量,新建烟气脱硫装置,采用石灰-石膏湿法烟气脱硫工艺,该工程已运行一年,脱硫效率≥95%,各项指标均达到环保要求。

2.1 工艺原理

从竖炉排出的含硫原烟气经过电除尘器除尘后引入吸收塔。烟气与来自吸收塔上部喷淋层的浆液逆流接触,发生传质和吸收反应,烟气中的SO2及HCl、HF等酸性气体被脱除。净化后的烟气经吸收塔顶部两级除雾器除去烟气中夹带的液滴后,通过塔顶返回到原烟囱排入大气。副产物为石膏。

主要化学反应是:

(1)浆液制备

CaO+ H2OCa (OH)2

Ca (OH)2Ca2++2OH

(2)SO2吸收

SO2+ H2OH2SO3

H2SO3H++HSO3-

HSO3-H++ SO32-

Ca (OH)2 + SO2 CaSO3・1/2H2O + 1/2H2O

Ca (OH)2 + SO3 CaSO4・1/2H2O + 1/2H2O

(3)氧化结晶过程

CaSO3・1/ 2H2O + 1/2O2 CaSO4・1/2H2O

2.2 设计条件

2.2.1 设计参数

2.2.2 工艺流程

1)烟气系统

烟气系统将未脱硫的烟气引入脱硫装置,在吸收塔内脱硫净化。由于原引风机余压可克服脱硫装置系统的压降,项目中不另设增压风机。

2)吸收剂制备及供给系统

生石灰粉主要成份如下:CaO≥80%,杂质

由密封罐车将生石灰粉运输至脱硫区域,经气力输送至制浆区的生石灰粉仓储存。储存于粉仓中的生石灰粉在气化风机的流化下,通过旋转给料阀进入消化罐制备成浓度为30-35%的消石灰浆液,经振动筛除渣后进入浆液箱,加水配制成浓度为10-15%的消石灰浆液,然后经浆液输送泵送至吸收塔和循环泵入口。

3)SO2吸收系统

吸收塔设计为喷淋、吸收和氧化一体的单塔,吸收塔顶部建湿烟囱,烟塔合一结构。2炉一塔。待处理的烟气进入直径为6.5m的吸收塔与喷淋的石灰浆液逆流接触,3层喷淋层对应3台循环泵,单元制运行。吸收塔内部自下而上分为氧化区、喷淋区、除雾区。烟气中的二氧化硫与浆液中的碳酸钙发生化学反应后生成亚硫酸钙。亚硫酸钙被就地氧化成硫酸钙。生成的石膏通过吸收塔排浆泵排入石膏脱水系统中。净化后的烟气由塔顶湿烟囱排入大气。

4)石膏脱水系统

由吸收塔排出的石膏浆液经石膏旋流器一级脱水后,再由真空皮带脱水机进行二级脱水,得到合格的副产物成品石膏。

5)工艺水系统

工艺用水主要用于浆液制备系统的补给水、除雾器冲洗水、氧化风增湿、设备冷却水等。

2.3 重要设计参数选取

石灰-石膏法是由石灰石-石膏法演变而来,且湿法脱硫最早应用于电厂,钢铁行业的烟气具有自身湿法设计应由于脱硫剂石灰浆液为强碱性,不能完全照搬传统石灰石-石膏法在设计参数。

2.3.1 氧化倍率

钢厂竖炉中的烟气含氧量较高,自身氧化能力较强,氧化倍率可选择1.5~2。

2.3.2 液气比

由于氢氧化钙为强碱性,塔内吸收反应主要发生在液面上,且反应快[5],液气比应低于石灰石-石膏法,可选择3~7 l/m3。

2.3.3 烟气接触时间

由于环保要求日益严格,烟气接触时间应适当延长,选择4.5~5s。

2.3.4 pH

石灰作为脱硫剂,塔内pH控制在6左右。

2.4 调试与运行情况

唐山银水球团厂竖炉烟气脱硫系统实际运行中,烟气入口温度在100~130℃之间,SO2浓度在500~1500mg/Nm3之间,粉尘浓度在80~100 mg/Nm3之间。SO2排放浓度在50~80 mg/Nm3,粉尘排放浓度30~50mg/Nm3,满足环保要求和业主要求。

3、结语

唐山银水球团厂竖炉烟气石灰-石膏法脱硫系统目前已成功运行一年,脱硫效果理想,基本达到了安全、稳定、高效的运行目的。通过运行证明,根据处理对象合理选择设计参数,该脱硫工艺可以满足竖炉烟气脱硫、除尘的需要,不仅脱硫率可达到95%以上,而且出口粉尘排放也能满足50mg/Nm3的环保要求。该脱硫工艺为石灰-法烟气技术在处理钢厂烟气脱硫中应用又一成功案例,同时也增加了湿法脱硫比选工艺。

参考文献

[1] 赵羚杰.中国钢铁行业大气污染物排放清单及减排成本研究[D].杭州,浙江大学硕士论文,2016.

[2] 兰国谦.钢铁行业烧结烟气脱硫技术现状和发展趋势[J].中国环保产业,2014,6:42-46.

[3] 王英杰.承钢360m2烧结机湿法烟气脱硫工艺应用[J].烧结球团,2015,40(2):50-53.

工业烟气论文范文第5篇

关键词:烟气脱硫 二氧化硫 干法

前言:我国的能源以燃煤为主,占煤炭产量75%的原煤用于直接燃烧,煤燃烧过程中产生严重污染,如烟气中CO2是温室气体,SOx可导致酸雨形成,NOX也是引起酸雨元凶之一,同时在一定条件下还可破坏臭氧层以及产生光化学烟雾等。总之燃煤产生的烟气是造成中国生态环境破坏的最大污染源之一。中国的能源消费占世界的8%~9%,SO2的排放量占到世界的15.1%,燃煤所排放的SO2又占全国总排放量的87%。中国煤炭一年的产量和消费高达12亿吨,SO2的年排放量为2000多吨,预计到2010年中国煤炭量将达18亿吨,如果不采用控制措施,SO2的排放量将达到3300万吨。据估算,每削减1万吨SO2的费用大约在1亿元左右,到2010年,要保持中国目前的SO2排放量,投资接近1千亿元,如果想进一步降低排放量,投资将更大[1]。为此1995年国家颁布了新的《大气污染防治法》,并划定了SO2污染控制区及酸雨控制区。各地对SO2的排放控制越来越严格,并且开始实行SO2排放收费制度。随着人们环境意识的不断增强,减少污染源、净化大气、保护人类生存环境的问题正在被亿万人们所关心和重视,寻求解决这一污染措施,已成为当代科技研究的重要课题之一。因此控制SO2的排放量,既需要国家的合理规划,更需要适合中国国情的 低费用、低耗本的脱硫技术。

烟气脱硫技术是控制SO2和酸雨危害最有效的手段之一,按工艺特点主要分为湿法烟气脱硫、干法烟气脱硫和半干法烟气脱硫。

湿法脱硫是采用液体吸收剂洗涤SO2烟气以脱除SO2。常用方法为石灰/石灰石吸收法、钠碱法、铝法、催化氧化还原法等,湿法烟气脱硫技术以其脱硫效率高、适应范围广、钙硫比低、技术成熟、副产物石膏可做商品出售等优点成为世界上占统治地位的烟气脱硫方法。但由于湿法烟气脱硫技术具有投资大、动力消耗大、占地面积大、设备复杂、运行费用和技术要求高等缺点,所以限制了它的发展速度。

干法脱硫技术与湿法相比具有投资少、占地面积小、运行费用低、设备简单、维修方便、烟气无需再热等优点,但存在着钙硫比高、脱硫效率低、副产物不能商品化等缺点。

自20世纪80年代末,经过对干法脱硫技术中存在的主要问题的大量研究和不断的改进,现在已取得突破性进展。有代表性的喷雾干燥法、活性炭法、电子射线辐射法、填充电晕法、荷电干式吸收剂喷射脱硫技术、炉内喷钙尾部增湿法、烟气循环流化床技术、炉内喷钙循环流化床技术等一批新的烟气脱硫技术已成功地开始了商业化运行,其脱硫副产物脱硫灰已成功地用在铺路和制水泥混合材料方面。这一些技术的进步,迎来了干法、半干法烟气脱硫技术的新的快速发展时期。

传统的石灰石/石膏法脱硫与新的干法、半干法烟气脱硫技术经济指标的比较见表1。表1说明在脱硫效率相同的条件下,干法、半干法脱硫技术与湿法相比,在单位投资、运行费用和占地面积的方面具有明显优势,将成为具有产业化前景的烟气脱硫技术。

本文主要论述了喷雾干燥法、活性炭法、电子射线辐射法、填充电晕法、荷电干式吸收剂喷射脱硫技术、炉内喷钙尾部增湿法、烟气循环流化床技术、炉内喷钙循环流化床技术等几种干法烟气脱硫技术和近几年研究出来的几项半干法烟气脱硫技术及其各种方法在工业方面的应用情况及今后的发展方向。

1、喷雾干燥法烟气脱硫技术

喷雾干燥法烟气脱硫技术是一项发展最成熟的烟道气脱硫技术之一。该技术采用了旋转喷雾器,投资低于湿法工艺,在全世界范围内得到广泛应用,在西欧的德国、意大利等国家利用较多。对中高硫燃料的SO2脱硫率能达到80-90%。

该技术的基本原理是由空气加热器出来的烟道气进入喷雾式干燥器中,与高速旋转喷嘴喷出的充分雾化的石灰、副产品泥浆液相接触,并与其中SOX反应,生成粉状钙化合物的混合物,再经过除尘器和吸风机,然后再将干净的烟气通过烟囱排出,其反应方程式为:

该技术一般可分为吸收剂雾化、混合流动、反应吸收、水汽蒸发、固性物的分离五个阶段,与其它干燥技术相比其独特之处就在于吸收剂与高温烟气接触前首先被雾化成了细小的雾滴,这样便极大增加了吸收剂的比表面积,使得反应吸收及传热得以快速进行。其工艺流程如图1所示【3】。该技术安装费用相对较低,一般是同等规模的石膏法烟气脱硫系统的70%左右。但存在着石灰石用量大、吸收剂利用率低及脱硫后的副产品不能够再利用的难题,故该技术意味着要承担双倍的额外费用,即必须购买更多的石灰石和处理脱硫后的副产品,然后还要将其中的一部分花钱倒掉。

2、活性炭吸附法烟气脱硫技术

采用固体吸附剂吸附净化SO2是干法净化含硫废气的重要方法。目前应用最多的吸附剂是活性炭,在工业上应用已较成熟。其方法原理为:活性炭对烟气中SO2的吸附过程中及有物理吸附又有化学吸附,当烟气中存在着氧气和水蒸气时,化学反应非常明显。因为活性炭表面对SO2与O2的反应有催化作用,反应结果生成SO3,SO3 易溶于水而生成硫酸,从而使吸附量比纯物理吸附时增大许多。

物理吸附过程:

化学吸附过程:

吸附SO2 的活性炭,由于其内、外表覆盖了稀硫酸,使活性炭吸附能力下降,因此必须对其再生。再生的方法通常有洗涤再生和加热再生两种,前者是用水洗出活性炭微孔中的硫酸,再将活性炭进行干燥;后者是对吸附有SO2 的活性炭加热,使炭与硫酸发生发应,使H2 SO4还原为SO2,富集后的SO2可用来生产硫酸。

其工艺流程为:对活性炭再生的方法不同,其反应的工艺流程也不同,一般采用加热再生法流程和洗涤再生法流程。洗涤再生法是用水洗出活性炭微孔中的硫酸,再对活性炭进行干燥。加热再生法是对吸附SO2 的活性炭进行加热,使炭与硫酸发生反应,将H2SO4又还原为SO2,富集后的SO2可用来生成硫酸[4]。

该方法的优点是吸附剂价廉,再生简单;缺点是吸附剂磨损大,产生大量的细炭粒被筛出,再加上反应中消耗掉一部分炭,因此吸附剂成分较高,所用设备庞大[5]。

3、电子射线辐射法烟气脱硫技术

电子射线辐射法是日本荏原制作所于1970年着手研究,1972年又与日本原子能研究所合作,确立的该技术作为连续处理的基础。1974年荏原制作所处理重油燃烧废气,进行了1000Nm3/h规模的试验,探明了添加氨的辐射效果,稳定了脱硫脱硝的条件,成功地捕集了副产品和硝铵。80年代由美国政府和日本荏原制作所等单位分担出资在美国印第安纳州普列斯燃煤发电厂建立了一套最大处理高硫煤烟气量为24000Nm3/h地电子束装置,1987年7月完成,取得了较好效果,脱硫率可达90%以上,脱硝率可达80%以上。现日本荏原制作所与中国电力工业部共同实施的“中国EBA工程”已在成都电厂建成一套完整的烟气处理能力为300000Nm3/h的电子束脱硫装置,设计入口SO2浓度为1800ppm,在吸收剂化学计量比为0.8的情况下脱硫率达80%,脱硝率达10%[6]。

该法工艺由烟气冷却、加氨、电子束照射、粉体捕集四道工序组成,其工艺流程图如图2所示。温度约为150℃左右的烟气经预除尘后再经冷却塔喷水冷却道60~ 70℃左右,在反应室前端根据烟气中SO2及NOX的浓度调整加入氨的量,然后混合气体在反应器中经电子束照射,排气中的SO2和NOX受电子束强烈作用,在很短时间内被氧化成硫酸和硝酸分子,被与周围的氨反应生成微细的粉粒(硫酸铵和硝酸铵的混合物),粉粒经集尘装置收集后,洁净的气体排入大气[7]。

脱硫、脱氮反应大致可分为三个过程进行,这三个过程在反应器内相互重叠,相互影响:

a)在辐射场中被加速的电子与分子/离子发生非弹性碰撞,或者发生分子/离子之间的碰撞生成氧化物质和活性基团。

烟气中含有O2、H2O、N2、CO2、SO2、NO、NO2等成分,当电子束照射烟气时,在辐射场中被加速的电子与烟气中气体分子如O2及水分子发生非弹性碰撞,生成具有化学反应活性的活性基团或氧化性物质,可表示为:

b)活性基团与气态污染物发生反应。

活性基团或氧化性物质氧化烟气中的SO2生成SO3,可表示为:

生成的SO3和高价态氮氧化物与水反应生成H2SO4和HNO3。

c)硫酸铵和硝酸铵的生成。

生成的H2SO4和HNO3与加入的NH3进行中和反应,分别生成硫酸铵和硝酸铵微粒,荷电后被捕集。此外,还可能有尚未反应的SO2和NH3,SO2与NH3反应生成硫酸铵。反应为:

该工艺能同时脱硫脱硝,具有进一步满足我国对脱硝要求的潜力;系统简单,操作方便,过程易于控制,对烟气成分和烟气量的变化具有较好的适应性和跟踪性;副产品为硫铵和硝铵混合肥,对我国目前硫资源缺乏、每年要进口硫磺制造化肥的现状有一定的吸引力,但在是否存在SO2污染物转移、脱硫后副产物捕集等问题上有待进一步讨论。另外厂耗电力也比较高[8]。

4、填充式电晕法烟气脱硫技术

填充式电晕法是近几年发展起来的一项新技术,该方法设备简单、操作简便、投资是电子束法的60%,因此成为国际上干法脱硫的研究前沿。填充式电晕法脱硫原理为:在高压电晕放电的情况下,由于电场的作用,在烟气中形成大量的非平衡态等离子体。在高能电子的碰撞下,烟气中的HO2、O2、SO2等气体分子活化、裂解或电离,产生大量氧化性强的活化基团,如: OH·、HO2 ·、O、O3、O2+、O2*等。电晕电场的存在源源不断的提供了这些离子的来源。而SO2在其中发生一系列的气体等离子体化学反应,反应过程相对复杂。总体上是在这些基团的作用下,最终使二氧化硫氧化成三氧化硫【9】。

反应途径主要如下:

其实验流程图如图1所示。反应原料气由空气和二氧化硫混合配置而成,经流量计进入反应器进行处理,在反应器前后各设置一个采样口,用大气采样器同时进行采样。采样的样品用碘量法测定其浓度。

5、荷电干式吸收剂喷射脱硫系统(CDSI)

荷电干式吸收剂喷射脱硫系统(CDSI)是美国最新专利技术,它通过在锅炉出口烟道喷入干的吸收剂(通常用熟石灰),使吸收剂与烟气中的SO2 发生反应产生颗粒物质,被后面的除尘设备除去,从而达到脱硫的目的。干式吸收剂喷射是一种传统技术,但由于存在以下两个技术问题没能得到很好的解决,因此效果不明显,工业应用价值不大。一个技术难题是反应温度与滞留时间,在通常的锅炉烟气温度(低于200℃)条件下,只能产生慢速亚硫酸盐化反应,充分反应的时间在4秒以上。而烟气的流速通常为10~15m/s,这样就需要在烟气进入除尘设备之前至少有40~60m的烟道,无论从占地面积还是烟气温度下降等方面考虑均是不现实的。另一个技术难题是即使有足够长的烟道,也很难使吸收剂悬浮在烟气中与SO2发生反应。因为粒度再小的吸收剂颗粒在进入烟道后也会重新聚集在一起形成较大的颗粒,这样反应只发生在大颗粒的表面,反应概率大大降低;并且大的吸收剂颗粒会由于自重的原因落到烟气的底部,对于传统的干式吸收剂喷射技术来说,这两个技术难题很难解决,因此脱硫效率低,很难在工业上得到应用[10]。

CDSI系统利用先进技术使这两个技术难题得到解决,从而使在通常烟气温度下的脱硫成为可能。其荷电干式吸收剂喷射系统包括一个吸收剂喷射单元 、一个吸收剂给料系统(进料控制器,料斗装置)等。吸收剂以高速流过喷射单元产生的高压静电晕充电区,使吸收剂得到强大的静电荷(通常是负电荷)。当吸收剂通过喷射单元的喷管被喷射到烟气流中时,由于吸收剂颗粒都带同一符号电荷,因而相互排斥,很快在烟气中扩散,形成均匀的悬浮状态,使每个吸收剂粒子的表面都充分暴露在烟气中,与SO2完全反应机会大大增加,从而提高了脱硫效率,而且吸收剂粒子表面的电晕还大大提高了吸收剂的活性,降低了同SO2完全反应所需的滞留时间,从而有效地提高了SO2的去除效率。工业应用结果表明:当Ca/S比为1.5左右时,系统脱硫效率可达60%~70%。

除提高吸收剂化学反应速率外,荷电干吸收剂喷射系统对小颗粒的粉尘的清除也有帮助,带电的吸收剂粒子把小颗粒吸附在自己的表面,形成较大颗粒,提高了烟气中尘粒的平均粒径,这样就提高了相应除尘设备对亚微米级颗粒的去除效率。

荷电干式吸收剂喷射脱硫系统的优点为投资小、收效大、脱硫工艺简单有效、可靠性强;整个装置占地面积小,不仅可用于新建锅炉的脱硫,而且更适合对现有锅炉的技术改造;CDSI是纯干法脱硫,不会造成二次污染,反应生成物将与烟尘一起被除尘设备除去后统一运出出厂外。其缺点是对脱硫剂要求太高,一般的石灰难以满足其使用要求,而其指定的可用石灰则售价过高,限制了其推广。

6、炉内喷钙尾部增湿烟气脱硫技术

炉内喷钙尾部增湿也作为一种常见的干法脱硫工艺而被广泛应用。虽然喷钙尾部增湿脱硫的基本工艺都是将CaCO3粉末喷入炉内,脱硫剂在高温下迅速分解产生CaO,同时与烟气中的SO2反应生成CaSO3。由于单纯炉内喷钙脱硫效率往往不高(低于20%~50%),脱硫剂利用率也较低,因此炉内喷钙还需与尾部增湿配合以提高脱硫效率。该技术已在美国 、日本、加拿大和欧洲国家得到工业应用,是一种具有广阔发展前景的脱硫技术。目前,典型的炉内喷钙尾部增湿脱硫技术有美国的炉内喷钙多级燃烧器(LIMB)技术、芬兰的炉内喷石灰石及氧化钙活化反应(LIFAC)技术、奥地利的灰循环活化(ARA)技术等,下面介绍一下LIFAC技术[11]。

LIFAC脱硫技术是由芬兰的Tampella公司和IVO公司首先开发成功并投入商业应用的该技术是将石灰石于锅炉的800℃~1150℃部位喷入,起到部分固硫作用,在尾部烟道的适当部位(一般在空气预热器与除尘器之间)装设增湿活化反应器,使炉内未反应的CaO和水反应生成Ca(OH)2,进一步吸收SO2,提高脱硫率。

LIFAC技术是将循环流化床技术引入到烟气脱硫中来,是其开创性工作,目前该技术脱硫率可达90%以上,这已在德国和奥地利电厂的商业运行中得到实现。

LIFAC技术具有占地小、系统简单、投资和运行费用相对较、无废水排放等优点,脱硫率为60%~80%;但该技术需要改动锅炉,会对锅炉的运行产生一定影响。我国南京下关电厂和绍兴钱清电厂从芬兰引进的LIFAC脱硫技术和设备目前已投入运行。

7、炉内喷钙循环流化床反应器烟气脱硫技术

炉内喷钙循环流化床反应器脱硫技术是由德国Sim-mering Graz Pauker/Lurgi GmbH公司开发的。该技术的基本原理是:在锅炉炉膛适当部位喷入石灰石,起到部分固硫作用,在尾部烟道电除尘器前装设循环流化床反应器,炉内未反应的CaO随着飞灰输送到循环流化床反应器内,在循环硫化床反应器中大颗粒CaO被其中湍流破碎,为SO2反应提供更大的表面积,从而提高了整个系统的脱硫率[12]。

该技术将循环流化床技术引入到烟气脱硫中来,是其开创性工作,目前该技术脱硫率可达90%以上,这已在德国和奥地利电厂的商业运行中得到证实。在此基础上,美国EEC(Enviromental Elements Corporation)和德国Lurgi公司进一步合作开发了一种新型烟气的脱硫装置。在该工艺中粉状的Ca(OH)2和水分别被喷入循环流化床反应器内,以此代替了炉内喷钙。在循环流化床反应器内,吸收剂被增湿活化,并且能充分的循环利用,而大颗粒吸收剂被其余粒子碰撞破碎,为脱硫反应提供更大反应表面积。

本工艺流程的脱硫效率可达95%以上,造价较低,运行费用相对不高,是一种较有前途的脱硫工艺。

8、干式循环流化床烟气脱硫技术

干式循环流化床烟气脱硫技术是20世纪80年代后期发展起来的一种新的干法烟气脱硫技术,该技术具有投资少、占地小、结构简单、易于操作,兼有高效除尘和烟气净化功能,运行费用低等优点。因而,国家电站燃烧工程技术研究中心和清华大学煤的清洁燃烧技术国家重点实验室分别对该技术的反应机理、反应过程的数学模型等进行了理论和实验研究。其工艺流程如图3示,从煤粉燃烧装置产生的实际烟气通过引风机进入反应器,再经过旋风除尘器,最后通过引风机从烟囱排出。脱硫剂为从回转窑生产的高品质石灰粉,用螺旋给粉机按给定的钙硫比连续加入。旋风除尘器除下的一部分脱硫灰经循环灰斗和螺旋给灰机进入反应器中再循环。在文丘里管中有喷水雾化装置,通过调节水量来控制反应器内温度[13]。

干式循环流化床烟气脱硫技术在烟气中SO2浓度较低的情况下尤其适用。它具备以下特点:

(1)锅炉飞灰作为循环物料,反应器内固体颗粒浓度均匀,固体内循环强烈,气固混合、接触良好,气固间传热、传质十分理想。

(2) 反应塔中由于颗粒的水分蒸发与水分吸附、固体颗粒之间的强烈接触摩擦,造成气 、固、液三相之间极大的反应活性和反应表面积,对于烟气SO2的去除有非常理想的效果 。

(3) 固体物料被反应器外的高效旋风分离器和除尘器收集,再回送至反应塔,使脱除剂 反复循环,在反应器内的停留时间延长,从而提高了脱除剂的利用率,降低了运行成本。

(4) 通过向反应器内喷水,使烟气温度降至接近水蒸汽分压下的饱和温度,提高脱硫效率。

(5) 反应器不易腐蚀、磨损。

(6) 系统中的粉煤灰对脱硫反应有催化作用。

该技术已经在国家电站燃烧工程技术研究中心和清华大学煤的清洁燃烧技术国家重点实验室分别建立了烟气循环流化床脱硫热态试验装置,为干式循环流化床烟气脱硫技术开发提供了新的理论依据与基础数据。并且2000年底,该项技术已成功应用于清华大学试验电厂的烟气脱硫工程[14]。

目前对现有的机组进行烟气脱硫技术改造方面投入了大量的精力,正在多个领域展开研究工作,其中在干法烟气脱硫方面研究较多的是循环流化床烟气脱硫技术及电子射线辐射法烟气脱硫技术,电晕法烟气脱硫技术目前研究的也较多。烟道气脱硫技术最显著改造之一是吸收器规格的增大,采用单个吸收器,据报道安装一台脱硫装置可服务于两台大型锅炉的烟气脱硫装置,以这种方式增大设备规格,大大降低了投资成本。研究与开发出一种新的烟气脱硫装置是烟气脱硫技术的发展趋势之一。其研发方向为SO2脱硫率高、可靠性强、辅助耗电低、采用单个吸收器、副产品可售或可利用,为保障这些技术要求,应该在脱硫技术的工艺、设备和材料方面进行进一步研究。

本文在资料的搜集和写作等各方面承蒙宋长友老师的悉心指导和各方面的帮助,使本论文能够顺利的完成,在此表示衷心的感谢,对魏利摈、罗胜铁等老师在资料的搜集过程中给予的帮助表示感谢,对同组的崔月、徐倩、刘立宅在资料搜集过程中的密切配合表示感谢。

[1] 叶大均,李宇红,徐旭常.高效超临界压力燃煤发电与低费用烟气净化技术.中国电力.2000,VOL33.NO.3。

[2]杜江,郭晓丹.Ca/S比小于1半干法烟气脱硫技术研究.化工进展.2004(2) 43~46

[3]胡金榜,王风东等.喷雾干燥法烟气脱硫的实验研究.环境科学.2001(8)23~26

[4]李广超.大气污染控制技术.第一版,北京,化学工业出版社.2001.5,142~144

[5]锅坤敏等.活性炭纤维及其前景.化工进展.1999(5)36~39

[6]张基伟.国外燃煤电厂烟气脱硫技术综述.中国能源信息网,2003。

[7]赵毅,李守信.有害气体控制工程.北京,化学工业出版社,环境科学与工程出版中心.2001.8.207~211.

[8]日本三菱重工(株).三菱工业烟气脱硫技术介绍.北京国际烟气脱硫研讨会.1996

[9]李坚,张晓研等.填充电晕法处理二氧化硫的实验研究,环境工程.2003.2. VOL21.PP 35~37

[10]陈亚飞.烟气脱硫技术综述.

[11]马广大等.大气污染控制工程,第一版.北京.中国环境科学出版社.1985

[12]赵毅,李守信主编.有害气体控制工程,北京,化学工业出版社,环境科学与工程出版中心.2001.8. 211~219

工业烟气论文范文第6篇

关键字:循环经济;钼产业区;工业生态化建设

中图分类号: Q14 文献标识码: A

钼是具有较高工业应用价值的有色金属,它在各个领域中都有着广泛的用途,在经济利益的驱使下,众多企业开始进行钼业生产,而未成规模的生产或落后的工艺技术造成了钼资源的严重浪费 [[[] 王德志,杨刘晓,赵宝华.走循环经济之路―促进钼业可持续发展[J]. 中国钼业,2006,30(3):5-8]]。此外,钼矿采、选、冶炼及加工过程中排放的大量废石、尾矿、污水及废气引起区域环境的严重污染及生态破坏。因此,寻求一条经济、环境与资源相互协调的可持续发展道路,是钼业发展所面临的一个重大问题。以循环经济为基础进行钼产业区工业生态化建设,同时实现资源能源高效利用、减少污染物质排放、促进区域经济增长等,是钼工业发展的必然选择。钼产业区工业生态化建设具体体现在企业、园区及社会三个经济活动的不同层面上。

1 钼企业实施清洁生产

作为园区组成的最小单元,企业内部实施清洁生产是对钼产业区进行工业生态化建设的第一步,体现于清洁的原料与能源、清洁的生产过程以及清洁的产品三方面[[] 赵家荣.张德霖.清洁生产促进法问答[M].北京:学苑出版社,2003]]。

(1)清洁的原料与能源

在钼业生产过程中要求充分循环利用水资源。矿坑水经沉淀处理后可一水多用于采矿区和选矿厂生产用水;选矿厂产生的尾矿浆经尾矿库处置后,澄清的尾矿水可满足生产要求回用于选矿生产,多余部分可作道路洒水和车间冲洗用水;钼产品加工企业生产用水或排入尾矿库与尾矿浆一同处置利用,或在企业内部回用,力争做到污水零排放,提高水资源利用率。

(2)清洁的生产过程

在钼业生产中需要采用高效生产工艺及技术,以低毒、低毒原料替代高危害性原料,减少生产过程中的危险因素,使工艺副产品和废物能在厂内和厂外得到综合利用。

企业生产工艺和装备的技术水平与产品的能源消耗、物质消耗有着直接关系。采用先进的工艺和设备,能提高资源利用率,降低产品的物耗、能耗,减少污染物排放,是实现清洁生产过程的核心要素。

(3)清洁的产品

从清洁生产角度考虑,钼产品生产中除了禁止使用毒副作用较大的生产辅料以避免产品携带有毒有害物质外,还要求钼制品在达到其使用寿命后,易于回收、再生和复用,注意对区域钼二次资源回收再生。

2 钼园区生态产业链构建

以循环经济理论为指导,以实现物质与能量利用最优化为目的,构建工业系统的原料、产品、副产物及废物的生态产业链是实现工业生态化建设的核心内容。对园区进行物能代谢,明确主要资源及能源的代谢途径是进行生态产业链设计的基础。生态产业链的设计需要首先明确园区主导产业链,其次以链上企业生产过程为基础,从技术角度探讨其中间产物及废弃物的资源化途径,以其为源头拓展产业链,进而引入辅助产业链,形成一个行内企业纵向共生、跨行企业横向耦合的产业网络[[[] 由文辉.生态工程原理与应用[M].华东师范大学出版社,1998]]。

2.1 园区物能代谢分析

钼产业是典型的制造行业,贯穿其生产过程的钼、硫等资源以及生产废渣、废气等都对生产或环境产生一定影响。因此,分析这些物质的代谢过程是提高资源利用效率,理清生产全过程物能流动与数量的重要手段。

根据钼工业的生产工艺,可以明确钼矿从采矿到选矿、冶炼加工的过程中,钼元素的代谢途径。图1说明了钼矿主要资源代谢的基本途径。

图1 钼工业代谢示意图

2.2 主导产业链确定及延伸

钼产业区是以钼矿选采及冶炼为主的区域,其“关键种企业”包括钼矿采选、冶炼及加工在内的一群企业,而钼矿的开采加工则成为钼产业区的主导产业链。由钼工业代谢分析图(图1)可以看出,伴随着钼产品的生产过程会有伴生资源产品、生产废气、工业固废等中间产品和废弃物产生,因此,延伸主导产业链是构建辅助产业链的前提。

完整的钼业生产链应集采矿、选矿、冶炼及深加工于一体。钼业小区产业链的核心即为钼资源的产品链,即“钼精矿-钼焙砂-钼酸铵(氧化钼)-钼化工(钼金属)”,大致可分为钼初级产品生产链及钼深加工产品生产链。

(1)钼初级产品生产链

钼的初级产品主要有钼铁、钼焙砂及钼酸铵。浮选出钼精矿后可采用干法或湿法工艺直接生产钼焙砂或钼酸铵,亦可先干法焙烧生产钼焙砂后再加工生产钼铁或湿法产出钼酸铵。

(2)钼深加工产品生产链

钼的深加工产品包括钼化工及钼金属两类,其中,钼化工产品是以钼酸铵或高纯氧化钼为生产原料,而高纯氧化钼需以钼酸铵或钼焙砂为原料生产;钼金属的生产则需还原高纯氧化钼产出纯钼粉后进一步加工。

据此,钼产品生产链可细分为“钼精矿-钼焙砂-钼酸铵-钼化工”、“钼精矿-钼焙砂-高纯氧化钼-钼化工”、“钼精矿-钼焙砂-氧化钼-纯钼粉-钼金属”、“钼精矿-钼酸铵-钼化工”、“钼精矿-钼酸铵-氧化钼-纯钼粉-钼金属”等。

2.3 辅助产业链引入

在钼矿采选及加工工程产生的中间产品和污染物中,伴生资源、含硫烟气和尾矿渣最为典型并有较大利用价值,由此,可将伴生资源回收及含硫烟气和尾矿渣的综合利用作为钼工业生产的辅助链条。

(1)伴生资源回收链

目前具有开采价值的钼矿主要是辉钼矿,在辉钼矿的伴生矿物中,以硫元素居多,此外还伴生有黄铁矿、黄铜矿、方铅矿、铅铀钛铁矿等几十种矿石物种,具有极大的回收价值。目前选钼工艺一般采用优先浮选法,在优先选钼后进行扫选尾矿回收伴生矿物,经反复多次的扫选可实现对钼矿中硫、铅、铜、铁等油价的综合回收。

近些年来钼矿中铼元素的回收成为钼矿伴生矿物回收领域的一个研究重点。铼是一个真正稀有并且分散的元素,由于它可用来制造特种灯泡、高温电偶、合成具有较高硬度及抗磨抗蚀性的合金以及高度选择性催化剂,因而其回收备受人们关注。然而,自然界中含铼矿物非常稀少,辉钼矿是迄今为止人们发现的最主要的铼依附体,因此,辉钼精矿处理过程中,从含铼烟气及溶液中回收铼元素是钼提取过程中一项重要的任务。

(2)含硫烟气综合利用链

在钼精矿焙烧为工业氧化钼的过程中,精矿中的硫被氧化为SO2,随烟气进入烟气净化系统,成为废气中的主要污染物。在有色金属冶炼工业中,铅锌行业的低浓度SO2烟气回收工艺已经发展成熟且普遍应用,大多是采用两转两吸法生产硫酸对其加以回收利用。参考铅锌冶炼的成功实例,钼矿冶炼烟气中SO2的回收也逐渐成熟。

在制酸的过程中产生的酸泥,经石灰石中和后产生的中和沉渣因含有硫酸钙、氟化钙,可用作缓蚀剂而被水泥生产厂家使用,构建起化工与建材企业间的生产联合。此外,制酸装置产生的过热蒸汽可用于发电,供企业内部或园区企业使用,解决园区企业的部分用电,既节约的能源又降低了生产成本。

(3)选钼尾矿综合利用链

在选钼过程中,约有95%的矿石最终以尾矿的形式堆存于尾矿库,尾矿的长期堆放需占用大量土地,亦会在雨季造成泥石流、滑坡等地质灾害。对其加以综合利用,不仅可减少园区工业固废的产生量,缓解园区生态压力,也丰富了园区产业种类,有利于其经济的发展。

目前研究出的选钼尾矿综合利用途径主要有生产水泥、微晶玻璃等建筑材料及生产硅肥。有色金属选矿尾砂多以SiO2为主,含Ca、Mg等氧化物,在硅酸盐类建筑材料生产中,可以代替主料石英砂,配以其他所需元素可以用于生产水泥、烧制玻璃等。若综合利用钾、钼、铁、锌,则可制作含多种中微量元素的硅肥。

值得一提的是,用尾矿制建筑材料及硅肥存在其含放射性物质及重金属等有害元素而影响健康的隐患。因此,综合利用尾矿砂需要特别慎重,要详细分析尾矿中是否存在对健康不利的元素[[[] 颜学军.矿山尾矿资源利用和环境保护[J].稀有金属与硬质合金,2005,(33):23-25]]。

3 区域内钼资源的回收再生

作为循环经济的最后一环,对钼的二次资源的回收利用是钼生态产业建设不可缺失的一环。随着我国钼深加工产业的不断扩大,包括桌面料、地面料、切削料在内的钼金属废料以及钼冶金化工废料产量与日俱增,仅石化、化肥生产中使用的废催化剂就有上千吨的量,这些都是钼的可再生资源[[[] 张文朴.落实科学发展观促进生态钼业建设[J].中国钼业,2006,30(6):3-6]]。总的说来,钼的二次资源主要包括以下几类[[[] 张启修,赵秦生.钨钼冶金[M].北京:冶金工业出版社,2005]]:

① 钼制品及其加工废料。此类废料主要来自钼及其他含钼材料制品的生产加工过程,如钼棒、钼丝及钼块等的残料和机械切削碎片、磨屑废料及金属鳞皮。其含钼成分一般较高,通常为92%~99.5%。

② 冶炼过程废料、废液。冶炼过程废料主要来自钼冶炼现场的地面垃圾、不合格粉末制品,以及生产过程中产生的含钼废渣、废液等。

③ 合金废料,主要为含钼的废旧合金钢。

④ 含钼废催化剂,主要来自于石油化工行业。

通过对钼产品生产过程中产生的钼二次资源及一定区域内的二次资源进行回收再加工,可以扩大钼金属资源供给量,减少环境污染,增加生态效率。特别值得一提的是,通常情况下,含钼废催化剂中的钼含量远高于钼矿石中的钼含量,从中提取钼及其他有价元素不仅能回收资源,而且生产成本也相应较低一些。

如同原生金属生产对精矿有一定要求一样,钼二次资源回收冶炼过程对回收资源的物理规格和化学成分是有一定要求的,需要对其进行严格的预处理,达到钼冶炼生产要求后方可与原生精矿一同进行加工生产。由于钼加工企业并非专业的再生企业,只能依靠现有的冶炼技术和设备,对符合工艺要求的钼二次资源处理,因此需要与专业的物资回收企业建立联系,回收符合生产要求的二次资源。

4 钼业区工业生态化建设模式

综合前面的分析,在一个钼产业区的工业生态化建设过程中,可以通过建立如下产业链形成生态钼业网络。

① 以钼矿的采矿-选矿-冶炼-深加工为主的钼产品生产链。

② 以回收伴生矿物为主的副产品生产链,如硫、铅、铁、铜、铼的回收。

③ 以废物综合利用为主的生产链,包括将采矿渣综合利用于回填矿坑、筑路筑墙; 回收选冶过程的含钼粉尘,返回生产线进行再加工;回收焙烧烟气中SO2制酸,减少污染,提高硫资源利用率;综合利用选厂尾矿渣,用做生产水泥、硅肥或微晶玻璃的原辅料;回收钼加工废料、冶炼废渣废液,或综合利用,或处理后返回生产线进行再生产;

④ 区域二次资源回收链,收购社会区域内的废钼合金及催化剂等二次资源,筛选及处理后进入钼加工生产系统。

⑤ 水资源循环利用链。主要体现在钼生产链中,如:矿坑水经处理后首先回用于冷却工艺补水、矿区绿化、道路洒水等,多余部分可进入选矿企业;选矿废水经尾矿沉淀处理后回用于选矿工序,争取实现园区污水的零排放。

⑥ 硫酸厂余热综合利用链。硫酸厂余热则回收后用于发电,供硫酸厂自身生产使用,多余电量出售于园区内其他生产企业使用。

工业烟气论文范文第7篇

“锅炉设备及检修”是热能动力设备与检修工程专业的主干课程。该课程以大型电站煤粉锅炉为教学对象,全面系统地阐述了电站锅炉结构,功能,主要系统及工作原理。主要内容包括:锅炉的构成及工作过程,燃料、煤粉制备工艺及检修,燃烧基本理论及燃烧设备检修,各受热面的主要运行问题、检修内容、工艺流程、验收标准,蒸汽净化及水质工况、锅炉机组的布置及热力计算方法等内容。根据高等职业学校对工程类应用型核心课程教学的要求,高职教育就是以就业为导向,以突出学生的职业能力为核心的特色教育,其核心就是要培养学生的职业岗位技能的操作性和专业性,热能动力类学生其核心课程之一中的锅炉设备及检修课程针对热动专业学生的教学课时已经缩短到72个教学课时,而且包括8个学时的实验。鉴于该课程对于热能动力类学生的重要性,且教学内容多、课时少、授课及学习难度大、综合性强的特点,本文结合教师在“锅炉设备及检修”课程中的教学实践,结合本人在电厂工作中实践经验,本着培养动力类高职院校学生核心岗位能力,分析该课程的教学难点,有针对性地谈一些解决方案,希望对提高该课程的授课及学习有所裨益。

二、统筹兼顾构建教学体系

针对“锅炉设备及检修”课程的特点,要求授课教师在该课程授课之前,在做教学计划时,就要求教师要精选教学内容,要求授课教师在结合教学大纲要求的同时,能根据高职学生的教学特色,一方面照顾知识面的广度,另一方面要注重基本概念和基本原理的深度,同时要兼顾任务驱动式教学方法中的师生互动,培养学生对该课程的兴趣。“锅炉设备及检修”的重点和难点是制粉系统和燃烧系统,教学计划中应该相应增加学时数量。当学生首次接触到热力系统,由于热力系统中各种设备较多,结构复杂,功能多样,管线连接密如织网,不容易记忆,教师在上课时一定要借助相关的教学软件,采用多媒体课件教学,针对各种设备结构及功能比较以及对系统和系统之间比较进行讲解,从而加深学生的理解。为了合理利用多媒体手段辅助教学,教师在备课时一定要把收集到的和在电厂拍摄到的许多图片反映到课件里,收集大量的图片、动漫和视频,制做内容丰富、通俗易懂、重点突出,详略得当的多媒体课件,这样就可以很形象地讲解电厂锅炉原理和关键设备结构,在教学中取得了很好的效果。课件的另一个优点是可以很方便地及时进行更新,我们可以不断地把从电厂得到的最新技术动态和设备图片添加到课件中,或针对不同电厂的锅炉设备特点进行有针对性的内容调整,从而使教学更有针对性。虽然多媒体教学能够有效扩充和丰富教学内容,但仍然有“站在锅炉旁不知道锅炉在哪里的现象”。其原因在于电厂锅炉设备庞大,教学过程中学生很难把握住整体与局部的关系。模型教学的直观性则可以有效地提高学生的感性认识,增强教学效果,是提高该课程教学的有效途径。热能动力实验室陈列典型的教学模型有:200MW热电联产全厂模型、300MW锅炉模型、全厂模型和600MW锅炉模型等,因此,为了让让学生能从不同角度、不同层次了解和掌握锅炉的结构、功能。教师上课不一定要局限于教室,有时可以选择在模型室。在授课时间和实验室开放时间,学生可随时参观模型。还有很重要的一点,尽量多提供让学生到电厂实践学习的机会。比如,我们学院前后安排了本专业学生的电厂认识实习和生产实习,并安排上该课程的专业老师带领,这样,在学生实习过程中,随时解答学生的提问,帮助学生及时理解和掌握相关知识,这对于学生来讲是一个很宝贵的机会。这样实质性的实习,不仅可以让课本理论与实践相结合,使学生能够感受到具体东西,实实在在的锅炉及其他的辅助设备等等。还可以增强学生的认知能力,同时也为未来的工作打下一定的岗位基础。有了这样的经历,学生就不再感到老师在讲“天书”,天马行空,不着边际。纸质教材、多媒体课件、模型教学和电厂实践学习构成了较为完整的教学体系,充分保证了这门课程的教学质量和学习效果。

三、动手动脑注意知识点的联系和巩固

作为专业课程,“锅炉设备及检修”课程的教材各章节后一般不附思考题和计算题,学生在课后的练习机会很少。如果课后学生不主动复习,课前又缺少预习,则容易出现授课及学习效果都比较差的情况。讲授内容难以巩固成为学生掌握知识的瓶颈,更别说学以致用,理论联系实际了。针对这种情况,教师可以在每次课后把下一次课的主要内容以思考题的形式发给学生,要求学生自学,这是督促学生课前预习、提高学生自学能力的重要手段。为了增强预习效果,可在课堂讲授前针对上次课预留的思考题进行探讨,必要时可以采用提问检查等手段。由于有思考题做引导,学生的自学积极性一般都比较高,自学方向也比较明确。讲授时,教师可根据思考题,配合教科书,结合工程实际,有选择、有重点地作一些讲解,从而加深学生对基本概念的理解和掌握。如果应用得当,学生配合积极,则可以起到花费课时少而讲授内容多、课堂容量大。针对课后练习少的情况,应由授课教师适当增加课后计算题。例如在讲授完第二章燃料及燃料燃烧计算,针对不同基准的换算关系、煤的高低位发热量的关系、折算水分、折算灰分、折算硫分、理论空气量、过量空气系数、锅炉漏风系数、理论烟气量、实际烟气量、烟气焓计算等知识点,安排一次2学时的习题课,习题课结束后,针对习题课的内容,留一部分课后作业,批改完之后,针对典型的错误,进行讲解,巩固学生们所学的知识。在各个章节尽量多地给出前沿研究方向,并与阶段性的小论文或读书报告相结合。阶段性的小论文或读书报告是教学活动的实际体现,它要求既要有教学理论知识又要有工程实际应用的例证,并提出自己的观点与修正意见。在保证完成基本教学任务与作业后,期中与期末布置两篇阶段性的小论文或读书报告,阶段性的小论文或读书报告体裁不限,可以是阶段性的学习心得、总结、综述、专题等。把有代表性、有特色的文章在课堂上宣读。以小论文或读书报告的形式来反映学生知识的掌握程度与扩展情况以及创新思维的发展,并以此作为期终考试成绩的一部分。这种方法既考察了学生的学习情况,增加练习,同时为毕业设计和实践教学打下坚实的基础。在全课程预定内容讲授完后,进行全面系统的复习,可以使学生对电厂锅炉有一总体概念,这样可以巩固所学知识,并为随后的课程设计和毕业设计打下坚实基础。“锅炉设备及检修”课程基本概念多,涉及到的知识面广,学生难免会出现边学边忘的现象,抓好期末复习,是保证教学效果的重要一环。

四、严格要求,定理定义务必要牢记

对于工程类教材,“锅炉设备及检修”课程教材和规范中条文描述抽象,学生学习时易感觉枯燥,难以理解、记忆。针对这种情况,教师应改变传统的在黑板上板书讲授方式,多用多媒体及电子教案,从而节省出板书时间,用于解释条文和规定的背景及相关知识,使学生理解条文的来龙去脉,加深记忆。可用图形、动画、照片或者视频资料等多媒体手段来表达条文的具体内容,更直观,便于学生理解。在开课之初的绪论部分,要讲清楚电力工业在我国国民经济中的重要作用。电力工业从一个侧面反映了国家经济实力的强弱,由此作为切入点激发学生的学习热情,提高学生的敬业精神和爱国热情。鉴于本课程在电厂中所处的地位与作用,教学工作者必须具有严谨的工作态度、扎实的基础理论知识和实际应用能力。因该课程涉及以前所学的各门专业课程,如“热工基础”、“泵与风机。因此,教师在上课时应该注意在讲授时与学生的互动中了解学生对以前所学知识的掌握程度,授课方式也应相对灵活,要帮助学生复习和回忆已学专业知识,否则没有相对坚实的专业基础,要掌握该课程的内容也很困难。

五、任重道远,授课效果对学生的影响深远

对于三年制高职学生,必需有半年的顶岗实习,因此,核心专业课程“锅炉设备及检修”课程一般在第四学期开设,经过一个学期的讲授后,学生将在本学期的锅炉原理课程设计和第五学期的毕业设计中将大多数知识学以致用。锅炉课程设计的任务是对锅炉进行额定工况或变工况校核热力计算。设计目的是通过课程设计加深对锅炉课程的总体理解,熟练掌握燃料的燃烧计算,热平衡计算,炉膛校核计算,前屏、后屏,对流过热器再热器及尾部受热面校核计算方法。为毕业设计和走上工作岗位打下良好的基础。毕业设计是热能与动力工程专业教学计划中最后一个实践教学环节,也是对学生所学的专业理论知识和实践技能的一次综合性检验,是培养学生创新能力和创新意识、提高综合素质的重要阶段。通过毕业设计可以锻炼学生将所学的知识全面有机地结合起来,并应用这些知识,综合性创造性地来分析和研究乃至解决本专业某些方面的科学技术问题,从而培养学生具备现代工程技术工作所必备的全局观点、安全观点和经济观点,树立正确的设计思想和严谨的工作作风,为今后走向工作岗位打下良好的基础。可见该课程授课的效果将直接影响毕业设计的质量。授课教师一般都具有多年毕业设计辅导经验,应紧密结合毕业设计的具体内容,有针对性地强调这方面的知识,在完成正常授课的同时,结合毕业设计中遇到的具体问题,联系实际进行讲解。

工业烟气论文范文第8篇

关键词:燃气具;CO浓度;超标;安全风险

引言

随着市场需求的不断扩大,燃气具的种类以及数量也在不断增加。通常燃气具可以大致分为家用以及商用两种形式。使用环境以及输出热负荷是两个主要的参考标准。不管是商用还是家用,由于涉及到的用户数量非常庞大,因此燃气具的质量也影响着广大用户的生活。在对市面上的燃气具进行调研检测时,发现大部分都是合格的产品,但其中也不乏不合格产品。这些不合格的产品流入市场就会引起很严重的安全隐患,威胁用户的生命财产安全。其中,检测的一个主要参考标准就是一氧化碳的排放量。因此,对一氧化碳的危害、产生、检测以及监控防范措施的分析也变成一项极为重要的工作。

1 烟气中CO的产生、危害检测及标准要求

1.1 烟气中CO的危害

使用燃气具燃烧燃料时会产生一定数量的一氧化碳气体,如果使用的燃气具本身质量不合格这一数值就会变得更高。再遇上不合理甚至没有没有排烟管道或排烟管道的情况下,就会导致烟气无法顺利外排,当一氧化碳其他在炊具附近进行堆积的时候。就会引起浓度超标,对周围的环境造成威胁,甚至危害人的生命。

1.2 CO的产生

在使用燃气具接通燃料时,首先需要对燃料的含量进行一定的了解与检测。理想状态下,将燃气与空气进行合理的配比进行燃烧,排除的烟气成分只有水蒸气、氮气以及二氧化碳气体。但在实际应用中,由于难以实现理想状态,就会导致不充分燃烧现象的发生,排放的烟气中就会包含一氧化碳成分。

1.3 CO检测及标准要求

针对燃气具的使用环境以及主要用途,在一氧化碳浓度的排放量上,国家多有明确的规定。不同情况下的含量标准尽管有所差异,但都会根据各自的情况按照相关条款严格执行。通常在检测过程中,当与强制性条款进行对比时,包含一条以及一条以上就可以视为不合格。即一氧化碳浓度超标就可以判定为不合格产品[1]。具体检测工作室在保持热平衡的状态下对烟气进行采样,对干烟气中的CO和CO2进行检测。同时按照相应的核算标准,以及条款规定,对其中的含量进行分析。

2 产品质量安全风险分析

燃气具的质量以及燃料是造成燃烧问题的两个主要方面。其中燃料的供应国家会有统一的规定以及相应的监管部门。最主要的原因是产品本身,对产品质量安全风险分析应该首先从企业入手。研究表明,风险的来源主要包含以下几个方面:人员;仪器设备;材料及零部件;生产工艺及检验方法。

2.1 人员

诸多企业中高端技术人才紧缺,在生产过程中对人才的数量控制力度不够,加上市场的需求,导致许多员工没有培训就上岗,严重影响了生产质量。同时遇到不良的管理人员,重视自身利益同时缺乏社会责任感,为节约成本,在生产中降低产品质量,从而导致风险的产生。

2.2 仪器、设备

企业中的仪器以及设备也会对产品的质量造成严重的影响。部分企业的设备仪器陈旧,检修以及保养不及时,导致设施的标准严重低于生产标准,从而在硬件技术上难以达到产品的标准。在实际中,相关的仪器已经有明文规定,只是企业由于成本控制以及经营状况,在仪器、设备上的投入量过少,导致产品质量严重下滑。

2.3 材料及零部件

合格的原材料以及零部件是构成高质量产品的重要材料基础。许多企业为了谋求更大的利润,节约成本,在对原材料以及零部件的使用上降低了标准,直接导致产品的质量降低。最终制造出的燃气具在用户使用时发生严重问题[2]。

2.4 生产工艺、检验方法

受到可以技术水平的影响,某些企业的生产工艺落后不科学,整个流程存在诸多的不合理情况,也是造成产品风险的重要影响因素。对产品的检测是保证顺利出厂销售的关键一环,也是对风险进行控制的重要措施。通常情况下,检测方式有两种,一种是使用光学原理的气象色谱仪进行检测,另一种利用电化学吸收式气体分析仪进行测试。两种方式都可以科学有效的对产品中的CO浓度进行准确测量,受到条件的限制,生产商在检测方面也会时有纰漏发生。

2.5 生产、检验环境

合理的生产检验环境使生产企业必须具备的一个重要条件。有部分企业在这一条件上不能满足需要,导致一定程度的质量风险。对生产以及检测环境的要求,应该符合国家的具体条文规定。首先是温度,检测温度应该在室温的基础上保证5摄氏度以内的浮动;其次是保证室内的通风良好,同时对CO以及CO2有具体的规定,前者不得超过0.002%,后者含量应小于0.2%;最后是对交流电源的电压波动控制,应该在2%的误差以内[3]。企业的检测环境无法保证,就难以对产品做出合理的检验,从而造成质量风险。

3 燃气具CO浓度超标质量安全风险防范措施

对燃气具CO浓度超标质量安全风险进行防范时,应该从影响要素上进行分析,也就是从企业方面入手。保证从源头上对风险进行把控,保证产品的生产质量,改善目前的燃气具总体水平。针对企业造成产品质量风险的以上几个方面,现制定出如下措施进行防范:

首先,严格建立风险管理小组。小组的人员应该涉及到生产技术以及质量等人员。在产品生产成形之后,对其质量进行严格审查,保证对风险的前期管控。主要的内容就是保证产品生产符合科学的工艺流程;按照规定的方式开展检验工作;对检中出现的质量问题进行有效分析,提出改进建议;对市场上的不合格产品进行及时回收,防止危害扩大。

其次,建立有效的质量风险管理体系,按照同时对产品的检测应该做到定期、专项审查,及时有效地降低风险,提高产品的质量安全性。将安全责任制度进行准确落实,将每一个责任落实到具体的工作人员身上,提高工作人员的责任意识;同时对管理层进行严格监视审查,提高整体的控制风险能力。

最后,企业增加对生产的投入,引进先进的设备进行生产,对原有的工艺进行改良,优化整个作业流程。通过建立试验基地的方式,对检测环境进行进一步的提高。同时对原材料以及零部件的供应情况做好严格的筛查工作[4]。从源头上控制质量,去除风险因素。还要加强对人员的审查管理机制,尤其是管理层,发现有不良情况,应该做出相应惩罚,做到以儆效尤。从而改善企业内部人员的总体质量,为降低风险做好严格的人员把关。

4 结束语

由于理想条件不可达到,实际中燃气具在工作时,CO是不可避免的。但是对其浓度的控制却可以通过相应的风险防范措施进行改进。进而将CO在烟气中的浓度有效降低到标准以内,降低人员的使用风险。同时相关部门应该加强对企业的审查力度,保证产品质量,从源头上对风险进行把控,使生产商能够为广大用户提供安全、放心、可靠的燃气具设备。

参考文献

[1]冯涛,嵇永飞,高学杰.燃气具电子控制系统欧标的安全性要求[A].中国土木工程学会城市燃气分会应用专业委员会2010年年会论文集[C].2010:12-18.

[2]高文学,王启.燃气具燃烧特性区间的实验确定与探讨[A].中国土木工程学会城市燃气分会应用专业委员会2010年年会论文集[C].2010:31-

33.