首页 > 文章中心 > 电机论文

电机论文

开篇:润墨网以专业的文秘视角,为您筛选了八篇电机论文范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

电机论文范文第1篇

论文摘要:电动机在我区的使用很广泛,它遍及各行各业的各个角落,在生产、生活过程中发挥着极其重要的作用。但由于大部分电机使用年限较长,电机烧毁的事故常有发生,而且呈上升趋势,严重影响着生产、生活的安全、可靠、长周期运行。现针对电机烧毁原因及相应对策做一分析和研究。

1电机绕组局部烧毁的原因及对策

1.1由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应做保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

1.2由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

相应对策:①卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。②安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。③尽量避免不必要的转轴机加工及电机端盖嵌套工作。④组装电机时一定要保证定、转子铁心对中,不得错位。⑤电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。⑥禁止多种油脂混用。⑦安装轴承前先要对轴承进行全面仔细的完好性检查。⑧对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。

1.3由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。

相应对策:电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前要对绕组的完好性进行认真仔细的检查确诊。

1.4由于长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。

相应对策:①尽量避免电动机过载运行。②保证电动机洁净并通风散热良好。③避免电动机频繁启动,必要时需对电机转子做动平衡试验。

1.5电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。

相应对策:①尽可能避免频繁启动,特别是高压电机。②保证被拖动设备和电机的振动值在规定范围内。

2三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策

如果出现电动机一相或两相绕组烧坏(或过热),一般都是因为缺相运行所致。当电机不论何种原因缺相后,电动机虽然尚能继续运行,但转速下降,滑差变大,其中B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相电流过大,长时间运行,该相绕组必然过热而烧毁。为三相异步电动机绕组为Y接法的情况:电源缺相后,电动机尚可继续运行,但同样转速明显下降,转差变大,磁场切割导体的速率加大,这时B相绕组被开路,A、C两相绕组变为串联关系且通过电流过大,长时间运行,将导致两相绕组同时烧坏。

特殊情况下,如果停止的电动机缺一相电源合闸时,一般只会发生嗡嗡声而不能启动,这是因为电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它不能使电动机产生启动转矩。因此,电源缺相时电动机不能启动。但在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,所以,正在运行中的电动机缺相后仍能运转,只是磁场发生畸变,有害电流成分急剧增大,最终导致绕组烧坏。

电机论文范文第2篇

1.1LED和键盘设计

为了能够实现人与机器的对话,单片机的步进电机控制系统设计了3*4键盘以及4*8LED数码管,人们可以直接对其进行控制。该系统通电后,通过键盘输入控制步进机的运转、启动以及转动方向等,由LED管动态清晰显示步进机的转向以及转速。器件8279能够控制系统键盘的输入以及LED的输出,进而减少单片机工作的承载,8279在控制系统工作的过程中,将键盘输入的信息进行扫描,利用其抖功能,避免事故的发生。(下图为LED和键盘模块)

1.2放大和驱动设计

逻辑转换器是步进机控制过程中的脉冲分配器,其是CMOS集成电路,其输出的源电流为20毫安,能够应用于三相以及四相步进机,其工作可以选择以下6种激进方式进行控制;其中,对于三相步进电机有1、2、1-2相;对于四相步进电机有1、2、1-2相,其输入的方式有单、双时钟选择方式,其具有正向控制、方向控制、监视原点、初始化原位等功能。PMM8713器件主要由激励方式判断、控制以及时钟设置等部分组成,所有的输入端都设置有秘制的电路,进而提高抗外界干扰的能力。PMM8713输出能够接受功率驱动电路,其通过驱图1LED和键盘模块动器,输出最大的工作电流,以满足电机工作的需求。单片机通过调节相关端口的脉冲信号,控制步进机的运行状态、运转方向以及运转速度等。

2单片机的步进电机控制系统软件设计

2.1单片机程序设计

通过中断脉冲信号,计算步进电机的运转步数以及圈数,并对其进行记录;实现对步进电机运转速速的控制;采用端口的中断程序关闭其相关程序,将电机控制在停机状态;通过中断电机的开启部位,将其转换到运行状态,实现电机的运行;PMM8713的U和D端口通过输出高电平,达到控制步进电机运转方向的目的;8279将其接口与自身的8个数据连接口进行连接,当单片机运行到键盘部位时,采用相关端口中断其工作状态,进而达到控制步进机的启动、停止、速度以及方向等,并将其反馈给8279,利用LED将其显示,明确其运转的速度以及方向。

2.2PC上位机设计

设计PC上位机的主要目的就是控制步进电机,利用单片机中相关部位,实现人与机的对话,其利用单片机发出执行命令,实现对步进电机的有效控制。其中,单片机接受的执行命令会存储在相关软件中,其与储存在片内的Flash的相关地址进行比较,不冲突的信息就储存在其中,如与其中储存的信息发生冲突,就会自动中断,有效的保护电机的正常运行。同时,此软件在运行的过程中,应该对晶振中的USART模块进行设置,其相关的控制软件由VB6.0对其进行编写,采用MSComm软件实现实时通讯。

3结语

电机论文范文第3篇

步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。步进电机惯量低、定位精度高、无累积误差、控制简单等特点。广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机设备、复印机、传真机等。

选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。一般地说最大静力矩Mjmax大的电机,负载力矩大。

选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。但细分只能改变其分辨率,不改变其精度。精度是由电机的固有特性所决定。

选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。

选择步进电机需要进行以下计算:

(1)计算齿轮的减速比

根据所要求脉冲当量,齿轮减速比i计算如下:

i=(φ.S)/(360.Δ)(1-1)式中φ---步进电机的步距角(º/脉冲)

S---丝杆螺距(mm)

Δ---(mm/脉冲)

(2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。

Jt=J1+(1/i²)[(J2+Js)+W/g(S/2π)²](1-2)

式中Jt---折算至电机轴上的惯量(Kg.cm.s²)

J1、J2---齿轮惯量(Kg.cm.s²)

Js----丝杆惯量(Kg.cm.s²)W---工作台重量(N)

S---丝杆螺距(cm)

(3)计算电机输出的总力矩M

M=Ma+Mf+Mt(1-3)

Ma=(Jm+Jt).n/T×1.02×10¯²(1-4)

式中Ma---电机启动加速力矩(N.m)

Jm、Jt---电机自身惯量与负载惯量(Kg.cm.s²)

n---电机所需达到的转速(r/min)

T---电机升速时间(s)

Mf=(u.W.s)/(2πηi)×10¯²(1-5)

Mf---导轨摩擦折算至电机的转矩(N.m)

u---摩擦系数

η---传递效率

Mt=(Pt.s)/(2πηi)×10¯²(1-6)

Mt---切削力折算至电机力矩(N.m)

Pt---最大切削力(N)

(4)负载起动频率估算。数控系统控制电机的启动频率与负载转矩和惯量有很大关系,其估算公式为

fq=fq0[(1-(Mf+Mt))/Ml)÷(1+Jt/Jm)]1/2(1-7)

式中fq---带载起动频率(Hz)

fq0---空载起动频率

Ml---起动频率下由矩频特性决定的电机输出力矩(N.m)

若负载参数无法精确确定,则可按fq=1/2fq0进行估算.

电机论文范文第4篇

关键词:DSPFPGA3/3相双绕组感应发电机

1系统简介

3/3相双绕组感应发电机带有两个绕组:励磁补偿绕组和功率绕组,如图1所示。励磁补偿绕组上接一个电力电子变换装置,用来提供感应发电机需要的无功功率,使功率绕组上输出一个稳定的直流电压。

图1中各参数的含义如下:

isa,isb,isc——补偿绕组中的励磁电流;

usa,usb,usc——补偿绕组相电压;

ipa,ipb,ipc——功率绕组电流;

upa,upb,upc——功率绕组相电压;

udc——二极管整流桥直流侧输出电压;

uc——变流器直流侧电容电压。

电力电子变换装置由功率器件及其驱动电路和控制电路两部分组成。功率器件选用三菱公司的智能功率模块(IPM)PM75CSA120(75A/1200V),驱动电路使用光耦HCPL4502。控制电路由DSP+FPGA构成。

图2控制电路的接口电路

2EPM7128与TMS320C32同外设之间的接口电路

图2所示为控制电路的接口电路。控制电路使用的DSP是TMS320C32,它是TI公司生产的第三代高性能的CMOS32位数字信号处理器,其凭借强大的指令系统、高速数据处理能力及创新的结构,已经成为理想的工业控制用DSP器件。其主要特点是:单周期指令执行时间为50ns,具有每秒可执行2200万条指令、进行4000万次浮点运算的能力;提供了一个增强的外部存储器配置接口,具备更加灵活的存储器管理与数据处理方式。控制电路使用的FPGA器件为ALTERA公司的EPM7128,它属于高密度、高性能的CMOSEPLD器件,与ALTERA公司的MAXPLUSII开发系统软件配合,可以100%地模仿高密度的集成有各种逻辑函数和多种可编程逻辑的TTL器件。采用类似器件作为DSP的专用集成电路ASIC更为经济灵活,可以进一步降低控制系统的成本。

电压检测使用三相变压器,电流检测使用HL电流传感器。电平转换电路用来将检测到的信号转换为0~5V的电平。A/D转换器选用ADS7862。保护电路使用电压比较器311得到过压/过流故障信号。

DSP完成以下四项工作:数据的采集和处理、控制算法的完成、PWM脉冲值的计算和保护中断的处理。

FPGA完成以下三项工作:管理DSP和各种外部设备的接口;脉冲的输出和死区的产生;保护信号的处理。

图3FPGA与A/D转换器和DSP之间的接口

3使用FPGA实现DSP和ADS7862之间的高速接口

ADS7862是TI公司专为电机和电力系统控制而设计的A/D转换器。它的主要特点是:4个全差分输入接口,可分成两组,两个通道可同时转换;12bits并行输出;每通道的转换速率为500kHz。控制方法为:由A0线的值决定哪两个通道转换;由Convst线上的脉宽大于250ns的低电平脉冲启动转换;由CS和RD线的低电平控制数据的读出,连续两次读信号可以得到两个通道的数据。

系统中使用了两片ADS7862,它们的控制线使用同样的接口,数据线则分别和DSP的高/低16位数据线中的低12位相连接。这样DSP可以同时控制两片A/D转换器:4通道同时转换;每次读操作可以得到两路数据。

如图3所示,将A/D转换器的控制信号映射为DSP的三个外部端口:A0、ADCS(和ADRD使用一个端口)和CONVST。在FPGA中使用逻辑译码器对端口译码。利用AHDL语言编写的译码程序如下:

TABLE

A[23..12],IS,RW=>A0,ADCS,CONVST,PWM1,PWM2,PWM3,PWM,PRO,CLEAR;

H″810″,0,0=>0,1,1,1,1,1,1,1,1;

H″811″,0,1=>1,0,1,1,1,1,1,1,1;

H″812″,0,0=>1,1,0,1,1,1,1,1,1;

H″813″,0,1=>1,1,1,0,1,1,1,1,1;

H″814″,0,0=>1,1,1,1,0,1,1,1,1;

H″815″,0,0=>1,1,1,1,1,0,1,1,1;

H″816″,0,0=>1,1,1,1,1,1,0,1,1;

H″817″,0,1=>1,1,1,1,1,1,1,0,1;

H″817″,0,0=>1,1,1,1,1,1,1,1,0;

ENDTABLE

其中,0表示低电平,1表示高电平。RW=1表示读,RW=0表示写。

DSP对这三个端口进行操作就可以控制A/D转换器:写CONVST端口可以启动A/D转换器;读ADCS端口可以从A/D转换器中读到数据;写数据到A0端口可以设置不同的通道。

使用上述方法可以实现DSP和A/D转换器之间的无缝快速连接。

4使用FPGA实现PWM脉冲的产生和死区的注入

FPGA除了管理DSP和外设的接口外,还完成PWM脉冲的产生和死区的注入。将PWM芯片和死区发生器集成在FPGA中,就可以使DSP专注于复杂算法的实现,而将PWM处理交给FPGA系统,使系统运行于准并行处理状态。

5使用FPGA实现系统保护

为了保护发电机和IGBT功率器件,励磁控制系统提供了多种保护功能:变流器直流侧过压保护;变流器交流电流过流保护;变流器过温保护;发电机输出过压保护;IPM错误保护。

图5稳态时励磁绕组电压电流及系统直流电压波形

电机论文范文第5篇

关键字:汽车电机故障方法

1.电机故障诊断的特点及实施电机故障诊断的意义

1.1电机故障诊断的特点

电机的功能是进行电能与机械能量的转换,涉及因素很多,如电路系统、磁路系统、绝缘系统、机械系统、通风散热系统等。哪一部分工作不良或其相互之间配合不好,都会导致电机出现故障。因此,电机故障要比其它设备的故障更复杂,其故障诊断所涉及到的技术范围更广,对诊断人员的要求也就更高。一般来说,电机故障诊断涉及到的知识领域主要有[20]:电机理论、电磁测量、信号处理、计算机技术、热力学、绝缘技术、人工智能等。电机故障诊断的复杂性还表现在故障特征量的隐含性、故障起因与故障征兆之间的多元性。一种故障可能表现出多种征兆,有时不同故障起因也可能会反映出同一个故障征兆,这种情况下很难立即确定其真正的故障起因。另外,电机的运行还与其负载情况、环境因素等有关,电机在不同的状态下运行,表现出的故障状态各不相同,这进一步增加了电机故障诊断难度,所以要求对电机进行故障诊断首先必须掌握电机本身的结构原理、电磁关系和进行运行状况分析的方法,即掌握电机各种故障征兆与故障起因间的关系的规律。

1.2实施电机故障诊断的意义

电机的驱动易受逆变器故障的影响,在交流电机驱动系统中,逆变器短路故障将会使电机产生有规律波动的或是恒定的馈电扭矩,使车辆突然减速。研究表明:逆变器出现故障时,永磁感应电机将产生较大的馈电扭矩,而且永磁电机也有存在潜在的高消磁电流的问题。而感应电机在逆变器出现故障时所产生有规律的馈电扭矩将由于有持续的负载而迅速衰减,这说明了感应电机具有较高的容错能力,适应混合动力系统的要求。开关电机磁阻是最具有故障容错能力的电机,而且当其有一个逆变器支路出现故障时电机仍能产生净扭矩,另外,开关磁阻电机成本低,结构紧凑,但是开关磁阻电机有较大的噪声和扭矩脉冲,而且需要位置检测器,而这些缺点使得开关磁阻电机在现阶段不适合应用于混合动力客车上。在混合动力客车动力系统中,电机是作为辅助动力的,而且电机属于高速旋转设备,如果电机出现故障,电机产生的瞬态扭矩将使车辆的稳定性和动力性将受到影响,而且,电机由高压电池组驱动,如果电机出现故障而不能及时容错,电机产生的瞬态电流将使电池受到损害,因此在混合动力系统中对电机进行故障诊断是非常必要的。

2.电机的故障诊断方法及典型故障诊断分析

2.1电机故障的诊断方法

(1)传统的电机故障诊断方法

在传统的基于数学模型的诊断方法中,经典的基于状态估计或过程参数估计的方法被应用于电机故障检测。图1为用此类方法进行故障诊断的原理框图。这种方法的优点是能深入电机系统本质的动态性质,可实现实时诊断,而缺点是需建立精确的电机数学模型,选择适当决策方法,因此,当电机系统模型不确定或非线性时,此类方法就难以实现了。

(3)基于模糊逻辑的电机故障诊断方法

图3为基于模糊逻辑的电机故障诊断方法框图,故障诊断部分是一个典型的模糊逻辑系统,主要包括模糊化单元、参考电机、底层模糊规则和解模糊单元。其中,模糊推理和底层模糊规则是模糊逻辑系统的核心,它具有模拟人的基于模糊概念的推理能力,该推理过程是基于模糊逻辑中的蕴涵关系及推理规则来进行的。模糊规则的制定有两种基本方法:第一,启发式途径来源于实际电机操作者的语言化的经验。第二,是采用自组织策略从正常和故障电机测量获得的信号进行模糊故障诊断的制定,将此方法通过计算机仿真实现,对电机故障有较好的识别能力。

(4)基于遗传算法的电机故障诊断方法

遗传算法是基于自然选择和基因遗传学原理的搜索算法,它的推算过程就是不断接近最优解的方法,因此它的特点在于并行计算与全局最优。而且,与一般的优化方法相比,遗传算法只需较少的信息就可实现最优化控制。由于一个模糊逻辑控制器所要确定的参变量很多,专家的经验只能起到指导作用,很难根据指导准确地定出各项参数,而反复试凑的过程就是一个寻优的过程,遗传算法可以应用于该寻优过程,较有效地确定出模糊逻辑控制器的结构和数量。

遗传算法应用于感应电机基于神经网络的故障诊断方法的框图如图4所示。设计神经网络的关键在于如何确定神经网络的结构及连接权系数,这就是一个优化问题,其优化的目标是使得所设计的神经网络具有尽可能好的函数估计及分类功能。具体地分,可以将遗传算法应用于神经网络的设计和训练两个方面,分别构成设计遗传算法和训练遗传算法。许多神经网络的设计细节,如隐层节点数、神经元转移函数等,都可由设计遗传算法进行优化,而神经网络的连接权重可由训练遗传算法优化。这两种遗传算法的应用可使神经网络的结构和参数得以优化,特别是用DSP来提高遗传算法的速度,可使故障响应时间小于300μs,不仅单故障信号诊断准确率可达98%,还可用于双故障信号的诊断,其准确率为66%。

近年来,电机故障诊断的智能方法在传统方法的基础上得到了飞速发展,新型的现代故障诊断技术不断涌现:神经网络、模糊逻辑、模糊神经网络、遗传算法等都在电机故障诊断领域得到成功应用。随着现代工业的发展,自动化系统的规模越来越大,使其产生故障的可能性和复杂性剧增,仅靠一种理论或一种方法,无论是智能的还是经典的,都很难实现复杂条件下电机故障完全、准确、及时地诊断,而多种方法综合运用,既可是经典方法与智能方法的结合,也可是两种或多种智能方法的结合,兼顾了实时性和精确度,因此多种方法的有机融合、综合运用这一趋势将成为必然,也将成为电机故障在线诊断技术发展的主流方向。

参考文献:

[1]陈清泉,詹宜君,21世纪的绿色交通工具——电动汽车[M],北京:清华大学出版社,2001

电机论文范文第6篇

三相异步电动机是由固定不动的定子和饶轴旋转的转子两部分组成。

(1)定子的结构:三相异步电动机的定子由机座、定子铁芯和定子绕组构成。

(2)转子的构成:三相异步电动机的转子由转子铁芯、转子绕组和转子轴等部件组成。

(3)三相异步电动机由轴承盖、接线盒、端盖、定子铁心、定子绕组、转轴、轴承、转子、风扇、罩壳组成。

2三相异步电动机的工作原理

定子绕组接上三相电源后,电动机便产生旋转磁场,所谓旋转磁场就是指电动机内定子和转子之间气隙的圆周上按正弦规律分布的,能够围绕着电动机在空间不断旋转的磁场。转子与旋转磁场之间存在相对运动。转子导条被旋转磁场的磁力线切割而产生感应电动势,它在转子绕组中感应出电流,两者相互作用产生电磁转矩,使转子转动起来。从而将电能转化为转轴的机械能。

3三相异步电动机的选用

三相异步电动机应用广泛,是一种主要的动力源。在此,要特别强调合理选择电动机的额定功率,如额定功率选择过大,不仅造成设备投资费用增加,而且电动机长期处于低效率低功率因数点运行,是很不合理很不经济的。

3.1三相异步电动机的选用要点

(1)根据机械负载特性、生产工艺、电网要求、建设费用、运行费用等综合指标,合理选择电动机的类型。

(2)根据机械负载所要求的过载能力、启动转矩、工作制及工况条件,合理选择电动机的功率,使功率匹配合理,并具有适当的备用功率,力求运行安全、可靠而经济。

(3)根据使用场所的环境,选择电动机的防护等级和结构形式。

(4)根据生产机械的最高机械转速和传动调速系统的要求,选择电动机的转速。

(5)根据使用的环境温度,维护检查方便、安全可靠等要求,选择电动机的绝缘等级和安装方式。

(6)根据电网电压、频率、选择电动机的额定电压以及额定频率。

3.2三相异步电动机的选用步骤:

选电动机类型选电动机容量校核启动转矩最大转矩等效发热校核经济性综合指标校核电动机机械特性与负载特性对比电动机电压等级与频率决定

4三相异步电动机的维护保养

4.1启动前的准备和检查

(1)检查电动机和启动设备接地是否可靠和完整,接线是否正确与良好

(2)检查电动机铭牌所示额定电压,额定频率是否与电源电压、频率相符合

(3)新安装或者长期停用的电动机(停用三个月以上),启动前应检查绕组相对相、相对地的绝缘电阻值。(用1000伏兆欧表测量)。绝缘电阻应该大于0.5兆欧。如果低于这个值,应该将绕组烘干。

(4)对绕线型转子应该检查其集电环上的电刷以及提刷装置是否能正常工作,电刷的压力是否能符合要求。电刷压力为1.5N/cm-2.5N/cm。

(5)检查电动机的转子转动时候灵活可靠,滑动轴承内的油时候达到规定的油位。

(6)检查电动机所用的熔断器的额定电流是否符合要求。

(7)检查电动机的各个紧固螺栓以及安装螺栓是否牢固并符合要求

4.2运行中的维护

三相异步电动机运行时,值班人员每班应检查一次,检查项目如下:

(1)电流是否超过允许值,有无增大或者减小现象。

(2)轴承应无异常声音,情况应正常,油量应充足,油环转动应灵活。

(3)运行声音应正常,无异常气味。

(4)外壳和轴承的温度是否正常,没有烫手感为正常,否则为过热。滑动轴承温度不应超过80℃,滚珠轴承温度不应该超过100℃。

(5)震动是否正常,其标准应符合:转速3000r/min,振动不超过0.06mm,转速1500r/min,振动不超过0.10mm,转速1000r/min,振动不超过0.13mm,转速750r/min,振动不超过0.16mm。

(6)电缆头是否漏油以及外壳接地是否牢固。

(7)饶线式电动机电刷与滑环检查:

①滑环上电刷是否冒火花。若火花小,应清理电刷。若火花大,应检修处理。

②电刷上的压力应是保证电刷不冒火的最小压力,电刷在刷握内无晃动和卡阻现象

③电刷软线是否完整,接触是否紧密,是否有与外壳短路以及过热现象。

④电刷边缘应无磨损现象。

4.2运行中的故障处理

1启动时的故障

当合上断路器或自动开关后,电动机不转,只听到嗡嗡的声响,或者不能转到全速,这种故障原因可能是:

①定子回路一相断线,如低压电动机熔断器一相熔断,或高压电动机短路器以及隔离开关的一相接触不良,不能形成三相旋转磁场。

②转子回路断线或接触不良,使转子绕组内无电流或电流减小,因而电动机不转或者转动很慢。

③在传动机械中,有机械上的卡阻现象,严重时电动机就不转,且异常声响。

④电压过低使电动机转矩减小,启动困难或不能启动。

⑤电动机定子,转子铁心相摩擦,增加了负载,使转动困难。

运行人员发现上述故障时,对高压电动机来讲,应立即拉开电动机的断路器以及隔离开关,检查其定子、转子回路。

2定子绕组单相接地故障。

电动机绕组由于受到各种因素的侵蚀,使其绝缘水平降低。此外,由于电动机长期过负荷运行,会使绕组的绝缘体因长期过热而变的焦脆或脱落。这都会造成电动机定子绕组的单相接地。

3三相电动机单相运行的故障三相电动机在运行中,如果一相熔断器烧坏或接触不良,隔离开关,熔断器,电缆头以及导线一相接触松动以及定子绕组一相断线,均会造成电动机的单相运行。

电机论文范文第7篇

关键词:电机控制;直接转矩控制;双DSP;双端口RAM;通信

引言

直接转矩控制[1]是目前广为研究的电机控制理论之一,已在异步机上取得了成功,而在同步机方面的应用也已有了一定发展[2]。由于该理论直接对转矩进行控制,故瞬态性能得到了显著的改善。但是,由于其采用的是BangBang控制,控制周期过长会使电流过大;同时大周期会使转矩脉动加大。为了解决这个问题可以从控制策略上加以改进,比如采用SVMDTC[3]来取代传统DTC方案;也可以在控制平台上加以考虑,提高处理器速度,缩短控制周期。以单个DSP为核心的控制平台(常见的芯片如TI公司的2000系列),由于既要完成复杂的算法,还要执行数据采集、控制信号输出、系统保护以及人机交互等一系列操作,无法有效地缩短控制周期。在综合考虑了各种数字信号处理器的性能之后,决定采用双DSP并行工作的体系结构;并同时考虑到该控制系统的特点,即在每个控制周期内两个DSP之间交换的信息很少,不同于诸如图像采集系统[4]那样,需要大流量的数据交换。由此采取了一系列特殊的设计思想。首先,在芯片的选型上兼顾了各自不同的特点,即专用于电机控制领域的芯片TMS320LF2407A专注于控制;高速通用数据处理芯片TMS320VC33则着眼于复杂算法的实现,从而充分利用了各自的特点。其次,针对电机控制这一特定领域,需要采集的数据相对较少,同时反馈的也只是计算结果,即PWM波发送策略,并无大量中间结果,因此,需要考虑的重点是控制方法的实现,和数据采集的实现必须占用尽可能少的资源。同时由于数据量较少,可以用较小的代价来实现数据的冗余,使得数据处理时更加灵活和方便,DSP之间并不一定保持同步工作状态。为了实现两个DSP之间的数据交换和通信,选择了双口RAM作为两者之间的媒介。并从硬件和软件上相互配合,避免存储空间争用[5]的同时,使得数据存储过程尽量少耗费各种资源。

1硬件系统构成

TMS320LF2407A最突出的特点在于其事件管理器模块:共有两个事件管理器EVA及EVB,提供了8个16位脉宽调制(PWM)通道。这些都是针对电机控制而设计的,在PWM波的产生上相当方便可靠;可编程的PWM死区控制可以防止上下桥臂同时输出触发脉冲而导致直通。同时每个模块还提供了两个外部引脚PDPINTA和PDPINTB,当该引脚上出现低电平时事件管理器模块将快速关闭相应的PWM通道,起到保护作用。片内模数转换模块为数据采集提供了高性能的A/D转换器,最小转换时间只有500ns。由于转换时间是整个控制周期的组成部分之一,快速A/D对于缩短控制周期是非常有利的。

TMS320C3X系列DSP芯片是一种性能价格比很好的浮点处理芯片,具有很高的数据处理速度。片内部分拥有34K×32位的RAM,在程序运行期间,所有的数据都位于其中,从而能够充分发挥哈佛总线结构所带来的数据吞吐量大、运算快的优点。在算法实现上,由于采用了浮点计算格式,将使计算精度得到提高;采用编程语言C会使程序编写效率大大改善,这对于需要用复杂算法实现的控制策略来说是很重要的。

双口RAM的特点在于具有两组相互独立的地址线、数据线和控制线,片内包含的控制逻辑解决了三个重要的问题:处理器之间的信号关系(中断逻辑);两个CPU正在使用同一地址时的时间关系(仲裁逻辑)和把一块存储器临时分配到某一边的硬件支持(旗语逻辑),从而保证双机之间数据、信号交流的正确进行。

仲裁逻辑(忙逻辑)每块CY7C025允许两个CPU同时读取任何存储单元(包括同时读同一地址单元),但是不允许同时写或者一读一写同一地址单元,否则就会发生错误。双口RAM中已经有相应的仲裁逻辑电路来解决这一问题:先行稳定的地址端口通过仲裁逻辑电路优先读写,同时内部电路使另一个端口的BUSY信号有效,并在内部禁止对方访问,直到本端口的操作结束。BUSY信号可以作为CPURDY信号的来源,从而使得CPU处于等待状态。

当双口RAM单片使用的时候,问题相对简单,但是,在现代数字系统中,由于数据总线的宽度往往可以达到32位甚至更宽,这就需要多片双口RAM来进行位扩展。此时如果出现同时访问,将有多块双口RAM处于工作状态,如果依然象单片工作时那样,每块双口RAM都使用自己的仲裁逻辑,则很可能出现一种情况,即第一片仲裁使得BUSYL变低,而第二片仲裁使BUSYR变低,这样两边的CPU都会处于等待状态。为了避免这种情况的发生(BUSY信号死锁),可以使用主从模式,使得当多块芯片一起工作时,只使用主片的仲裁逻辑,并迫使从片跟随主片。主从模式的电路连接如图1所示。

主芯片的BUSY信号接上拉电阻作为输出,从芯片的BUSY信号作为写禁止输入,当主芯片处于BUSY状态时,从芯片接收这个状态,同样处于忙状态,从而避免了死锁的发生。

中断逻辑另一个重要的内部电路结构,它允许双CPU通过端口直接进行通信。CY7C025最高位的存储单元1FFF作为右边端口的中断信箱,次高位存储单元1FFE作为左边端口的中断信箱。各CPU可以读取双方的中断信箱,但只能写对方的中断信箱。当一端写入对方的中断信箱时,对方就会产生一个中断信号;读自己的中断信箱则清除自己的中断信号,读对方的中断信箱不会清除中断信号。

旗语通信逻辑可以使双口RAM暂时指定一块存储区,只供一端的CPU使用,称之为独占模式。CY7C025配置了独立于RAM阵列的8个旗语锁存器,用于标志双口RAM是否处于独占模式。独占模式也可以用来避免地址仲裁问题,因为,它是一种使两边不同时使用同一地址的方法,通常也叫做软件仲裁。

控制平台结构框图如图2所示。

电机由IPM来驱动,霍尔元件检测相关物理量,通过信号调理电路给A/D转换器,转换结果由LF2407A存储于双口RAM中,并由VC33读取用于计算。调理的同时保护电路也进行相应的检测,在意外状况发生时随时切断触发信号。VC33将获取的数据进行分析和计算,所有的数据处理都由VC33完成,只将计算结果反馈给LF2407A,并由此产生相应的控制信号,通过接口电路来控制IPM工作。同时预留了D/A及串口输出等相关电路,用于实现显示、检测、与其它系统通信等各项功能。LF2407A和VC33优势互补,并行工作,控制周期的长短主要取决于算法实现时间。原有的控制软件(以C32为控制平台)需要100μs左右,在采用了新的控制平台后,整个控制周期减小到20μs左右。

2双端口RAM存储争用解决方案

在双机的数据交流过程中,存在存储空间争用问题,常见的解决方案有如下几种。

——硬件方案最简单的方法就是上面提到的使用双口RAM内部的仲裁逻辑,要求两边的CPU都具有RDY引脚,从而插入相应的等待周期。对于8098单片机,DSP都具有这样的资源,而且只需要硬件支持,相对简单。如果不具备RDY引脚,如8031单片机,则不能采用此种方法。

——中断方案需要硬件和软件的同时支持。将双口RAM的左右中断信号输出引脚和CPU的外部中断输入引脚相连,并编写相应的中断子程序。

——旗语方案同样需要硬件和软件的同时支持,我们也称之为软件仲裁。其步骤为申请独占区域、判断申请是否成功、释放独占区域。由于两边不同时使用同一地址,所以也可以避免争用的发生。

本系统设计时综合了各种情况最后选用了硬件方案。这是因为使用中断方案软件编写复杂,频繁中断跳转在算法和控制都较复杂的情况下,对于软件的可靠性和稳定性是不利的;采用旗语方案则控制相对复杂一些;硬件方案具有简单可靠的特点,存储空间的争用完全由硬件解决,即当发生存储空间争用的时候,决定先行稳定的端口优先进行访问,另一端口则插入等待周期。由于DSP的快速性,不同于以往的单片机将产生很长的等待周期。针对本系统考虑,即使是最坏的情况:每个控制周期内传递数据8个,LF2407A一次读/写周期50ns记,共需要0.4μs。当然这完全由硬件来实现,若考虑软件上共同配合,则可以更有效地减少等待时间。而且0.4μs和20μs的控制周期相比,所占的比重非常小,并不会给系统性能带来显著影响,系统可靠性和稳定性也能够得到保证。这也正是本系统的特点所在。

3TMS320C2407A/TMS320VC33与

CY7C025之间通信的实现

LF2407A的数据总线宽度和地址总线宽度都是16位,单片CY7C025就足够了。VC33的数据总线宽度是32位,可以采用两片CY7C025以主从模式进行宽度扩展(见图3),这样每次VC33读取数据时就能一次读入两个LF2407A的采样数据。也可以采用单片CY7C025,虽然没有完全利用VC33的数据宽度,但是,从电路设计上来讲相对简洁。由于本系统双口RAM的作用主要是起到数据传递的作用,不需要保存大量的中间结果以及已经使用过的数据,因此,需要的存储空间不是很大,单片双口RAM就已经足够。具体的接口电路见图3,片选等控制信号由译码电路产生。

地址空间分配综合了不同DSP的空间资源分配要求,具体见表1。

表1地址空间分配表

起始地址

终止地址

LF2407A

0X8000H

0X9FFFH

VC33

010000H

011FFFH

4软件功能实现

双DSP协同工作的关键是相互通信和数据交流上的密切配合,可通过硬件仲裁电路来完成这一任务。但是如果仅仅用硬件完成,如上分析,毕竟等待时间还要0.4μs左右。如果辅以软件配合,则可以有效地减少等待产生的情况。

首先,冲突可能发生在同时写同一个存储单元。在数据写的时候采用如下措施可以避免这种情况的发生:如图4所示,将读/写的存储空间独立开来,显然LF2407A和VC33在写的时候就不可能产生冲突,避免了等待的发生。

其次,冲突可能发生在一读一写同一存储单元的情况下。以LF2407A写数据,VC33读数据为例,上面分析的产生0.4μs等待时间的情况是基于如下假设:将8个数据依顺序存储于同一地址单元。即LF2407A存第一个数据时发生冲突,VC33产生等待时间50ns,等待结束VC33读数据,此后LF2407A将第二个数据覆盖前一个数据存储,依次类推得出的结果就是8×50ns=400ns。

事实是我们有足够的地址空间用来存储每批数据,将8个数据按顺序存放在不同的地址空间,此时的情况如下:LF2407A存第一个数据时发生冲突,VC33产生等待时间50ns,等待结束VC33读数据,与此同时LF2407A也开始写第二个数据于下一个存储单元中。两者同时进行,我们只要保证VC33读完的时候,LF2407A第二个数据已经写完,则不会有冲突发生。针对本例,由于两者时间不同(LF2407A为50ns,VC33为13.3ns),VC33读得较快,只要在软件编写上增加40ns左右的循环,就能保证如上的要求。当读/写反过来的时候,则不存在这样的情况而能顺利配合。这样,最终的结果是只增加50ns的等待周期,对于本系统完全可以接受。

由于两个DSP并不同步工作,所以,LF2407A可以采样尽可能多的数据并保存,VC33只选用最新的数据用于计算,这样就能保证数据的冗余。程序流程如图5所示。

电机论文范文第8篇

【论文摘要】:对变频调速器在实践应用中容量的正确选择、传动系统的优化设计以及外接制动电阻等方面的问题,总结了一些经验。

随着电力技术的迅速发展,交流电机变频调速技术取得了突破性的进步,进入了普及应用阶段。在我国,变频调速器也正越来越广泛地被采用,与此同是地,如何正确地选好、用好已成为广大用户十分突出的问题了。

1.关于容量选择

在变频调速器的说明书中,为了帮助用户选择容量,都有"配用电动机容量"一栏,然而,这一栏的含义却不够确切,常导致变频器的误选。

各种生产机械中,电动机的容量主是根据发热原则来选定的。就是说,在电动机带得动的前提下,只要其温升在允许范围内,短时间的过载是允许的。电动机的过载能力一般定为额定转矩的1.8-2.2倍。电动机的温升,所谓"短时间"至少也在十几分钟以上。而变频调速器的过载能力为:150%,l分钟。这个指标,对电动机来说,只有在起动过程才有意义,在运行过程中,实际上是不允许载。

因此,"配用电动机容量"一栏的准确含义是"配用电动机的实际最大容量"。实际选择变频器时,可按电动机在工作过程中的最大电流来进行选择,对于鼓风机和泵类负载,因属于长期恒定负载,可直接按"配用电动机容量"来选择。

2.传动系统进行优化设计

交流异步电动机经变频调速后,其有效转矩和有效功率的范围。配用变频调速器时,必须根据生产机械的机械特性以及对调速范围的要求等因素,对传动系统进行优级化设计,优化设计的主要内容和大致方法如下:

2.1确定电动机的最高运行频率

(1)鼓风机和泵类负载,这类负载的阻转矩TL与转速n的平方成正比TL=KTn2,输出功率PL与转速的在次方成正比PL=KPn3,(KT和KP为常数),由此可知,如转速超过额定转速,负载的转矩和功率将分别按平方律和立方律增加,因此,在一般情况下,不允许在额定频率以上运行。

(2)一般情况下,各种机械的强度、振动以及耐磨性能等,都是以电动机转速不超过3000r/min为前提设计的。因此,在没有对机械重新进行设计的情况下,2级电机的最高运行频率不要超过额定频率太多。

(3)当异步电机在额定频率以上运行时,由于电源电压是恒定的,其在调到fx时电磁转矩Tx近乎和频率调节比Kf的平方成反比,即T≈TN/Kf2(而TN为额定频率fN时的转矩)。因此,最高运行频率不宜超过额定频率

(4)异步电机在低频下运行时,为了获得足够的转矩,常需进行转矩补偿。而转矩补偿将使电机的磁路趋于饱和,从而增加附加损失,降低了效率,因此,只要情况许可,应尺可能地提高运行频率的上限。

2.2确定传动系统的传动比并校核电动机的容量

(1)鼓风机和泵类负载,一般均为直接驱动,不必考虑传动比的问题。

(2)恒转矩负载,首先,根据有效转矩线以及所要求的频率调节范围,确定电机运行的最高频率和最低频率。

假设已经确定的电动机最高运行频率为fmax最低运行频率为fmin与此对应的转矩相对值为tTL,则电动机的额定转矩Tn=TL/qTL(TL负载转矩)。如果原选电机并未留有余量的话,则配用变频调速器后,电动机的容量应扩大1/tTL倍。传动系统的传动比入等于电动机在最高运行频率下的转速nDmax负载所需求的最高转速nLmax之比。

(3)恒功率负载:和恒转矩负载类似,首先根据有效功率线和频率调节范围,求出电动机运行频率的上、下限。

同样,在求出最高和最低运行频率的同时,得到对应的功率相对值tPL,而电动机的额定功率PN≥PL/tPL(PL为负载要求功率)。

在设计恒功率负载时,应注意两点:(1)尽量多利用额定频率以上的部分;(2)当调整范围较大时,尽量采用两档传动比。因为当传动比分成两栏时,频率范围αf与αn转速范围之间的关系为。可见,在转速范围相同的情况下,频率范围将大为减小,从而可减小电动机的容量。

负载的机械特性,因是恒功率负载,故曲线上任一点的横坐标与纵坐标的乘积均相等,且与负载功率成正比,即PL=KPTLnL=KPTLmaxLmin。全部转速都在额定频率以下调节时的有效转矩线,在这种情况下,所需电动机的容量PN=KPTNnLmax>KPTLmaxLmax=αnPL。这说明,所需电动机的容量比负载功率的On倍还要大,是很不经济的。

⑴当最高运行频率为额定频率的2倍,传动比只有一档时的情形。在这种情况下,所需电机的容量PN=KPTN1/2nLmax1/2αnPL。可见,所需用容量只要大于负载功率的On/2倍就可以了。

⑵当最高运行频率为额定频率的2倍,传动比为两档时的情形。这时,所需电机的容量PN1/2PL。可见,对于恒功率负载,当αn>4时,这种方案是比较理想的。

3.自配外接制动电阻

各种变频调速器都允许外接制动电阻,加快制动速度,外接电阻。但配套的制动电阻价格昂贵,不易买到,自动配置时,其阻值与功率可如下决定:

直流电路的电压值UP=×380=53V;制动电流Is一般以不超过电机的额定电流IDN为原则,即Is≤IDN,故制动电阻Rs≥UD/Is。

因Rs内通过电流的时间只有几秒钟,故其功率PR可按工其工作时的(1/10-1/8)选择,即PR=(0.1-0.125)UD2/Rs。

因Rs接入电路时,应注意将变频调速器内部的制动电阻切除,如不能切除,则应适当加大Rs的值,以免出现制动电流过大的情形。

在外接制动电路时,为了避免烧毁变频器内部的放电用大功率晶体管(GTR)有时也可以外接整个制动电器(即包括制动电阻和放电晶体管,这时,GTR应选取其VCEX≥700伏;ICN≥(1.2-1.5)IDN安。

参考文献

[1]马新民,矿山机械,徐州:中国矿业大学出版社,2002

[2]李纪等,煤矿机电事故分析与预防,北京:煤炭工业出版社,1997