首页 > 文章中心 > 岩土工程论文

岩土工程论文

岩土工程论文范文第1篇

1.1隐蔽性

在岩土施工当中包括各种技术方法,其中的桩基、地下连续墙等全部隐藏于地下,而且每个施工环节与施工步骤也是在隐蔽的条件下完成的。

1.2复杂性

施工人员在进行施工时通常会受到多种因素与环境的限制。这是因为在进行施工时有多种工种,相应的人员也较为密集,并且在进行具体的施工前要准备的任务量也相对较大。但是,在工程勘察的现场所进行的作业应用以及具体的仪器设备均较为轻便灵活。另外,在施工时所包含的工艺技术与桩型不能完全匹配,需要具体问题具体分析。

1.3严格性

岩土工程在进行施工中具有一定的严格性,例如:施工中所应用的灌注柱。除了柱身结构、柱身材料强度有着严格的要求以外,偏差要求上也相当细致。

2现代岩土工程技术创新方法与实践

2.1物探方法

岩土工程中引用的物探技术主要是根据电磁理论与电学理论进行研发的,通过针对物探技术进行准确的测量,不仅如此,相应的测井技术以及多通道瞬态技术均可以在具体的岩土施工中得到十分广泛的利用。而有关物探方法的具体应用来说其主要是为了进一步提升比较传统技术的效率,并且也要积极保证相关数据的准确性。在通常情况下,物探方法可以依据相对复杂的岩土进行研究探讨并相应的提供比较真实具体的信息数据,同时并在一定程度上逐渐加强了具体要求和实际工程效果。除此之外,具体的物探方法是一项不能单独进行工作的项目,其必须要和多种技术进行融合,只有这样才能让该技术得到验证和补充,这样不仅在一定程度上提高了探测对象,也在一定程度上加快了具体岩土工程的实际完整性和可靠性。作为弹性波技术来说其主要是物探技术中实际应用十分广泛,其主要是通过采用多种不同的介质对弹性波的传递来揭示地下物质实质,其为岩土工程提供了十分充分的土层切波速值,依据相应的速值判定场地土质类型,并且多种类型划分多种类别,当工作人员确定场地覆盖层厚度时如果在地下发生细微变化时,弹性波也能准确的根据力学与运动学对其进行判断。工程物探可以通过收集野外地质样品使用相关仪器设备进行分析,为岩土工程施工提供探测数据与资料,数据与资料的出现将会为整个工程施工在具备更准确的数据下进行,在进行岩土工程施工中准确可靠的资料至关重要。

2.2钻探与坑探技术

钻探和坑探与较物探进行对比来说其是一种较为直接的勘探手段,钻探与坑探能够直接有效的了解地区地质情况。而在很多比较大型的工程施工中一般情况下均使用的是钻探与坑探。其中,相应的钻探主要是依据地层类别和勘探等要求通过不同深度的地层质量进行直接采样所给予的研究,并积极确定其内部岩土的类型和物理学性质。相应的坑探主要采用的是机械以及动力设备直接进行的积极性勘探,直接通过这种勘探对策不仅耗费较多的人力和物力以及财力,同时也相应的具备一定风险。所以,在选择勘探时更应当选择经济适用型方法。

2.3静力触探方法

静力的触探是一种十分轻便而高效并快捷测试技术.例如:在越南福尔摩莎集疏运港区工程施工中,岩石工程勘察主要是利用了静力触探和钻探方法对土层和土类进行划分并获得相关数据,并通过触探得出的相关数据计算不排水抗剪强度。尽管静力触媒在施工中具有较多优点,但是这种方法在使用时仍然存在着一定的缺点,例如分辨率较低,无法与国际通用设备接轨。这就导致在大型岩土工程建设中使用这种方法的数量较少。

2.4动力触媒方法

动力触媒也属于原位测试中的一种,这种方法主要是将探头贯穿置于土中10~30cm的位置,在需要获取数据是进行锤击,以此来确定风化基岩的物理性标志,这种方法具备勘测与测试两种性能。

2.5GPS定位技术进行测量

GPS定位技术进行测量主要是借助空间卫星群与地面接收站进行信息传达,其主要采用的这种方法能够有效提高施工效率。施工前根据山地特征来进行准备,并制定合理的施工计划,根据计划准备施工仪器与设备。同时应当保证施工中所有设备、通信工具、交通设备能够正常使用,保证勘探结果准确无误。当监控点布置完善时及时对相关数据进行记录采集,以备日后不时之需。

2.6计算机技术

AuotCAD技术在岩土工程施工中广泛应用,这种设计软件能够根据工程数据与资料在计算机上对地形、地质进行描绘,同时还具备较强的野外数据采集功能,能够及时有效的对测得数据进行统计整理分析。

3结语

岩土工程论文范文第2篇

水文地质勘察是岩土工程勘察中必不可少的组成部分之一,它和岩土工程相互影响,互利共生,下面以地下水环境的建筑物为例研究水文地质的勘察的重要性。在建筑物周围存在这地下水,这些水影响建筑物周边的土壤和岩石的耐久性和寿命,建筑物也会同时受到很大的影响,同时地下水作为岩土资源的一部分,对于其他的岩土体的特性也有很大的影响,对于岩土工程的勘察工作的效率也会有很大的作用。在勘查工作中加强水文地质勘察,这不仅提高了岩土工程的勘察效率和质量,而且还为工程的后续开展提供了理论依据。然而在很多的官方和非官方的岩土工程勘查中,水文类的地质因素经常被忽视,被当做是象征性的工作之一,在后续的施工过程中,因为缺乏水文地质的资料和分布状态,往往会发生一些重大的安全事故。因此水文地质勘察对于岩土工程的勘察极为重要。

2岩土地质和水的关系

建筑和地下工程的稳定性和岩土的地质情况有着很大的关系,在建筑和土木工程中发生的事故往往是由于岩石的强度不够或者土壤的勘查工作不够充分造成的。在岩土中的材料主要分为两种,一种是土壤,一种是岩石,这两个材料的成形都和水息息相关,土壤中一般都含有大量的水,而岩石的形状的成形是河流冲刷之后形成的,因此岩土地质和水有着重要的联系,主要可以分为以下三个方面。2.1岩土体的胀缩性岩土体的胀缩性是在空气的气氛下,在失去水之后体积收缩或者在吸收水之后体积膨胀的物理反应。由于岩土存在着和周围的空气交换水的现象,土壤中的水因为温度的升高而蒸发,散发到空气中,最后体积减小;然而在下雨天或者湿润气候的时候,土壤颗粒之间的间隙提高,吸收了水之后,在表面形成了一层水薄膜,最后体积增大,因此岩土体因为水文地质而存在缩胀性。

2.2岩土的软化性质

由于岩土体的只要成分包含了土壤和岩石,土壤颗粒之间存在着大量的空气,是一种膨胀的物质,与之相反的是岩石颗粒之间的间隙较小,基本不会体积缩小,但是在水中浸泡之后会存在强度和硬度减小的现象,因此岩土体存在着软化效应。一般的岩土体都存在着软化的问题,例如页岩,泥岩,松土岩等等,由于岩土地质中的水文因素的存在,岩土表现出了很强的软化现象。2.3岩土体的透水性质岩土体的透水性岩土体由于重力的作用,其中吸收的水分会逐渐流失并穿过土壤颗粒的现象。相对而言,松散的岩土的透水性较强,而坚硬的泥土的透水性较强。在岩土工程过程中,由于土壤中透过了水,土壤的结构会受到很大的影响和破坏,还可能造成土壤直接混入水中形成泥石流等重大自然灾害。水分子没有透过土壤的部分可以把土壤黏在一起加强土壤的强度和硬度,因此水文因素在透水方面对于岩土工程的规划和勘察有着很多的影响,整体上改变了岩体的结构和强度。

3水文地质对岩土工程的危害

水是地球上最宝贵的东西,生命正是因为水而蕴育产生,因此水文地质对岩土工程有着很独特的作用,其中地下水对岩土工程有一定的危害。当地下水水位发生变化时,岩土体也会受到极大的伤害:水位上升,会造成一系列的问题,包括岩土沼泽化,斜体滑坡,山崩,溶洞坍塌,地下项目工程完全毁坏等等;当地下水水位降低时,往往是因为植被遭到破坏或者降雨不足引起的,这样会带来地质干枯,水质恶化,河流营养化等问题;地下水位频繁升降,由于地下水对岩土的软化作用和胀缩作用,岩土将会出现硬度发生改变,频繁的地下水水位升降会使得岩土层达到疲劳,土壤和岩石解体,造成土地坍塌,建筑损坏,土壤营养流失等问题。因此地下水位对岩土体的影响可以分为以下三类:

3.1地下水上升引起的岩土工程危害

水文地质的水位上升有很多的影响因素,主要的原因包括了气候因素如强降雨,降雪,气温变化等等以及人为因素如建筑工程如水坝建立,水电站的建造等等因素。这些问题会对岩土资源的分布和结构带来很大的影响,由于突然的软化效应,强降雨会造成泥石流和道路坍塌等问题,而由于岩土体的透水性,水位上升会导致过高的水位对地下项目如地铁,挖矿,隧道等等工程带来致命性的伤害,抑制项目的进度,同时由于水位过高,岩土的强度也会受到很大的影响,桥梁和山体的硬度都急剧降低,会导致山体崩塌和桥梁断裂的问题。因此水文地质的水位过高对岩土工程有着很大的伤害。

3.2地下水下降引起的岩土工程危害

地下水位过低会对岩土工程带来同样巨大的危害,水位降低主要是因为人为的因素造成的,人们大量的抽取地下水而浪费水资源,砍伐树木,毁坏植被,填湖造田等等,这些都会对地下水造成极大的伤害。地下水下降过多,会导致山崩地裂的问题,湖泊水源干枯,水中的生物死亡导致水质过于营养化,同时由于岩土体的胀缩性,岩土质量会受到很大的影响,土壤会过硬,导致植被也无法生存,农民的收入大幅度降低,农产品枯萎死亡。因此水文地质的水位过低对岩土工程有着很大的伤害。

3.3地下水频繁升降对建筑带来的影响

地下水的频繁升降会引起岩土产生不均匀,导致建筑的质量大幅度降低,由于地下水的大幅度升降会带来土壤中营养如铁,铝等缺失,同时频繁的地下水水位升降会使得岩土层达到疲劳,土壤和岩石解体,造成土地坍塌,建筑损坏,土壤营养流失等问题。

4结束语

岩土工程论文范文第3篇

(1)风岩期,当侵蚀基准面接近标高800米时,新构造运动有一个停顿时期,发育了一层溶洞。此期相当于Ⅱ级剥夷面。(2)银碗槽期,当侵蚀基准面在标高700米时,发育了一层溶洞。(3)兴隆场期,当侵蚀基准面在标高500米时,发育了一层溶洞,相当于Ⅲ级剥夷面。(4)藻渡河期,当侵蚀基准面在标高300米时,发育了一层溶洞,相当于Ⅳ级剥夷面,本勘察区地面表为307.13~322.26m。经勘察期间地面调查,地表未发现溶洞、漏斗等岩溶现象。根据钻探和物探资料显示,该场地溶蚀现象较发育,岩溶主要形态表现为溶蚀裂隙、溶洞,石灰岩面多被浸蚀,部分岩面有小溶孔发育。在勘察中在ZY31、ZY33发现发育溶洞,其中ZY33竖向发育2个溶洞,发育标高分别为301.18~299.98、299.38~298.68m,ZY31竖向发育6个大小不等的溶洞,发育标高296.60~289.29m,位于最下层的溶洞洞径最大,其揭露洞径为1.40m,根据钻探揭露以上溶洞均为不含水溶洞,溶洞内无充填物,除此其它钻孔均未揭露有溶洞发育。在野外勘察过程中布置了8条物探线,根据物探结果采用钻探进行验证,其中物探报告WT1-1''''剖面的物探结论与钻探ZY33钻孔揭露溶洞基本吻合;WT8-8''''剖面物探结论与钻探ZY31钻孔揭露溶洞基本吻合。根据物探的高分率、高密度探测结果显示,该场区岩溶、溶蚀现象较发育,结合区域水文地质资料该区岩溶以水平岩溶管道发育为主,基岩面可能发育石芽、溶蚀沟槽等岩溶现象,故对拟建物的基础持力层及基础型式的选择有一定程度的影响。建议加强施工勘察,对物探剖面WT3-3''''、WT4-4''''、WT5-5''''及WT6-6''''推测的可能的岩溶发育区及破碎带建议加强施工勘查。

2岩土工程地质评价

2.1场地稳定性与建筑适宜性评价

场地岩石地基总体稳定性较好,但根据钻探和物探资料显示,该场地岩溶较发育,多表现为溶蚀小孔及岩溶裂隙,局部为岩溶洞穴,基础应充分考虑(溶洞、溶孔等)岩溶的影响,并采取相应的工程措施后,该场地才适宜该拟建(构)筑物的建设。

2.2地基持力层的选择及均匀性评价

根据钻探揭露,该场地上覆土层为回填土及红粘土。人工填厚度分布不均匀,且起伏较大,不宜选作各拟建建筑物的基础持力层。红粘土天然状态下力学性质较好,遇水软化后力学性质变差,红粘土的复浸水特征分类为Ⅱ类,地基均匀性较差,可选作小荷载建筑物的基础持力层。强风化石灰岩、泥质灰岩较薄,且起伏较大,岩芯破碎,不宜选作各拟建(构)筑物的基础持力层;中等风化石灰岩力学性能好,岩体较完整,是良好的基础持力层。

2.3基础型式的建议

按设计标高整平后,根据基岩埋深,结合拟建(构)筑物的荷载和拟建(构)筑物边框线确定其基础型式,但同一幢楼应采用同一种基础型式。(1)按设计标高整平后,建(构)筑物边框线范围内土层及强风化厚度<3m时,且下部溶洞洞顶完整围岩(中风化基岩)>5m或>1.5倍洞跨,或下部没有溶洞时,可采用浅基础,如独立基础、条形基础。(2)按设计标高整平后,建(构)筑物边框线范围内,土层及强风化厚度<3m,但下部溶洞洞顶完整围岩(中风化基岩)<5m或<1.5倍洞跨时,应采用桩基,且桩底应穿过溶洞洞底。(3)按设计标高整平后,建(构)筑物边框线范围内,土层及强风化层厚度≥3m时,且下部溶洞洞顶完整围岩(中风化基岩)>5m或>1.5倍洞跨,或下部没有溶洞时,可以采用独立基础或桩基。(4)按设计标高整平后,建(构)筑物边框线范围内,土层及强风化层厚度≥3m时,但下部溶洞洞顶完整围岩(中风化基岩)<5m或<1.5倍洞跨时,应采用桩基,且桩底应穿过溶洞洞底。(5)拟建(构)筑物基础下岩溶较发育,若直接采用桩基不能满足要求时,建议对基底岩溶进行处理后在采用桩基。

3结论

岩土工程论文范文第4篇

换句话说,当土壤被破坏,这意味着土壤应力状态的破坏准则和应力状态和交叉的破坏包络线模型。材料的破坏准则,如金属材料,金属材料,有两个著名的标准,一个是二维应力状态特莱斯C(Tresca)准则,另一个指的是优化三维应力状态(msies)准则。因为土的材料和金属材料相差甚大,所以金属材料的准则是不适合于土体材料,因此,土体材料有属于自己的准则,比较有名的是莫尔-库仑准则的二维应力状态和(MOHrcuolomb)利用莫尔-库仑准则推广到SMP(一个在松岗)准则。

2土压力概述

2.1挡土墙的类型

在平常的工程中,比如常见的土木、水利、交通等工程中,在支护结构施工中经常遇到,挡土结构是支持一些天然或人工边坡坍塌的预防作用,挡土是一种保持土体稳定性的建筑物,故又被称为挡土墙。常用的挡土在路基挡土墙基础两侧壁,两侧壁上,对翼墙进出口和两个侧壁,水力结构桥台,河岸的防护墙,双方港口的边坡挡土墙墙,地下结构的边墙,等。由上面可知挡土墙是多种作样的,如果根据挡土墙的特点可以将其分为重力式挡土墙,悬臂式挡土墙,扶臂式挡土墙,支撑墙,板桩墙挡土墙,锚定板挡土墙,加筋土挡土墙等等。

2.2作用于挡土墙上的土压力

作用在挡土墙上的土压力的来源是土,地下连续墙等结构上的挡土墙土压力,无论什么样的建筑物承受从的侧压力就是土压力。因此,土压力是在保留部分设计的主要考虑因素,检查土壤结构的稳定性。自从十八世纪开始就有许多学者意识到了这个问题并对此进行了研究,而且很多学者还得到了不错的效果并对应提出了许多土压力的计算理论和计算方法。其中最为著名的是1773年库仑(C.A.Cuolomb)提出的土压力理论和1857年朗肯(W.J.Ranklne)提出的土压力理论,这两个土压力理论子已广泛应用于土压力的计算,基础仍在工程建设。作用于挡土墙上的土压力,所受到的因素是多方面的,比如挡土墙的形式和墙体刚硬度、挡土墙的与地面倾斜度及其表面粗糙程度、挡土墙的变形和位移、填土的材料、填土表面荷载情况、地下水情况等等。当挡土墙的形式发生改变时,作用在其上的土压力的大小和分布也会随着改变。正常情况下,只要刚性挡墙,挡墙位移产生足够的,你可以把墙回填土后处于极限平衡状态,然后土压力的分布是一个三角形。恰好库仑土压力理论和朗肯土压力理论都是适用于刚性挡土墙。而柔性挡土墙由于受到墙体本身变形的影响,土压力的大小及其分布与刚性挡土墙有很大的区别。如前所述,对墙体的位移和变形会使作用在挡土墙土压力的变化。静止土压力是指壁静态,而不产生位移,不变形,墙背填挡土墙土压力填充弹性平衡状态。如果墙体填充方向偏离水平位移墙的顶部附近,或在填充墙的旋转方向,或墙在墙附近的地球旋转墙踵,偏离土体的变形方向,静止土压力时,土压力逐渐降低,逐渐失去了原来的平衡状态,如果填充的极限平衡状态,土压力作用在挡土墙被称为主动土压力。被动土压力是指墙向平移或旋转地球的方向,并填写朝墙的位移或变形的方向,墙背填土压实,因为逐渐失去原有的平衡状态,当位移达到一定数量,且土体压密到一定程度,从而使墙背填土处于被动极限平衡状态时,填土作用在挡土墙上的土压力。

3朗肯土压力理论

朗肯土压力理论第一次面世是在1857年,是由英国人朗肯(W.J.M.Ranklne)提出的,这一理论自面世以来由于其概念明确、方法简单、至今仍然被广泛应用。朗肯研究半无限土体内各点在重应力作用下,从极限平衡状态发展过程中的应力平衡状态,然后提出在挡土墙上的土压力的理论计算。这一理论的前提条件是土的极限平衡,在极限平衡的状态下提出如下的基本假定:(1)挡土墙的墙面时竖直且光滑的,接触面是毫无摩擦的;(2)挡土墙墙背面的是各向同性的均质填土,填土表面光滑;(3)在压力的作用下,足够产生位移和变形,是填土处于极限平衡状态。朗肯土压力理论是基于土的应力状态和朗肯土压力理论计算的基础上的两种理论及其研究极限平衡的半空间理论。朗肯在计算挡土墙压力时应用了半空间体的应力状态和土的极限平衡理论。直壁的第一假设回填土表面,光滑,墙的水平。在这种状态下的墙背土压力和剪切对土的界面应力为零。如果不改变右边土体中的应力状态。当主动或被动的挡土墙位移极限平衡条件,朗肯主动土压力与挡在墙背土压力被动土压力的作用。

4三维化的临塑荷载公式

是不考虑中间主应力的影响,但是最近的研究表明,中主应力对土体强度有一定影响,所以,如果计算结果没有考虑中主应力的影响会使计算结果出现误差,导致结果偏小。此外,前者还提到,土是一种颗粒材料,其强度包线和莫尔-库仑准则的三维应力是不同的,一些实验表明,在国内和国外。三维度的SMP强度准则在1974松岗元,NakaiTeruo两位科学家是非常相似的三维土压力作用下的强度包络线。因此,因此,临界荷载公式中引入了三维应力状态,不再采用莫尔-库仑准则的二维,而是直接由三维SMP破坏准则,这样子做不仅可以使现有的临塑荷载理论更为完善,还可以反映出工程实际的情况。

5结语

岩土工程论文范文第5篇

环境岩土工程的研究内容主要是用岩土工程的方法解决这几类问题:对于洪水、地震、火山喷发等自然灾害的抵御;城市中由于人类生产生活活动引发的环境污染问题,例如废弃物的随意排放;施工建设过程中的噪声、棘突、基坑深挖造成的地下水渗流、地下工程对地上建筑的威胁等环境问题。总地来说,环境岩土工程虽然发展还处在初步阶段,但是其内容的广泛性和综合性已经决定了它的发展前景,是值得进一步研究的。对环境岩土工程的研究需要新的理论和方法的指导。对于目前基础工程施工中多变复杂的岩土体环境,需要更加可靠而科学的信息和参数提供符合实际的评估,从而设计出合理的施工方案。环境岩土工程的研究和探索要求能够解释生态环境与人类生产生活之间的关系。尤其是对基础工程施工对环境的影响作出评估,从而指导人类与自然和谐相处,在避免自然环境恶化的前提下进行开发建设。另外,对环境岩土工程的研究要求能够为解决目前人类面临的环境恶化等问题提供新的思路,为人类采取措施提供科学依据。

2环境岩土工程面临的问题

2.1环境岩土工程的基本问题

2.1.1岩土体力学的形变、稳定和渗流的问题。岩土体力学的形变、稳定和渗流的问题是环境岩土工程的基本问题。在基础工程的施工中,会面临基坑稳定、开采地下水造成的地表沉降、支护结构设计、卫生填埋中岩土体的防渗及地下水流场的变化等问题。2.1.2地震和其他环境振动的问题。地震和地震引起的振动对地面建筑物的影响和破坏是巨大的,在环境岩土工程中会对区域性的地震效应做一定的研究。另外,周边环境的施工、交通等引起的环境振动会对自身基础工程施工过程中的岩土体造成一定的影响。2.1.3岩土体在化学方面的问题。岩土体在化学方面的问题主要是指岩土体本身的化学组成,地下水岩土体的化学作用,包括地下水对岩土体的侵蚀、置换、结晶沉淀、离子吸附等化学作用。在基础工程施工中,还会出现岩土体污染、地下水污染、固体废料淋溶等影响。2.1.4能量场变化方面的问题。在基础工程施工过程中面临的环境岩土工程能量场问题主要由温度变化引起,例如冻土问题、固体废料填埋对岩土体的热应力,由此会影响岩土体的结构稳定。2.1.5岩土体的组成物质的物理迁移的问题。一些特定的基础工程的施工地区的岩土体在流水、风力的侵蚀作用下发生形变、迁移等引起的环境问题,例如沙尘暴、水土流失、土壤沙漠化、海岸侵蚀淤积、河流冲刷、石漠化河流下游的淤积等。在这种情况下的环境岩土工程需要研究物质迁移和堆积产生的原理以及引发的环境问题的预防。2.1.6放射性方面的问题。目前在基础工程施工中尤其是在地下建筑和空间,放射性元素氡的危害是极大的,因此在环境岩土工程中对氡的贮存、运输和防护都是需要考虑的问题。2.1.7特殊的岩土体的问题。特殊的岩土体的形成原因可能是自然原因,也可能是人类活动原因。自然原因包括火土、泥潭、盐渍土、膨胀土、海底淤泥等。人类活动原因可能是生产生活排放的废弃物、垃圾、废料等污染物。2.1.8生态环境的问题。在荒漠、高原、极地等地的生态环境十分脆弱,轻微的活动都有可能对当地的环境造成不可逆转的伤害,甚至由于蝴蝶效应引发更大范围的破坏。因此,在基础工程施工中,对生态敏感地区的施工建设和开发需提高技术含量,以维护生态环境的安全。

2.2基础工程施工中的环境岩土工程面临的新问题

2.2.1岩土体是基础工程施工中的直接环境,随着生产的加剧,可选择的施工场地越来越少,因此导致很多曾经不适宜施工建设的场地也被用来开发,从而会引发很多施工难题,面临的岩土体环境也更加复杂。2.2.2随着基础工程的施工,环境岩土工程的性质也在不断变化,因此,需要研究在人类的作用下不断变化的岩土体对工程的影响。2.2.3基础工程的施工会破坏原本生态环境的平衡,对环境或多或少地造成不良影响。因此在对环境岩土工程进行研究时应当考虑环境污染问题。2.2.4随着科学技术的发展和人类探索认知能力的提升,人类对环境岩土工程的问题研究已经转移到岩石圈表层,而这一领域是传统岩土工程很难攻克的一面。

3基础工程施工中的环境岩土工程问题的预防措施

岩土工程论文范文第6篇

在对岩土工程进行勘察和设计过程中,为了便于基础选型、支护、加固或者爆破方案设计的进行,常常需要评价场地的地形地貌、地下水的分布情况、岩土体的力学参数以及地质构造等,然后再进行取值。但是岩土工程的性质复杂并且具有很强的区域性特征,其研究对象具有特殊性,与其他材料相比,岩体和土体不具有确定的力学参数和工程性能,地下水的分布情况、气候条件、岩土体力学参数、地质构造、开挖形式等因素都会对岩土的力学参数和性能造成影响,基于岩土体的特殊性和复杂性,对场地内的工程地质信息进行集成管理、存储和分析时,可以对信息管理技术进行综合运用,通过不同形式的信息反馈,可以为对该区域后续的岩土工程勘察和设计提供一定的参考依据和指导。通过对场地内的岩土工程信息(如地形地貌、地下水分布情况、岩土体土工力学试验数据、地质构造、地下管线分布、地震背景)进行搜集和整理,并以当地的经验和理论公式为依据,管理和存储各个岩土体的力学参数和工程性能等信息,然后进行建模分析和评价,这样就可以得到该场地内的工程地质剖面和平面图,对各层地基的稳定性和均匀性进行评价,使其地基承载力得到确定,从而对基础类型、各项支护和防治方案进行相应地确定。通过对工程地质信息进行不断的积累,信息管理系统的信息量也在不断增大,覆盖的区域也更加广,这样有利于工程参数、支护、防止方案确定的有效性和完善性,如图2所示。

2信息管理技术在岩土工程施工中的应用

2.1信息管理技术在岩土工程设计方案中的实现

对岩土工程设计方案的实施就是岩土工程施工,工程孔施工、地基处理、以及开挖、爆破施工等都是岩土工程的主要工作内容。当前,我国多是通过现场技术人员凭借既往的施工经验、严格按照施工方案和图纸进行岩土工程的施工,其管理和监督多由监理单位、建设单位以及政府相关职能部门负责。但是在施工场地的地质条件具有较高的复杂性或者施工过程中出现的突发状况与设计方案不相符合的情况下,如果仍然按照原来的设计方案进行施工,那么施工的安全性和可靠性就难以保障,在岩土工程中应用信息化管理技术就能够有效地避免此类现象的出现、岩土工程信息管理系统实现流程如图3所示。

2.2监测信息反馈和信息化施工

在岩土工程的施工中,监测信息反馈技术和信息化施工具有十分重要的作用,由于岩土工程施工的复杂性和多变性,因此在整个施工过程中要对施工进度、资金出入状况进行良好的控制,并了解中央地方的各种法律法规,只有这样才能更准确的掌握各类资源,为管理者提供更合理的决策。在岩土工程施工的过程中,必须要对每种方案所需的经费以及预期取得的收益进行考虑,并对工程项目对环境造成的影响进行分析,通过对各个指标进行综合分析,选出经济效益好、对环境污染小的设计方案。我国岩土工程的评价主要是计算经济效益费用比、净现值、内部收益率、投资回报年限等指标的期望值,并据此进行方案优选。但是由于岩土工程施工过程中的各种不确定因素的干扰使得每种方案的效益和经费都是不确定的,效益和风险并存。不确定性指的就是问题的结果不确定,对工程项目的各种风险发生的概率以及带来的后果必须做出相应的分析,对风险做出定量的估算。一般风险管理有以下五个步骤:(1)风险的鉴别:鉴别风险的来源、特性及与行为或现象有关的不确定性;(2)风险的量化与度量:利用概率论等数学知识,对可能发生的风险进行量化分析,找出风险发生的概率值,找出风险源,并理清楚各个风险之间的相互关系。(3)风险评价:使整个风险评估与风险管理的过渡阶段。(4)风险接受和规避:这一步代表“风险决策”。对每一个决策,通过对成本的评估、对效益的估算、对风险对社会造成的影响,对环境造成的破坏进行详细的分析,分析风险的可接受程度。(5)风险管理:这一步代表在(4)基础上进行的“执行”过程,

2.3岩土工程施工中信息管理技术在的优点

使施工记录的集成化管理得到有效地实现并全程跟踪和记录施工过程是信息管理技术在岩土工程信息化施工中的关键作用。在岩土工程的施工中,信息管理技术在的优点主要体现在以下几点:(1)对岩土工程的施工信息进行集成化记录和管理,可以对比分析当前施工的信息和已建工程的信息,尤其对一些地质条件复杂度高、突发事件容易发生的岩土工程进行施工时,可以以施工场地内地下水位、水质的实际情况以及岩土体变形、压力的变化情况等信息为依据,对施工方案进行及时地调整,并制定有效的预防方案。(2)在岩土工程中引入信息管理技术有助于建设单位、监理单位和政府相关职能部门对岩土工程的施工过程进行更加有效地管理和监督,因为利用信息管理技术可以使施工记录的录入和提交更加及时,并且不能随意更改提交的数据,这样可以避免出现偷工减料等违规作业现象。(3)在岩土工程中引入信息管理技术,为后期施工记录、竣工验收报告等资料的提交和归档提供了方便,并且促进了施工记录由纸质向电子化方向的转变。

3结语

岩土工程论文范文第7篇

武烈河沿岸及山间沟谷地段主要为第四系松散孔隙潜水及基岩表层风化裂隙潜水,孔隙潜水主要赋存于第四系全新统地层下部的砂砾石中。武烈河Ⅰ级阶地,地下水水位埋深3.2~5.1m,含水层厚度为6.0~8.0m,地下水水位一般年变幅1.5~2.5m。山间沟谷的含水层主要为圆砾层,地下水稳定水位埋深0.9~8.5m,地下水年变幅1.5~2.0m。水质分析结果表明,该区地下水为HCO3--SO32--Ca2+型弱碱性微硬淡水,pH值为7.1~7.4,属二类地质状况,地下的砼结构和钢砼混合结构可能会受到地下水的微弱腐蚀。该河区的二级阶地、缓坡、暴露的山脊部分几乎没有地下水,所以区中的地下水大都由降水产生,和武烈河、滦河的水位也有着很大的关系,一般通过地下径流排出。

二、岩土工程中地下水引起的危害及预防措施

开展岩土工程的施工时,地下水的不良影响主要体现在地下水位的变动和地下水的运动引起的压力,但这两者会导致地下的土层结构发生改变,进而使土质疏松、软化,最终使大量地下水层流失,产生管涌、基坑突涌等事故。

1地下水位变化引起的危害

(1)导致地下水位上升的因素多种多样

一般有地质状况、环境状况和人类活动等,例如:岩土层状况、岩石性质、降水多少、温度和具体操作等。这些因素可能都会使地下水位上升。该现象导致的不利后果有:地下土体质量的降低,建筑物所受到的腐蚀作用增大;岩土体可能出现位移、崩塌等情况;一些岩土体的自然结构、硬度等也会被破坏;还可能会使该地区的土壤出现饱和液化、流砂、管涌等现象;由于渗透作用的提高,还可能会影响建筑基础的稳定性。

(2)地下水位下降多半是人为因素所致

如地下水被大量抽取、修建水库截流,导致下游地下水补给不足等。地下水位下降趋势较大时,会引起地裂、地面沉降、地面塌陷等地质灾害,还可能产生水源匮乏、水体污染,地表植物无法生长等恶劣影响,这对于岩土结构和建筑物的稳定性都有着非常不利的影响,甚至还会威胁人们的生命财产安全。

(3)若地下水位经常变化则极易使岩土结构发生不均匀胀缩或是不规则的变形

若岩土结构的胀缩变化太大,还可能产生地裂问题,影响附近建筑物的整体稳定性。此外,地下水位的变化必然会使其渗透性受到影响,这可能会使土体硬度降低、含水量提高等,进而影响土体的承载力和强度,严重威胁岩土工程的正常施工。

2地下水活动产生的压力作用引起的危害

自然条件下,地下水的各种运动只会出现很小的压力,附近建筑、土体等也不会受到不良影响。可是人类在进行岩土工程的施工时,会使地下水的运动平衡遭到破坏,再加之动力压力的影响,就会导致一系列恶劣的岩土工程问题,流沙、管涌等就是出现频率最高的。

3岩土工程中地下水引起危害的预防措施

进行工程勘察工作时,要先对基坑挖掘可能对周边土体的隔水层厚土、性质等造成的影响,并科学的确定含水层隔板的深度和承压水头的具置。还要以基坑实际的挖掘深度为依据。来预估进行开挖工作时含水层及隔水层受到的影响,是否可能出现突涌和管涌情况。若有出现该现象的可能,则必须事先制定高效应对方案:首先,进行基坑挖掘工作时,一定要把握好实际的深度,并将基坑底部的隔水层厚度控制合理的范围内,将突涌发生的可能性降到最小。其次,基坑周围要设置排水孔,降低承压水头压力。施工过程中,要在基坑周边修建排水沟,强化地面硬化处理,确保基坑内及周边积水能够及时排出,避免地表水下渗至基坑周边土体中,导致基坑周边水位抬高等影响基坑安全性和稳定性的不利状况发生。此外,建筑物的四周还要留有补水设备,防止因降水不足而出现干旱或供水不足现象,这也可能引起地裂、地基沉降等问题。

三、结语

岩土工程论文范文第8篇

1.1工程概况

项目地处丽泽金融商务核心区内,为E08、E09地块。该项目地上建筑面积为23万m2,地下建筑面积约8万m2。拟建建筑物由2栋塔楼及其裙房组成,塔楼分别为地上39层和45层,建筑高度分别为180m和200m,裙房分别为地上6层、10层和15层,建筑高度分别为43.4m、49m和75.6m。拟建建筑物地下部分连成一体,基础埋深约为22m。

1.2地层分布及岩性特征

在场地勘探深度80m范围内的地基土主要由人工填土层、新近沉积层、一般第四纪冲洪积层和第三系构成。拟建场区表层普遍为人工填土层,岩性主要为素填土和杂填土,素填土为粘质粉土粉质粘土填土层、杂填土1层,填土层厚度约为2.8~5m。填土下部发育有新近沉积的粘质粉土砂质粉土层和细砂1层、粉质粘土2层透镜体,新近沉积层厚度约为1.3~3.9m。人工填土层及新近沉积层以下为一般第四纪冲洪积卵石层,分布连续、厚度较大,地表下5~40m之间普遍分布卵石层,局部分布有大漂石,漂石的分布随机性较强,其中在地面下20~35m范围内,漂石含量较多。巨厚卵石层中局部夹有粘性土、粉土层透镜体。一般第四纪冲洪积卵石层下为砾岩和泥岩互层。其中砾岩层,杂色,呈中厚层状,泥质胶结,胶结程度差,天然单轴抗压强度为0.029~0.92MPa,分布连续;泥岩1层,棕红色,呈巨厚层状,胶结程度差,遇水易软化,自由膨胀率为26%~30%,有弱膨胀性,天然单轴抗压强度为0.18~0.89MPa,分布连续。

1.3地下水概况

本次勘察钻探深度范围内,实测到一层地下水,地下水类型为潜水,水位埋深23.8~24.1m,水位标高19.99~20.83m,含水层主要为卵石层,含水层底板主要为泥岩层。本场区地下水位变化和北京市区总体变化趋势一样都呈下降趋势,但因为含水层颗粒大,渗透性好,其水位受自然和人为因素影响较大,历史上大的降雨年份和官厅水库放水时可使水位大幅回升。1995~1997年官厅水库放水,本地区水位标高曾一度达到36.0m左右,因此随着地下水限采措施及大气降水影响,地下水水位仍存在大幅上升的可能。该层地下水对混凝土结构具微腐蚀性;对钢筋混凝土结构中的钢筋在干湿交替条件下具弱腐蚀性,在长期浸水条件下具微腐蚀性。

2砂卵石地层物探方法实践

2.1波速测试

采用RS-1616K(S)基桩动测仪,单孔法测试,本场地布置了2个波速测试孔,测试各土层的剪切波速值和压缩波速值,利用波速测试数据,判定砂层和卵石层的密实度。本场地地面下20m深度范围内土层等效剪切波速Vse值为256.1m/s~257.9m/s,场地覆盖层厚度dov﹤50m,建筑场地类别为Ⅱ类。根据波速测井成果可知场地表层构成浅震低速层,在地表以下5.9m处,压缩波速为373.5m/s、剪切波速为172.3m/s;潜水面附近20.09m处,压缩波速为705.2m/s、剪切波速为349.7m/s;地表以下第四纪晚更新世冲洪积的巨厚砂卵石层(局部夹有粘性土层)速度相对较高,第三纪砾岩、泥岩互层其速度则更高,在地表下第四系与第三系地层分界面附近40.3m处,压缩波速为1089.9m/s、剪切波速为605.7m/s;40.3m以深压缩波速和剪切波速逐渐增高。

2.2地脉动测试

在E08塔楼东南角、E09塔楼西南角布置2个地脉动试验孔,6个地脉动测试点(2个试验孔地面、孔内21m处、40m处各一个观测点),测试地面及孔中不同深度的测点的东西、南北、垂直方向的位移幅值和地脉动的卓越周期。根据测试报告,场地地面3个方向的脉动卓越周期在0.375s~0.395s之间,地面下21m处3个方向的脉动卓越周期为0.305s,地面下40m处3个方向的脉动卓越周期为0.19s~0.195s之间;场地地面3个方向的的脉动幅值在1.5×10-5m/s~3.0×10-5m/s范围内,地面下21m处脉动幅值为0.4×10-5m/s,地面下40m处脉动幅值在0.4×10-5m/s~0.6×10-5m/s范围内。建议建筑物的结构设计应避开场地地基的微振卓越周期,以避免地基与建筑物产生共振。

2.3电阻率测试

为了解决大粒径卵石层中地下水位较深的情况下量测的困难,布置了2个电阻率测试孔,从钻孔电阻率测试成果图中看出,地下水位以上非饱和卵石层视电阻率最大值一般在112~120Ω•m,地下水位以下的饱和卵石层视电阻率一般在10~12Ω•m,地面下23~25m处卵石层电阻率处于骤降状态,推测地下水位埋深可能在23~25m之间,与现场实测地下水位埋深较为接近。

2.4瞬变电磁法

TEM法属于时间域电磁法,该方法对低阻反应灵敏,更易于突出低弱的电阻率异常,适合划分本场地的含水及富水区域。以L2线反演视电阻率断面图1为例,对场区已有勘察成果资料进行综合分析,可以看出在深度约23m至25m视电阻率等值线变化梯度较大推测为本工区的潜水面位置;本场区地下地层较为平缓,L2线右端大号测点的视电阻率等值线形态出现倾斜的原因分析可能是由于接近高压线电磁噪声的影响,导致曲线扭曲,影响了电阻率等值线的形态。其它各条测线视电阻率分布规律与L2线较为一致,其潜水面形态也较连续。此外对本场地各条测线的视电阻率进行了不同深度(20m、25m、40m)的水平切片,得到视电阻率切片图,本场地内不同深度视电阻率在平面上的变化特征。视电阻率纵横向的变化,可以看出场地由东北向西南潜水面具有逐步变浅的趋势。另外从各个切片图都可看到场区中部的两个低阻异常,异常位置与地表布设的两个钻孔位置非常一致,推测为正在施工的钻机及注水钻孔所引起。从钻孔资料可以看出第四系与第三系基岩分界面在40m左右,但是由于该处的上下两层电阻率差异较小,依据TEM成果无法准确划分出第三系基岩界面,但是根据40m深的视电阻率切片图,可以看出视电阻率等值线平面上分布不均匀,即在同一水平面含水情况是不均匀的。

2.5浅层地震法

(1)浅层折射波法浅层折射波地震法是地震勘探中的一种重要工程勘察方法,常用来探测覆盖层(或低速层)的厚度,建筑地基、断层和古河道的分布等工程地质问题。本次浅层折射波地震勘察的目的是区分第四系潜水面及第三系基岩界面。本区地层界线的划分主要是根据实测解译的波速并考虑现场地质、钻孔资料来划分的。以DL1线为例进行分析和说明。第四系与潜水的分界面。由于场区位于古漯水河故道上,岩土破碎程度高、不完整、强度低,潜水面以上,纵波速度变化范围为350~950m/s,潜水面处纵波速度约为950m/s,潜水面深度变化约为23~25m。第四系与第三系基岩分界面。第四系潜水面以下第三系基岩面以上为卵石,纵波速度变化范围为950~1700m/s。第三系基岩面及以下为砾岩泥岩互层,岩石破碎程度较低、较完整。第三系基岩面处纵波速度约为1750m/s,深度变化范围约为41~43m不等,自南向北有缓慢变深的趋势。从DL1线反射剖面上可以看到,在100ms左右有一明显的同相轴,结合折射波的速度和时间分析同相轴应位于40m左右,推测为第三系基岩界面引起的反射波。其同相轴有起伏,而且略向大号(向东)倾斜,说明第三系基岩界面不但有较小的起伏而且向东有较小的倾斜。从各条测线的综合物探成果的对比可以看出:TEM法和浅震折射波法勘察成果均能较好地反映出第四系潜水面的分布,浅震折射波和反射波勘察成果均能较好地反映出第三系基岩面的分布。TEM法视电阻率可反映出第四系潜水面的分布形态,但不能反映出第三系基岩面的分布,另外TEM法视电阻率能够反映出场区内地面以下第四系、第三系地层含水情况。根据面波勘察成果解译出了场区内约5~6.5m深处的填土层与卵石层的分界面分布形态。

2.6地基承载力估算

采用波速测井和地震勘探获得了波速测井地层速度和地震地层速度。可以作为地基承载力计算的依据。通过波速测井地层速度和地震地层速度对卵砾石层承载力估算值与依据规范查表值对比可以看出,查表值还有提高的空间。

3结论

(1)现阶段利用普通钻进手段难以查明卵砾石层的力学特征。采用波速测试、地脉动测试、电阻率测试、瞬变电磁法、地震勘探法等钻探的物探方法可得到相应的一些物理力学参数,为评价场地的工程地质条件进行有益的尝试,为类似工程实践提供借鉴与参考。

(2)折射波地震法和TEM法较好地解译出了深度约23m潜水面及其分布形态。

(3)二维反射波和折射波地震法较好地解译出了深度约40m的第三系基岩顶界面及其分布形态。根据面波勘察成果解译出了场区内约5~6.5m深处的填土层与卵石层的分界面分布形态。