首页 > 文章中心 > 电子机械工程论文

电子机械工程论文

开篇:润墨网以专业的文秘视角,为您筛选了八篇电子机械工程论文范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

电子机械工程论文范文第1篇

论文摘要:机电一体化是现代科学技术发展的必然结果。此简述机电一体化技术的基本情况和发展背景,综述国内外机电一体化技术的现状,分析机电一体化技术的发展趋势。

现代科学技术的不断发展,极大地推动了不同学科的交叉与渗透,工程领域的技术改造与革命。在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品结构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入以“机电一体化”为特征的发展阶段。

1机电一体化概述

机电一体化是指在机构的主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总称。

机电一体化发展至今已经成为一门有着自身体系的新型学科,随着科学技术的不断发展,还将被赋予新的内容。但其基本特征可概括为:机电一体化是从系统的观点出发,综合运用机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术及电力电子技术,根据系统功能目标要求,合理配置与布局各功能单元,在多功能、高质量、高可靠性、低能耗的意义上实现特定功能价值,并使整个系统最优化的系统工程技术。由此而产生的功能系统,则成为一个机电一体化系统或机电一体化产品。因此,“机电一体化”涵盖“技术”和“产品”两个方面。机电一体化技术是基于上述群体技术有机融合的一种综合技术,而不是机械技术、微电子技术及其它新技术的简单组合、拼凑。这是机电一体化与机械加电气所形成的机械电气化在概念上的根本区别。机械工程技术由纯技术发展到机械电气化,仍属传统机械,其主要功能依然是代替和放大的体系。但是,发展到机电一体化后,其中的微电子装置除可取代某些机械部件的原有功能外,还被赋予许多新的功能,如自动检测、自动处理信息、自动显示记录、自动调节与控制、自动诊断与保护等。也就是说,机电一体化产品不仅是人的手与肢体的延伸,还是人的感官与头脑的延伸,智能化特征是机电一体化与机械电气化在功能上的本质区别。

2机电一体化的发展状况

机电一体化的发展大体可以分为三个阶段:(1)20世纪60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们自觉不自觉地利用电子技术的初步成果来完善机械产品的性能。特别是在第二次世界大战期间,战争刺激了机械产品与电子技术的结合,这些机电结合的军用技术,战后转为民用,对战后经济的恢复起到了积极的作用。那时,研制和开发从总体上看还处于自发状态。由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。(2)20世纪70-80年代为第二阶段,可称为蓬勃发展阶段。这一时期,计算机技术、控制技术、通信技术的发展,为机电一体化的发展奠定了技术基础。大规模、超大规模集成电路和微型计算机的出现,为机电一体化的发展提供了充分的物质基础。这个时期的特点是:mechatronics一词首先在日本被普遍接受,大约到20世纪80年代末期在世界范围内得到比较广泛的承认;机电一体化技术和产品得到了极大发展;各国均开始对机电一体化技术和产品给予很大的关注和支持。(3)20世纪90年代后期,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入深入发展时期。一方面,光学、通信技术等进入机电一体化,微细加工技术也在机电一体化中崭露头脚,出现了光机电一体化和微机电一体化等新分支。

我国是从20世纪80年代初才开始进行这方面的研究和应用。国务院成立了机电一体化领导小组,并将该技术列入“863计划”中。在制定“九五”规划和2010年发展纲要时充分考虑了国际上关于机电一体化技术的发展动向和由此可能带来的影响。许多大专院校、研究机构及一些大中型企业对这一技术的发展及应用做了大量的工作,取得了一定成果。但与日本等先进国家相比,仍有相当差距。

3机电一体化的发展趋势

机电一体化是集机械、电子、光学、控制、计算机、信息等多学科的交叉综合,它的发展和进步依赖并促进相关技术的发展。机电一体化的主要发展方向大致有以下几个方面:

3.1智能化

智能化是21世纪机电一体化技术的一个重要发展方向。人工智能在机电一体化的研究中日益得到重视,机器人与数控机床的智能化就是重要应用之一。这里所说的“智能化”是对机器行为的描述,是在控制理论的基础上,吸收人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新思想、新方法,使它具有判断推理、逻辑思维及自主决策等能力,以求得到更高的控制目标。诚然,使机电一体化产品具有与人完全相同的智能,是不可能的,也是不必要的。但是,高性能、高速度的微处理器使机电一体化产品赋有低级智能或者人的部分智能,则是完全可能而且必要的。转3.2模块化

模块化是一项重要而艰巨的工程。由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、电气接口、动力接口和环境接口等的机电一体化产品单元是一项十分复杂但又非常重要的事情。如研制集减速、智能调速、电机于一体的动力单元,具有视觉、图像处理、识别和测距等功能的控制单元,以及各种能完成典型操作的机械装置等。有了这些标准单元就可迅速开发出新产品,同时也可以扩大生产规模。为了达到以上目的,还需要制定各项标准,以便于各部件、单元的匹配。

3.3网络化

由于网络的普及,基于网络的各种远程控制和监视技术方兴未艾,而远程控制的终端设备本身就是机电一体化产品。现场总线和局域网技术的应用使家用电器网络化已成大势,利用家庭网络(homenet)将各种家用电器连接成以计算机为中心的计算机集成家电系统(computerintegratedappliancesystem,CIAS),能使人们呆在家里就可分享各种高技术带来的便利与快乐。因此,机电一体化产品无疑将朝着网络化方向发展。

3.4微型化

微型化兴起于20世纪80年代末,指的是机电一体化向微型机器和微观领域发展的趋势。国外称其为微电子机械系统(MEMS),泛指几何尺寸不超过1cm3的机电一体化产品,并向微米、纳米级发展。微机电一体化产品体积小,耗能少,运动灵活,在生物医疗、军事、信息等方面具有无可比拟的优势。微机电一体化发展的瓶颈在于微机械技术。微机电一体化产品的加工采用精细加工技术,即超精密技术,它包括光刻技术和蚀刻技术两类。

3.5环保化

工业的发达给人们生活带来巨大变化。一方面,物质丰富,生活舒适;另一方面,资源减少,生态环境受到严重污染。于是,人们呼吁保护环境资源,回归自然。绿色产品概念在这种呼声下应运而生,绿色化是时代的趋势。绿色产品在其设计、制造、使用和销毁的生命过程中,符合特定的环境保护和人类健康的要求,对生态环境无害或危害极少,资源利用率极高。设计绿色的机电一体化产品,具有远大的发展前景。机电一体化产品的绿色化主要是指,使用时不污染生态环境,报废后能回收利用。

3.6系统化

未来的机电一体化更加注重产品与人的关系,机电一体化的人格化有两层含义:一层是如何赋予机电一体化产品人的智能、情感、人性等等,显得越来越重要,特别是对家用机器人,其高层境界就是人机一体化;另一层是模仿生物机理,研制出各种机电一体化产品。事实上,许多机电一体化产品都是受动物的启发而研制出来的。

综上所述,机电一体化的出现不是孤立的,它是许多科学技术发展的结晶,是社会生产力发展到一定阶段的必然要求和产物。当然,与机电一体化相关的技术还有很多,并且随着科学技术的发展,各种技术相互融合的趋势将越来越明显,机电一体化技术的发展前景也将越来越光明。

参考文献

电子机械工程论文范文第2篇

关键词:数控加工 在线检测技术 加工精度

中图分类号:TH165 文献标识码:A 文章编号:1672-3791(2014)05(a)-0035-02

在加工制造业中,对于零件的加工,无论是加工的过程,还是加工完成后的质量和性能,都需要经历大量的检测工作。目前对于加工零件的检测,诸如夹具和零件的装卡、找正,测定零件编程原点、检测首件零件以及零件加工工序间以及加工完毕后的检测等等,还是以手工检测为主,检测效率非常低。特别是对于大型结构件的检测,由于是在加工的过程中进行实时监测的,如果使用离线检测技术,就很难避免误差的产生,导致零件加工完成后,由于超差而报废。引进数控加工的在线监测技术,不但可以对于加工零件实时监测,弥补了手工检测以及离线检测所存在的不足,而且还提高了加工精度,符合先进制造技术未来发展的要求。

1 数控机床在线检测系统的构成

数控机床的在线检测系统根据是否选择使用计算机辅助,可以分为两种,即免去计算机辅助,直接将基本宏程序调用;开启计算机辅助编程系统,检测程序生成后,自行开发宏程序库,将各种数据信息传输到数控系统当中。计算机辅助在线监测系统见图1,其运行程序见图2。

通过对于图1的解读,可以明确,数控机床的在线检测系统是由硬件和软件两个部分所构成,其中的硬件部分包括机床本体、数控装置、伺服系统、测量系统;软件部分是指计算机软件系统。

1.1 机床本体

机床本体的工作部件是所必需的基本部件的实现,作为加工和监测的基础性环节,其受到传动部件精度的影响。

1.2 数控装置

数控机床通常会选择使用CNC数据控制系统,主要构成包括中央处理器、各类存储器和输入输出接口,其中的中央处理器包括存储器、运算器、控制器和总线四个组成部分。作为数控机床的核心部位,该数控装置中的各项控制功能都是通过数控加工程序来实现的,各种控制功能,包括输入存储功能、数控加工功能以及插补运算功能等等,都是源自于内部存储器中提取程序,或者由输入装置所传输过来的程序。传输途径是通过设备接口来实现的。一旦控制对象发生改变,或者需要调整功能,就要对于设备接口进行调整以符合应用要求。

1.3 伺服系统

数控机床的一个重要组成部分,就是数控机床在线检测系统中的伺服系统。该系统主要控制包括进给位置和主轴转速的伺服控制,具体而言,就是对于机床移动部件的位置以及移动速度的控制。伺服系统的工作质量对于机床的表面质量、加工和测量精度以及生产效率都具有重要的影响力。

1.4 测量系统

测量系统是在线检测系统的关键部分,直接影响在数控加工在线检测精度,在构成上主要包括信号传输系统、接触触发式测头以及数据采集系统。其中的测头是测量系统的关键部件,其主要作用是在零件加工的过程中用于测量尺寸,并据此对于加工程序进行自动更正,不断地完善零部件加工精度。从这个意义上讲,数控机床不仅是加工设备,而且还具备了测量机的一些功能。

以英国雷尼绍公司所生产的雷尼绍测头为例,其被多数数控机床所使用。雷尼绍测头根据各自性能的不同,包括有多种类型,按照使用功能不同,可以划分为刀具测头和工件检测测头;按照不同的信号传输方式,可以将侧头划分为感应式侧头、光学式侧头、硬线连接式侧头以及无线电式测头;按照不同的接触测量形式,可以将侧头划分为接触式测量测头和非接触测量测头。在选择测头的过程中,要根据机床的型号以及使用功能选择合适的测头。

1.5 计算机软件系统

计算机软件系统是运用计算机辅助,开发数控加工的软件运行程序,以实现在线检测。通过计算机软件系统所实现的数控加工在线检测功能包括数据的采集,并对于数据进行技术性处理,对于数控程序的生成进行检测,包括检测过程中的仿真和通信等等。目前数控机床的在线检测兼容了各种具有数据分析和计算功能的软件,诸如CAM、CAD、CAE、CAPP以及VC++等软件的使用,为测量工作简化了程序,节省了世间。

2 数控加工在线检测的工作原理

在进行数控机床在线检测的时候,计算机系统上首先要建立自动生成检测主程序的编程系统。当启动检测主程序,计算机信息就可以通过接口传递给数控机床,测头就按照编程系统的指令按照规定的路径运动。这些程序都是通过G31实现跳步指令的有效性的。G31属于是非模态G指令,其对于指令程序的有效性仅仅局限于指令的程序段中,因此,通常会用于数控机床的测头测量程序当中。指令格式为:G31(G90/G91)IP―F―(其中的“IP”是X轴、Y轴、Z轴中的一个轴)。G31处于执行指令段的时候,如果输入有SKIP信号,那么所执行的指令就可以转到下一个程序段,而不必继续执行尚没有完成的指令。测头执行测量程序的时候,如果测球已经接触到了部件,就会有触发信号发出,并通过测头与数控系统之间所建立的准用接口传递到转换器,然后转而再传送到数控机床的控制系统当中,记录下该点的坐标。一旦接收到信号,机床就不再运动,通过通信接口,测量点的坐标传到计算机系统当中才储存,完成一侧测量动作,可以进行到下一个测量动作。针对于系统测量结果,该项测量值可以实现计算补偿,并实现可视化的数据处理。

数控加工在线检测在测量零件的几何形状时,所需要执行的检测路径为:先将零件的待测形状确定下来,将该零件的形状特征作为几何要素,结合零件的待测精度特征,将检测点数以及分布情况确定下来,并建立数学计算公式。将工件的坐标系确定下来之后,可以根据检测零件的条件确定检测路径。

3 数控加工在线检测技术的应用

在零件加工中,采用在线检测技术,可以将工件的位置快速地确定下来,并设定好坐标系。在检测工件尺寸的同时,还会根据测量的数据结果对于刀偏量自动地修正。此外,在线自动检测及技术可以设定夹具和旋转轴,而且在进行柔性加工中确认工件以及夹具。

3.1 应用测量软件自动修正工件坐标系

使用测量软件可以在线测量工件的坐标系,避免了传统人工输入所造成的错误,而且还会降低零部件的损坏程度,延长机床的使用寿命。

依赖于手工操作,将测头安装在主轴以及刀架的上面,手动操作进行序中测量和首件检测,都需要操作人员具有较高的专业技能,而且如果将工件转移到坐标测量机上,往往会不适宜。从测量效果来看,测量工件依赖于手工操作,往往会耗时长,缺乏精确度,而且很容易出现人为误差。由于一致性较差,所以在进行检测的时候,还需要试切,导致了重复劳动。在工件加工的过程中,如果机床停止运行的状态下对于工件的关键尺度进行检测,如果刀具因此而磨损,都不容易发现。

应用测量软件,使用测头检测,可以运用软件自动计算功能,根据设定的规格对于工件的坐标数据进行修改。序中工件的测量,可以采用自动修正偏置值的方式来进行,消除了由于操作人员人为因素所造成的误差,提高了自动化加工控制的可靠性,同时,还使工件报废的风险降低。软件自动控制,可以通过过程反馈实施适应性加工,以避免各种变化所造成的不断修改。在首件检测的过程中,可以将自动偏置更新功能利用起来,尽量避免由于等待检测结果而延长停机时间。

3.2 在数控加工的程序中嵌入测量程序

数控加工的程序中,对于零部件的测量要求精度很高,这就需要采用高精度电压测量的方式。万用表可以实现高精度测量,而且可以进行存储程序控制,其测量中所能够达到的测量精度非常高,而且实现了13/2位的分辨率。进行信息通讯和测量的时候,将可编程仪器所发出的指令嵌入到VC软件系统当中,不仅可以创立友好型的测量界面,而且还是控制程序具有较高的可读性和灵活运用性。

软件系统在构成上,主要包括实时操作系统以及数据库软件、数据采集和处理软件、先进控制软件以及PID软件。PID(全称:Proportion- Integral- Differential),即为比例-积分-微分。使用该软件可以通过计算,对于数据进行直接控制。

3.3 减低夹具的消耗费用

采用测头测量的方式将工件的坐标系找准,然后使用夹具夹紧,可以避免由于使用千分表进行手动调整而带来的各种不便。将测头安装在数控中心的主轴位置,或者位于车削中心的刀架上,可以避免由于手动设定而造成测量误差,对于工件具有很好的校正作用,并且设定校准轴。使用自动卡具具有很高的灵活性,批量产品的尺寸,不但提高了劳动生产率,而且还大大地降低了停机时间。

3.4 良好的过程控制可以提高安全性

数控加工的在线检测技术,在改善过程控制的时候,工件的在线检测所获得的尺寸能够及时做出反馈,可以降低由于操作人员的主观因素而导致的机外检测的辅助时间减少。由于在线检测为自动化操作,因此而避免了操作者由于运行不当而造成伤害。当防护门处于打开的状态的时候,程序无法自动运行,所以各项指令,包括准备功能和辅助功能的指令都被迫停止。要使数控机床处于正常的自动加工状态,就要确保机床防护门关闭,自动锁住门锁之后,可以启动工件的找正和在线检测程序。

4 数控加工中尺寸在线检测系统中的研发

4.1 在线测量尺寸的意义

关于尺寸的在线测量是否需要停机的问题,主要是基于机床加工过程所呈现出来的动态性和复杂性,导致各种因素对于测量精确度的影响。处于加工状态下,加床会振动,产生热变形,切削过程中所产生的切屑以及所使用的冷却液,都会对于检测造成影响,加之检测过程中的安全性以及仪器的安装等等的干扰,使得对于工件尺寸直接测量非常困难。可见,对于在零件加工过程中,在线检测尺寸,多采用简洁测量的方式,即停机测量。

数控机床的运动部件精度很高,将其与测量仪器建立起关联,就是要实现在机测量。在良好的加工控制环境中,机床加工设备同时还可以作为测量设,在机床精度的基础上,各种测数据软件被开发处理,不但可以达到自动测量的效果,而且还使测量的结果更具有直观性。

4.2 生成测量程序

当测量点的分布确定之后,还要对零部件的测量路径以及测量程序加以确定。在编制测量程序的时候,可以采用手工编制的方法,也可以自动编程。为了对于所采集到的数据进行正确处理,要对被测量的尺寸采用分段的方式,建立存储格式,以使所获得的几何尺寸和形位尺寸更为符合要求。在具体测量操作上,要将DHP50数控镗铣加工中心测量程序通用模板建立起来,建立起测量程序模块,采用半自动方法将测量程序生成。在测量零件的时候,要选择使用人机交互的方式。当各种测量参数被输入到测量程序模板中时候,就会将尺寸以及形位误差自动生成。

4.3 加工误差补偿

当机床所获得的测量数据传输到计算机之后,软件对其进行分析处理,以获取加工零件的尺寸数据。除了避免人为因素而导致的测量误差之外,还创造了良好的加工环境,并根据零件标准调整零件的工艺参数。针对于机床加工零件的线形尺寸误差,对于引起的该种现象的各种因素进行分析,主要包括刀具安全以及操作不准确而造成的刀具磨损。这种现象的补偿可以通过在线测量软件进行调整。使用系统软件对于数控加工程序进行调整,以修正加工误差。此外,出现测量误差的因素还有很多,包括受力变形以及零件装夹的变形等等,都会导致形位误差产生。基于造成测量误差的复杂性,如果仅仅通过调整刀具补偿显然是不够的,还要根据具体的情况进行分析,以制定有效的解决措施。

5 结论

综上所述,数控加工的在线检测技术,能够对于数控加工中所存在的缺陷及时地发现,并对于误差进行技术性修正,不但节约了加工成本,而且大大地提高了加工效率。可见,在线检测技术在中国的加工制造业具有良好的发展前景。

参考文献

[1] 王爱军,何学军,刘佳.在线计量检测技术在大型结构件数控加工中的应用[J]. 机械工程师,2012(7).

[2] 陈晓梅,叶文华.数控加工尺寸在线检测技术的研究与应用[J].电子机械工程,2006,22(3).

[3] 王龙君,王亚平.基于五轴数控机床的激光在线检测方法研究[J].计算机测量与控制,2008(16).

[4] 张晓峰.数控机床在线检测技术[J].CAD/CAM与制造业信息化,2005(12).

[5] 靳宣强,姜秀丽,胡祯.浅析数控机床在线检测技术[J].现代制造技术与装备,2009(3).