首页 > 文章中心 > 激光技术论文

激光技术论文范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

激光熔覆技术研究论文

介绍了激光熔覆技术的发展、应用、设备及工艺特点,简述了激光熔覆技术的国内外研究现状,指出了激光表面改性技术存在的问题,展望了激光熔覆技术的发展前景。

0引言

激光熔覆技术是20世纪70年代随着大功率激光器的发展而兴起的一种新的表面改性技术,是指激光表面熔敷技术是在激光束作用下将合金粉末或陶瓷粉末与基体表面迅速加热并熔化,光束移开后自激冷却形成稀释率极低,与基体材料呈冶金结合的表面涂层,从而显著改善基体表面耐磨、耐蚀、耐热、抗氧化及电气特性等的一种表面强化方法[1~3]。如对60#钢进行碳钨激光熔覆后,硬度最高达2200HV以上,耐磨损性能为基体60#钢的20倍左右。在Q235钢表面激光熔覆CoCrSiB合金后,将其耐磨性与火焰喷涂的耐蚀性进行了对比,发现前者的耐蚀性明显高于后者[4]。

激光熔覆技术是一种经济效益很高的新技术,它可以在廉价金属基材上制备出高性能的合金表面而不影响基体的性质,降低成本,节约贵重稀有金属材料,因此,世界上各工业先进国家对激光熔覆技术的研究及应用都非常重视[1-2、5-7]。

1激光熔覆技术的设备及工艺特点

目前应用于激光熔覆的激光器主要有输出功率为1~10kW的CO2激光器和500W左右的YAG激光器。对于连续CO2激光熔覆,国内外学者已做了大量研究[1]。近年来高功率YAG激光器的研制发展迅速,主要用于有色合金表面改性。据文献报道,采用CO2激光进行铝合金激光熔覆,铝合金基体在CO2激光辐照条件下容易变形,甚至塌陷[1]。YAG激光器输出波长为1.06μm,较CO2激光波长小1个数量级,因而更适合此类金属的激光熔覆。

同步注粉式激光表面熔覆处理示意图[8]

激光熔覆按送粉工艺的不同可分为两类:粉末预置法和同步送粉法。两种方法效果相似,同步送粉法具有易实现自动化控制,激光能量吸收率高,无内部气孔,尤其熔覆金属陶瓷,可以显著提高熔覆层的抗开裂性能,使硬质陶瓷相可以在熔覆层内均匀分布等优点。

全文阅读

物理激光空间技术论文

激光与空间技术胡海棠国家科委信息司原常务副司长研究员——一、激光技术——(一)什么是激光与激光技术——激光,是一种自然界原本不存在的,因受激而发出的具有方向性好、亮度高、单色性好和相干性好等特性的光。物理学家把产生激光的机理溯源到1917年爱因斯坦解释黑体辐射定律时提出的假说,即光的吸收和发射可经由受激吸收、受激辐射和自发辐射三种基本过程。众所周知,任何一种光源的发光都与其物质内部粒子的运动状态有关。当处于低能级上的粒子(原子、分子或离子)吸收了适当频率外来能量(光)被激发而跃迁到相应的高能级上(受激吸收)后,总是力图跃迁到较低的能级去,同时将多余的能量以光子形式释放出来。如果光是在没有外来光子作用下自发地释放出来的(自发辐射),此时被释放的光即为普通的光(如电灯、霓虹灯等),其特点是光的频率大小、方向和步调都很不一致。但如果是在外来光子直接作用下由高能级向低能级跃迁时将多余的能量以光子形式释放出来(受激辐射),被释放的光子则与外来的入射光子在频率、位相、传播方向等方面完全一致,这就意味着外来光得到了加强,我们称之为光放大。显然,如果通过受激吸收,使处于高能级的粒子数比处于低能级的越多(粒子数反转),这种光的放大现象就越明显,这时就有可能形成激光了。——激光之所以被誉为神奇的光,是因为它有普通光所完全不具备的四大特性。——1.方向性好——普通光源(太阳、白炽灯或荧光灯)向四面八方发光,而激光的发光方向可以限制在小于几个毫弧度立体角内(图8-9),这就使得在照射方向上的照度提高千万倍。激光准直、导向和测距就是利用方向性好这一特性。——2.亮度高——激光是当代最亮的光源,只有氢弹爆炸瞬间强烈的闪光才能与它相比拟。太阳光亮度大约是103瓦/(厘米2.球面度),而一台大功率激光器的输出光亮度经太阳光高出7~14个数量级。这样,尽管激光的总能量并不一定很大,但由于能量高度集中,很容易在某一微小点处产生高压和几万摄氏度甚至几百万摄氏度高温。激光打孔、切割、焊接和激光外科手术就是利用了这一特性。——3.单色性好——光是一种电磁波。光的颜色取决于它的波长。普通光源发出的光通常包含着各种波长,是各种颜色光的混合。太阳光包含红、登、黄、绿、青、蓝、紫七种颜色的可见光及红外光、紫外光等不可见光。而某种激光的波长,只集中在十分窄的光谱波段或频率范围内。如氦氖激光的波长为632.8纳米,其波长变化范围不到万分之一纳米。由于激光的单色性好,为精密度仪器测量和激励某些化学反应等科学实验提供了极为有利的手段。——4.相干性好——干涉是波动现象的一种属性。基于激光具有高方向性和高单色性的特性,它必然相干性极好。激光的这一特性使全息照相成为现实。——所谓激光技术,就是探索开发各种产生激光的方法以及探索应用激光的这些特性为人类造福的技术的总称。自1960年美国研制成功世界上第一台红宝石激光器,我国也于1961年研制成功国产首台红宝石激光器以来,激光技术被认为是20世纪继量子物理学、无线电技术、原子能技术、半导体技术、电子计算机技术之后的又一重大科学技术新成就。30多年来,激光技术得到突飞猛进的发展,不仅研制了各个特色的多种多样的激光器,而且激光应用领域不断拓展,并形成了激光唱盘唱机、激光医疗、激光加工、激光全息照相、激光照排印刷、激光打印以及激光武器等一系列新兴产业。激光技术的飞速发展,使其成为当今新技术革命的“带头技术”之一。——(二)各式各样的激光器——在光源中,实现能级粒子数反转是实现光放大的前提,也就是产生激光的先决条件。要实现粒子数反转,需借助外来光的力量,使大量原来处于低能级的粒子跃迁到高能级上去,这个过程我们称之为“激励”。——我们通常所说的激光器,就是使光源中的粒子受到激励而产生受激辐射跃迁,实现粒子数反转,然后通过受激辐射而产生光的放大的装置。激光器虽然多种多样,但使命都是通过激励和受激辐射而获得激光。因此基本组成通常均由激活介质(即被激励后能产生粒子数反转的工作物质)、激励装置(即能使激活介质发生粒子数反转的能源,泵浦源)和光谐振腔(即能使光束在其中反复振荡和被多次放大的两块平面反射镜)等三个部分组成(图8-2)。——经过30余年的发展,各国开发出实用的激光器已超过200种。种类繁多,特点各异,用途也各不相同。激光器有各种不同的分类方法:按工作物质来分有气体、玻璃、晶体、液体、半导体、准分子等激光器,还有化学激光器(靠化学反应而形成受激状态)和自由电子激光器等;按波长来分,覆盖的波长范围包括远红外、红外、可见光、紫外直到远紫外,最近还研制出X射线激光器和正在开发的γ射线光器;按激励方式不同,有光激励(光源或紫外光激励)、气体放电激励、化学反应激励、核反应激励等;按输出方式不同,有连续的、单脉冲的、连续脉冲的和超短脉冲的,等等;从功率输出的大小来看,其中连续的输出功率小至微瓦级,最大可达兆瓦级;脉冲输出的能量可从微焦耳至10万以上焦耳,脉冲宽度由毫秒级到皮秒级乃至飞秒级(1000万亿分之一)。——上述各式各样激光器的出现,主要是为了满足不同的应用目的。如激光加工和某些军用激光都要求高功率激光或高能量激光(即所谓强激光)。有的希望脉冲的时间尽量缩短,以从事某些特快过程的研究。有的还对提高光的单色性、改善输出光的模式、改善光斑的光强分布以及要求波长可调等提出了很高的要求,从而使激光器的探索深度和应用广度得到前所未有的发展。激光器的应用已渗透到各个领域,正在奇迹般地改变着我们的世界。——(三)蓬勃发展的激光应用——激光不仅是20世纪内人类最重大的发明之一,而且激光技术的应用已广泛深入到工业、农业、军事、医学乃至社会的各个方面,对人类社会的进步正在起着越来越重要的作用。——1、激光在信息领域的应用——半导体激光器和光纤放大器是光纤通信的两项关键技术。半导体激光器发出的激光不仅单色性和相干性好,而且光波频率比微波频率又高万倍,故以激光为传递信息的载体,用光纤做信息传递线路的光纤通信,不仅通信质量好、抗干扰能力强、保密性好,而且通信容量比微波通信要提高上万倍。一根比头发丝还细的光纤,就可以同时传输上万路电话或成千路电视节目,从而使通信真正成为通向千家万户的网络新时代。——利用激光技术进行光存储,使信息的存储发生了革命性的飞跃。一张CD声频光盘的记录密度相当于1000万比特/厘米2,可记录78分钟的音乐节目,比密纹唱片要大好几个数量级。一张计算机用的盘径为5英寸的CD-ROM,容量可达650兆比特。一张LD(激光录像盘),或者近几年最热门的VCD(激光视盘,谷称小影碟),以及继VCD之后的新一代视盘DVD(数字视盘),其视像蕴含的信号量比CD又要高千倍,可记录100分钟的清晰度很高的影视节目。CD、VCD和LD不仅已在放像设备市场占有相当大的份额,而且还可以在配有激光驱动器的计算机上播放。——此外,激光打印机、激光传真机、激光照排、激光大屏幕彩色电视、光纤有线电视以及大气激光通讯等均已得到广泛应用。——2、激光在全息术领域的应用——光作为一种波动现象,表征它的物理量有波长(同颜色有关)、振幅(同光的强弱有关)和位相(表示波动起点同基准时间的关系)。人们利用感光的照相方法,只能记录下波长和振幅,所以无论照得多么逼真,看照片和看真的景物总是不一样。而激光具有高相干性,能获取干涉波空间包括相位在内的全部信息。因此,采用激光进行全息摄影,被拍物体的全部信息都被记录在底片上,通过光的衍射,就能复现被摄取物体栩栩如生的立体形象。时至今日,在全息照相的基础上,还进一步发展了全息干涉术、彩色全息及彩虹全息和周视全息等新的全息技术。——全息照相具有三维成像的特点,可重复记录,而且每一小块全息底片都能再现物体的完整立体形象,其用途十分广泛。可广泛用于精密干涉计量、无损探伤、全息光弹性、微应变分析和振动分析等科学研究。利用全息干涉术研究燃气燃烧过程、机械件的振动模式、蜂窝板结构的粘结质量和汽车轮胎皮下缺陷检查等已得到广泛应用。全息照相用作商品和信用卡的防伪标记已形成产业,用全息照相拍摄珍贵艺术品,不仅欣赏起来令人如临其境,而且为艺术品的修复提供了可靠而逼真的依据。正在发展的全息电视还将为人们增添一种新的生活享受。——二、空间技术——(一)什么是空间技术——空间技术,顾名思义就是探索、开发和利用宇宙空间的技术。现阶段,空间技术又称航天技术。但对“天”目前专家们有两种理解:一是把地球大气层以外的无限遥远空间称之为“天”;另一是把地球大气层外、太阳系以内的有限空间叫做“天”。若按前一种理解,空间技术和航天技术完全是一回事;若按后一种理解,人们把地球大气层以外、太阳系以内的空间活动称之为航天,超出太阳系以外的空间活动称之为航宇。这样,空间技术则应涵盖航天技术和航宇技术。但由于在相当长的时间内,人类主要还是在太阳系内从事活动,因此,当今把航天技术和空间技术视为同义词已得到公认。——我国的航天专家将空间技术的主要特点概括为两个方面:首先空间技术是一门高度综合性的科学技术,是很多现代科学和技术成就的综合集成。它主要依赖于电子技术、自动化技术、遥感技术和计算机技术等众多先进技术的发展。因此,一个国家空间技术的成就,最能体现其科学技术的水平,是衡量其科技实力的重要标志。其次,空间技术是一门快速的、大范围的、在宏观尺度上最能发挥作用的科学技术。比如,通信卫星可以大面积覆盖地面以至全球;气象卫星可以进行全球天气预报;侦察卫星可以及时监视广大地区的军事活动等等。——空间技术区别于一般常规技术的这两大特点,使其对一个国爱的实力和进步起到意想不到的战略性作用:在经济上能产生很高的经济和社会效益,普遍认为,开发利用外层空间资源,其投资效益能达到1∶10以上;在军事上最能显示一个国家的军事实力,一个国家只要占有空间优势,就掌握了军事战略上的主动权;在政治上对提高一个国家在国际活动中的地位影响深远。一项重大空间成就,往往成为国际谈判的重大筹码;在科学技术上还能带动电子、自动化、遥感、生物等学科的发展,并形成包括卫星气象学、卫星海洋学、空间生物学和空间材料工艺学等一群新的边缘科学。——(二)空间技术的重大成就——空间技术的开创和发展是人类开拓宇宙空间的壮丽事业。空间技术自50年代崛起以来,以其辉煌的成就对国际政治、军事产生的影响和对人类经济、文明作出的贡献举世瞩目。几十年来,空间技术取得了重大的成就,其中各类卫星大显神通。

全文阅读

激光与空间技术论文

激光与空间技术胡海棠国家科委信息司原常务副司长研究员——一、激光技术——(一)什么是激光与激光技术——激光,是一种自然界原本不存在的,因受激而发出的具有方向性好、亮度高、单色性好和相干性好等特性的光。物理学家把产生激光的机理溯源到1917年爱因斯坦解释黑体辐射定律时提出的假说,即光的吸收和发射可经由受激吸收、受激辐射和自发辐射三种基本过程。众所周知,任何一种光源的发光都与其物质内部粒子的运动状态有关。当处于低能级上的粒子(原子、分子或离子)吸收了适当频率外来能量(光)被激发而跃迁到相应的高能级上(受激吸收)后,总是力图跃迁到较低的能级去,同时将多余的能量以光子形式释放出来。如果光是在没有外来光子作用下自发地释放出来的(自发辐射),此时被释放的光即为普通的光(如电灯、霓虹灯等),其特点是光的频率大小、方向和步调都很不一致。但如果是在外来光子直接作用下由高能级向低能级跃迁时将多余的能量以光子形式释放出来(受激辐射),被释放的光子则与外来的入射光子在频率、位相、传播方向等方面完全一致,这就意味着外来光得到了加强,我们称之为光放大。显然,如果通过受激吸收,使处于高能级的粒子数比处于低能级的越多(粒子数反转),这种光的放大现象就越明显,这时就有可能形成激光了。——激光之所以被誉为神奇的光,是因为它有普通光所完全不具备的四大特性。——1.方向性好——普通光源(太阳、白炽灯或荧光灯)向四面八方发光,而激光的发光方向可以限制在小于几个毫弧度立体角内(图8-9),这就使得在照射方向上的照度提高千万倍。激光准直、导向和测距就是利用方向性好这一特性。——2.亮度高——激光是当代最亮的光源,只有氢弹爆炸瞬间强烈的闪光才能与它相比拟。太阳光亮度大约是103瓦/(厘米2.球面度),而一台大功率激光器的输出光亮度经太阳光高出7~14个数量级。这样,尽管激光的总能量并不一定很大,但由于能量高度集中,很容易在某一微小点处产生高压和几万摄氏度甚至几百万摄氏度高温。激光打孔、切割、焊接和激光外科手术就是利用了这一特性。——3.单色性好——光是一种电磁波。光的颜色取决于它的波长。普通光源发出的光通常包含着各种波长,是各种颜色光的混合。太阳光包含红、登、黄、绿、青、蓝、紫七种颜色的可见光及红外光、紫外光等不可见光。而某种激光的波长,只集中在十分窄的光谱波段或频率范围内。如氦氖激光的波长为632.8纳米,其波长变化范围不到万分之一纳米。由于激光的单色性好,为精密度仪器测量和激励某些化学反应等科学实验提供了极为有利的手段。——4.相干性好——干涉是波动现象的一种属性。基于激光具有高方向性和高单色性的特性,它必然相干性极好。激光的这一特性使全息照相成为现实。——所谓激光技术,就是探索开发各种产生激光的方法以及探索应用激光的这些特性为人类造福的技术的总称。自1960年美国研制成功世界上第一台红宝石激光器,我国也于1961年研制成功国产首台红宝石激光器以来,激光技术被认为是20世纪继量子物理学、无线电技术、原子能技术、半导体技术、电子计算机技术之后的又一重大科学技术新成就。30多年来,激光技术得到突飞猛进的发展,不仅研制了各个特色的多种多样的激光器,而且激光应用领域不断拓展,并形成了激光唱盘唱机、激光医疗、激光加工、激光全息照相、激光照排印刷、激光打印以及激光武器等一系列新兴产业。激光技术的飞速发展,使其成为当今新技术革命的“带头技术”之一。——(二)各式各样的激光器——在光源中,实现能级粒子数反转是实现光放大的前提,也就是产生激光的先决条件。要实现粒子数反转,需借助外来光的力量,使大量原来处于低能级的粒子跃迁到高能级上去,这个过程我们称之为“激励”。——我们通常所说的激光器,就是使光源中的粒子受到激励而产生受激辐射跃迁,实现粒子数反转,然后通过受激辐射而产生光的放大的装置。激光器虽然多种多样,但使命都是通过激励和受激辐射而获得激光。因此基本组成通常均由激活介质(即被激励后能产生粒子数反转的工作物质)、激励装置(即能使激活介质发生粒子数反转的能源,泵浦源)和光谐振腔(即能使光束在其中反复振荡和被多次放大的两块平面反射镜)等三个部分组成(图8-2)。——经过30余年的发展,各国开发出实用的激光器已超过200种。种类繁多,特点各异,用途也各不相同。激光器有各种不同的分类方法:按工作物质来分有气体、玻璃、晶体、液体、半导体、准分子等激光器,还有化学激光器(靠化学反应而形成受激状态)和自由电子激光器等;按波长来分,覆盖的波长范围包括远红外、红外、可见光、紫外直到远紫外,最近还研制出X射线激光器和正在开发的γ射线光器;按激励方式不同,有光激励(光源或紫外光激励)、气体放电激励、化学反应激励、核反应激励等;按输出方式不同,有连续的、单脉冲的、连续脉冲的和超短脉冲的,等等;从功率输出的大小来看,其中连续的输出功率小至微瓦级,最大可达兆瓦级;脉冲输出的能量可从微焦耳至10万以上焦耳,脉冲宽度由毫秒级到皮秒级乃至飞秒级(1000万亿分之一)。——上述各式各样激光器的出现,主要是为了满足不同的应用目的。如激光加工和某些军用激光都要求高功率激光或高能量激光(即所谓强激光)。有的希望脉冲的时间尽量缩短,以从事某些特快过程的研究。有的还对提高光的单色性、改善输出光的模式、改善光斑的光强分布以及要求波长可调等提出了很高的要求,从而使激光器的探索深度和应用广度得到前所未有的发展。激光器的应用已渗透到各个领域,正在奇迹般地改变着我们的世界。——(三)蓬勃发展的激光应用——激光不仅是20世纪内人类最重大的发明之一,而且激光技术的应用已广泛深入到工业、农业、军事、医学乃至社会的各个方面,对人类社会的进步正在起着越来越重要的作用。——1、激光在信息领域的应用——半导体激光器和光纤放大器是光纤通信的两项关键技术。半导体激光器发出的激光不仅单色性和相干性好,而且光波频率比微波频率又高万倍,故以激光为传递信息的载体,用光纤做信息传递线路的光纤通信,不仅通信质量好、抗干扰能力强、保密性好,而且通信容量比微波通信要提高上万倍。一根比头发丝还细的光纤,就可以同时传输上万路电话或成千路电视节目,从而使通信真正成为通向千家万户的网络新时代。——利用激光技术进行光存储,使信息的存储发生了革命性的飞跃。一张CD声频光盘的记录密度相当于1000万比特/厘米2,可记录78分钟的音乐节目,比密纹唱片要大好几个数量级。一张计算机用的盘径为5英寸的CD-ROM,容量可达650兆比特。一张LD(激光录像盘),或者近几年最热门的VCD(激光视盘,谷称小影碟),以及继VCD之后的新一代视盘DVD(数字视盘),其视像蕴含的信号量比CD又要高千倍,可记录100分钟的清晰度很高的影视节目。CD、VCD和LD不仅已在放像设备市场占有相当大的份额,而且还可以在配有激光驱动器的计算机上播放。——此外,激光打印机、激光传真机、激光照排、激光大屏幕彩色电视、光纤有线电视以及大气激光通讯等均已得到广泛应用。——2、激光在全息术领域的应用——光作为一种波动现象,表征它的物理量有波长(同颜色有关)、振幅(同光的强弱有关)和位相(表示波动起点同基准时间的关系)。人们利用感光的照相方法,只能记录下波长和振幅,所以无论照得多么逼真,看照片和看真的景物总是不一样。而激光具有高相干性,能获取干涉波空间包括相位在内的全部信息。因此,采用激光进行全息摄影,被拍物体的全部信息都被记录在底片上,通过光的衍射,就能复现被摄取物体栩栩如生的立体形象。时至今日,在全息照相的基础上,还进一步发展了全息干涉术、彩色全息及彩虹全息和周视全息等新的全息技术。——全息照相具有三维成像的特点,可重复记录,而且每一小块全息底片都能再现物体的完整立体形象,其用途十分广泛。可广泛用于精密干涉计量、无损探伤、全息光弹性、微应变分析和振动分析等科学研究。利用全息干涉术研究燃气燃烧过程、机械件的振动模式、蜂窝板结构的粘结质量和汽车轮胎皮下缺陷检查等已得到广泛应用。全息照相用作商品和信用卡的防伪标记已形成产业,用全息照相拍摄珍贵艺术品,不仅欣赏起来令人如临其境,而且为艺术品的修复提供了可靠而逼真的依据。正在发展的全息电视还将为人们增添一种新的生活享受。——二、空间技术——(一)什么是空间技术——空间技术,顾名思义就是探索、开发和利用宇宙空间的技术。现阶段,空间技术又称航天技术。但对“天”目前专家们有两种理解:一是把地球大气层以外的无限遥远空间称之为“天”;另一是把地球大气层外、太阳系以内的有限空间叫做“天”。若按前一种理解,空间技术和航天技术完全是一回事;若按后一种理解,人们把地球大气层以外、太阳系以内的空间活动称之为航天,超出太阳系以外的空间活动称之为航宇。这样,空间技术则应涵盖航天技术和航宇技术。但由于在相当长的时间内,人类主要还是在太阳系内从事活动,因此,当今把航天技术和空间技术视为同义词已得到公认。——我国的航天专家将空间技术的主要特点概括为两个方面:首先空间技术是一门高度综合性的科学技术,是很多现代科学和技术成就的综合集成。它主要依赖于电子技术、自动化技术、遥感技术和计算机技术等众多先进技术的发展。因此,一个国家空间技术的成就,最能体现其科学技术的水平,是衡量其科技实力的重要标志。其次,空间技术是一门快速的、大范围的、在宏观尺度上最能发挥作用的科学技术。比如,通信卫星可以大面积覆盖地面以至全球;气象卫星可以进行全球天气预报;侦察卫星可以及时监视广大地区的军事活动等等。——空间技术区别于一般常规技术的这两大特点,使其对一个国爱的实力和进步起到意想不到的战略性作用:在经济上能产生很高的经济和社会效益,普遍认为,开发利用外层空间资源,其投资效益能达到1∶10以上;在军事上最能显示一个国家的军事实力,一个国家只要占有空间优势,就掌握了军事战略上的主动权;在政治上对提高一个国家在国际活动中的地位影响深远。一项重大空间成就,往往成为国际谈判的重大筹码;在科学技术上还能带动电子、自动化、遥感、生物等学科的发展,并形成包括卫星气象学、卫星海洋学、空间生物学和空间材料工艺学等一群新的边缘科学。——(二)空间技术的重大成就——空间技术的开创和发展是人类开拓宇宙空间的壮丽事业。空间技术自50年代崛起以来,以其辉煌的成就对国际政治、军事产生的影响和对人类经济、文明作出的贡献举世瞩目。几十年来,空间技术取得了重大的成就,其中各类卫星大显神通。

全文阅读

激光技术下通信技术论文

1激光通信技术的理论分析

1.1激光通信技术的基本原理分析

新技术的发展推动了社会文明的进步,当前的激光通信技术已在诸多的领域得到了应用,激光通信技术主要就是以大气或者是自由空间作为媒介,然后通过载波激光在大气中传输有效的信息。也就是先将声音信号调制到激光束上,再将信号的激光发送出去。根据不同的应用范围能够将激光通信分为无线和光纤两种类型的激光通信[1]。

1.2激光通信技术的主要特征分析

激光通信技术自身有限鲜明的特点,激光通信技术在安装方面较为简单,在地形地貌等应用上的适应性比较强。能够对各种临时性的通信以及迅速抢险通信等条件得到满足。和微波通信相比较而言激光通信在空间上的占有资源也相对比较小。并且在抗电磁干扰以及保密性方面都比较强,这些优点使其在实际的应用上比较广泛,在未来的发展过程中这也是一个必然的趋势。

2激光通信技术在实际生活中的应用及前景展望

2.1激光通信技术在实际生活中的应用分析

在激光通信技术的实际应用是多方面的,无线激光通信主要是综合了光纤通信以及微波通信的优点,所以在城域网当中的应用就比较适合。在企事业当中的内部网的连接当中能够得到有效应用,校园网以及大型的企业等内部网的建设过程中,有时会存在着急需连接使用通信的情况,在一定的程度上激光通信技术是光纤技术的一种补充,在城市化的发展速度不断加快过程中,楼寓间的通信和移动间的通信倘若是利用光纤就比较的麻烦,并且还会影响城市外观环境,在通信盲区情况下通常是采用光纤直放站加以应对,这样就能够将光纤和激光通信技术两者得到补充应用,从而形成两个基站间的链路。另外,将激光通信技术在移动通信当中进行应用也能够起到很好的效果。在现阶段我国的通信领域当中,最为活跃以及发展最为快速的就是移动通信。在移动电话使用量不断上升的情况下,这给无线网络的容量和带宽提出了更高的要求,怎样能够将有限的资源得到充分利用,这也是当前的移动运营商所面临的重大课题。

全文阅读

光学细分激光测量技术论文

1实验系统

在前面的分析中,本文具体讨论了光学细分系统的设计方案。运动距离测量实验选取光学四细分的光学系统,实验系统如图6所示。系统分为光路部分和信号处理部分。mW和0.5mW,反射镜M4由硅片制成,其反射率大约为0.4。硅片反射镜M4可调节反射方向。角锥棱镜M1、M2和M3的型号为Agilent10767A,具有非常好的光学性能。测量导轨选用的是PI公司的M-5x1.DD型号。二维精密电控平移台(直流电机驱动)单向重复定位分辨率达0.1μm,直线度参数为0.1μm/200mm,最高运行速度50mm/s,量程为200mm。2个测量角锥棱镜被安装在导轨上,通过PI公司的控制软件在计算机上对导轨的运动进行控制,实现对外腔长度的改变。通过运动距离测量结果与PI导轨运动参数的一致性可验证测量方案的可行性。信号处理部分中,由PD探测到的激光自混合干涉信号首先由低噪声前置放大器(Standford,SR560C)进行滤波和放大,一路送入示波器而另一路接着由NI公司的数据采集卡(NI6251)进行AD转换。采集到的数字信号送入PC机中由专业的数据分析软件(LabVIEW)实现信号再次细分以及实时处理重构目标物体的运动距离。测量过程中,示波器可定性观察光学细分的现象,而数据采集卡采集到的信号经过计算机的处理可进行运动距离测量。

2实验过程与结果分析

实验在同一测量环境条件下进行:恒温(20℃±1℃),恒湿(50%±3%)。使激光器预热2h,激光波长稳定在632.8334nm,让导轨以某一速度匀速运动,然后对采集的信号加入电子五细分处理。在本实验系统中,由自混合干涉光路细分原理可知,一个条纹对应的运动距离为λ/8,将此波形通过阈值为0的比较器后得到对应的方波信号,再将方波信号n细分,通过计数方波的个数来得到外部物体实际的运动距离。这样处理后,可以得到的分辨率为λ/8n。一个周期内的正弦波通过过零比较器整形成方波信号,五细分后的波形如图7所示。这样通过计数的方法就可以再次提高分辨率。此外,细分处理前对干涉信号进行了整形,可以显著增强对于叠加在自混合干涉信号上的高斯噪声的抗干扰能力,使测量结果更加稳定可靠。在数字域进行细分时,将上面得到的方波信号改写成二进制码(1111100000),然后将其右移9次,将其奇数次和偶数次的右移结果两两异或,则可以得到(1010101010),即对应的五细分信号及其互补信号(0101010101),实现了对原自混合干涉信号的细分。将PD探测到的微弱信号进行电流-电压(I-V)转换后,变成电压信号,经高通电路去直流后,再经放大电路放大,通过NI公司的数据采集卡USB-6251采集,在PC机上编写LabVIEW程序进行细分计数处理。信号经数字域电子细分后,进行计数后就可以重构并显示物体的实时运动距离。测量实验使用PI精密导轨对实时测量数据进行校准。导轨的移动范围设置为0~200mm,每次匀速步进20mm,移动速度设置为5mm/s,步进10次,每次导轨的示数作为标准;该运动过程由电机自动完成,系统对每次的步进长度进行自动测量记录并给出实时误差,连续记录几十组,选择其中的5组实验数据进行分析。通过拟合曲线与误差分析可以看出,实验结果与实际运动距离有良好的线性关系,且重复性非常的好,实现了使用光学细分与电子细分相结合的方法对物体的运动距离进行实时监测,实验结果与理论分析吻合。

3讨论

激光器作为测量光路的一部分而不能成为一个独立的、波长稳定的光源,其稳定性对测量准确度有很大的影响。空气折射率的变化和角锥棱镜的直角误差也会影响系统的测试精度。1)激光器频率稳定性带来的累计误差。实验中的氦氖激光器输出光在空气中传播的中心波长为632.8334nm,短期频率稳定性为1.5×10-6,因此,在没有反馈时,激光器波长稳定性为δλ=λδν/ν≈0.9492×10-6μm。当自混合效应反馈系数很低时,频率波动极小。理论计算表明,当外腔长度在百毫米量级时,波长稳定度可以达到10-8的测量准确度,测量不确定度小于0.4μm[9-10]。2)空气折射率变化带来的误差。测量环境的初始条件:空气压强101325Pa,室温20℃,湿度1333Pa。测量过程中,由温度、湿度以及压强传感器可知,只有环境温度会有最大不超过1℃的改变。因此得到折射率的变化为δn≈0.929×10-6。当测量长度为200mm时,测距不确定度小于0.3μm[9]。3)角锥棱镜的直角误差。角锥棱镜的直角误差会直接影响其对光路的反射特性。对于Agilent10767A型号的角锥棱镜,其3个直角误差δθ<5″。玻璃的折射率为1.56,则测量长度为200mm的测距误差小于0.002μm[11]。由于本实验系统存在3个角锥,则测距不确定度应小于0.006μm。由以上讨论可以知道,影响测量精度的最大因素来自于激光的频率的稳定度。理论上实验系统的测量分辨率可达到波长的1/40。而实际上,受制于激光频率的稳定程度,在弱反馈条件下,百毫米量级运动距离的测量只能达到微米级的测量精度。

4结语

本文实现了一种基于光电混合细分原理的激光自混合干涉测量技术。对于单纯依靠电子细分提高条纹分辨率的测量系统,难以达到λ/40的分辨率,而对于本文的自混合干涉测量系统,无需大量的数字细分即可达到此分辨率。同时也大幅减轻了在条纹计数法中对信号进行大量电子细分的软硬件压力,节省了硬件成本,降低了测量系统的复杂程度。在使用高分辨率导轨进行运动距离测量的实验中,实验结果与实际运动距离有良好的线性关系,能够达到μm精度,且重复性非常的好。对本运动距离测量系统的误差来源以及影响实时测量精度的因素进行了分析。综合考虑光学细分极限以及系统误差来源,得出了系统实际的运动距离测量精度。该系统抗干扰能力强、结构简单,具有良好的应用前景。

全文阅读

激光雷达技术原理教学法论文

1《激光雷达技术原理》理论与实践相结合的教学法

《激光雷达技术原理》以测量学和数据处理理论和方法为基础,讲授激光雷达技术的基本原理和数据后处理方法,同时结合实际案例讲解激光雷达技术在测绘、地质和工程等领域的应用前景和亟待解决的问题。由于激光雷达是一项测绘新技术,国内还没有成熟的教材,因此结合国际上较为权威的专著《AirborneandTerrestrialLaserScanning》[5]以及国内外相关的研究和应用成果自编了教程,对学生采取了“了解—新型传感器原理”“熟悉—激光扫描仪操作”和“掌握—激光点云数据后处理方法”的教学模式,以达到从理论到实践的教学效果。

1.1了解新型传感器原理

首先,以学生熟悉的全站仪为对照,让学生了解激光雷达是一种集成了多种高新技术的新型测绘仪器,具有非接触式、精度高(毫米级/亚毫米级)、速度快(可达120万点/秒)、密度大(点间距可达毫米级)的优势,且数据采集方式灵活,对环境光线、温度都要求较低。其次,让学生理解LiDAR的测量原理主要分极坐标法和三角测量法两种。其中,对于极坐标法测量,使学生了解测距的关键在于时间差的测定,引出两种常用的测时方法:脉冲法和相位法;让学生理解直接测时和间接测时的区别以及各自的优缺点,从而进一步了解脉冲式和相位式激光扫描设备的优势、局限性以及应用领域。最后,通过介绍激光雷达采集数据的扫描方式,让学生了解不同平台上的激光雷达传感器的工作特点,如固定式激光扫描仪适合窗口式和全景式扫描,车载、机载以及星载平台适合移动式扫描等。

1.2熟悉激光扫描仪操作

考虑到各类平台激光雷达的作业特点以及现有设备的情况,《激光雷达技术原理》课程以地基三维激光扫描仪为重点,让学生熟悉仪器的外业操作。尽管激光扫描仪数据采集的自动化程度较高,外业采集仍然需要解决扫描设站方案设计和不同扫描站间连接点选择等问题,要求学生在熟悉激光扫描仪软硬件操作的同时,还要掌握激光扫描仪外业采集方案的设计:踏勘工作区,分析研究最优化的扫描设站方案和坐标转换控制点选择,画出相关的设计草图,并设置主要扫描设站的标志。要求设站位置既要保证与相邻站的重叠,又要覆盖尽量大范围的被扫描对象,以减少设站数,从而提高外业数据采集效率。

1.3掌握激光点云数据后处理方法

利用点云数据可视化与点云原始存储格式之间的明显反差,让学生了解激光点云数据后处理的重要性和难点,及其已成为制约激光雷达技术应用瓶颈的现状。根据学生的理解程度,选取了点云的拼接/配准、点云的滤波和分类、点云的分割和拟合等后处理方法,要求学生掌握相关的算法并编程实现。

全文阅读

激光探测系统接口技术论文

论文关键词:激光探测;接口

论文摘要:本文论述了激光探测系统信息接口技术;讨论了激光探测接口的一般设计思想。

1引言

激光具有波长单一和良好的方向性,所以和传统的探测方法相比,激光探测具有精度高,抗干扰能力强等特点,在激光测距、激光雷达、激光告警、激光制导、目标识别等军事领域,都得到了广泛应用。针对不同武器系统的需求,激光探测系统接口呈现出多样性。

近年来,随着应用需求和集成化度的增加,激光探测系内部、激光探测系统和各武器平台之间集成了不同厂商的硬件设备、数据平台、网络协议等,由此带来的异构性给探测系统的互操作性、兼容性及平滑升级能力带来了问题。

对激光探测系统而言,接口技术的设计是整个系统集成的关键技术。一个激光探测系统的设计、实施,有很大的工作量是在接口的处理上,好的接口设计可以提高系统的稳定性、运行效率、升级能力等,本文以激光探测系统接口技术为研究对象,着重分析其接口技术类型、设计考虑因素和验证方法。

2激光探测系统几种主要接口技术

接口是多要素或多系统之间的公共边界部分,对激光探测系统的接口包括机械接口、电气接口、电子接口、软件接口等,本文着重讨论电子接口。按物理电气特性划分,常用的激光探测系统接口类型可分为以下几类:

全文阅读

激光测量技术论文

1非接触式测量

在利用激光进行的三维测量中应用最广泛的测量方法主要有三种:干涉法、飞行时间法和三角法。1.1干涉法干涉法测量是利用激光的干涉原理来完成对物体测量的一种方法,其原理是将一束相干光通过分光系统分成测量光和参考光,通过测量光波与参考光波相干叠加产生的干涉条纹变化量来获得物体表面的深度信息。干涉法的测量精度高,在100m范围内可以获得0.1mm的分辨率。1.2飞行时间法飞行时间法是通过测量脉冲光束的飞行时间来测量距离的一种测量方法,其原理是通过测量发射和接收激光脉冲信号的时间差来间接获得被测目标的距离。飞行时间法以时间分辨率来换取距离测量精度,精度相对较低,一般在1mm左右,精度高的测量头可达亚毫米级,常用于大尺度远距离测量。1.3三角法三角法是光学测量中最常见的一种测量方法。它是将待测点的深度坐标,通过不同的检测元件,利用几何三角关系转换为相对于光学基准的偏移量进而计算出该点深度值。根据具体照明方式的不同,光学三角法可分为两大类:被动三角法和主动三角法。激光三角法测量是基于激光的主动三角法,是近年来研究较多、发展比较成熟的一种测距方法。其测量原理是:由光源发出的光照射到被测物体表面上,反射后在检测器(如:CCD)上成像,物体表面的位置改变,检测器上成的像也随之改变,由几何三角关系即可通过对像移的检测和计算出实际高度。激光三角法测量的精度取决于感光设备的敏感程度、与被测表面的距离、被测物表面的光学特性等,适合于近距测量,精度一般在丝米级。

2测量方法的选择

船板的形状尺寸测量是一个典型的外表面三维曲面测量。由于船板是一个连续而光滑的曲面,因此,可以将整个曲面离散成m×n个点,通过测量得到这些点的坐标值后,即可通过软件拟合出整个曲面。由于传统的接触式测量,存在探头易磨损,需要人工干预,价格昂贵,对使用环境有一定要求,测量速度慢,效率低等问题,因此,虽然其有较高的测量精度,但确并不适合应用在船板多点成形在线测量中。对比三种常用的激光测量方法,测量精度均能满足船板的测量要求。本着实用而不浪费的原则,由于干涉法测量所需的测量设备成本较另外两种方法高出很多,并且使用时需反射镜,现场在线使用不方便,速度慢效率低,因此,采用飞行时间法或三角法的激光测量传感器比较适合船板三维测量,其设备价格较低,对测量表面的要求不高,并且可直接测量,使用灵活方便。

3扫描装置

扫描装置是激光测量头的安装平台,其作用是带动激光测量头沿X轴和Y轴运动,完成对整个测量表面的扫描,并在测量的同时给出测量点的X方向和Y方向的坐标值。为了提高测量效率,最终确定扫描装置采用多点方式,这样可以大大提高船板多点成形的生产效率。由于多点测量方式使用的激光测量头数量较多,因此,在满足测量精度要求的前提下,选择了价格相对较低的飞行时间法激光测量头。扫描系统由电动滑台、联轴器、接轴、减速机、伺服电机、测量架、测头等部分组成(见图1)。电动滑台和减速机通过架子固定在上模座上,伺服电机与减速机相连,并通过接轴与电动滑台连接,测量架固定在电动滑台上。测量时,在伺服电机驱动下,电动滑台带动测量架沿X方向移动,每走一个步长测头测量当前X坐标下各点的Z坐标值,直到测量完整个板材表面点阵(见图2)。

4结束语

综上所述,多点成形技术可以用于成形大型船板,它通过将模具离散化的方式,实现船板的“柔性”制造,通过分段成形等方式,成形出具有复杂三维曲面的板材。为了得到符合要求的板材,需要测量每次成形后的板材形状,采用方向性和单色性好,能量高度集中的激光作为光源,测量方法用飞行时间法和三角法都可以。由于测量精度要求不高,为了降低成本,选择飞行时间法测量,测头用多点式;如果有更高的测量精度要求,可以选用三角法测量,测头用单点式。

全文阅读

生物医学光学的探究

1会议概况

工业激光和生物医学光学国际学术会议于1999年10月25~27日在华中科技大学学术交流中心举行。H.wcber教授和干福熹院士担任大会主席,来自14个国家和地区的221位代表(境外代表46人)出席了会议。会议得到美国SPIE的支持,正式出版了会议论文集SPIE(工业激光论文集卜3862和SPIE(生物医学光学论文集关3863.前者共收录论文121篇,其中,国外作者论文13篇;后者共收录论文95篇,其中国外作者论文31篇。大会特邀了世界激光和生物医学光学领域的着名学者作主题报告,全体大会4个特邀报告,工业激光分会8个邀请报告,生物医学光学分会4个邀请报告,这些特邀报告和邀请报告学术水平高,均反映了当前国内外研究的前沿课题。

2工业激光研究的最新热点

在工业激光器领域,由于半导体激光器迅速发展,准连续器件已达到4kw.因此,在许多应用领域均有采用半导体激光器代替传统的气体激光器及固体激光器的发展趋势。但是,由于半导体激光器目前光束质量较差,作为过渡的发展阶段是大量采用半导体激光器泵浦的固体激光器,其激光输出功率也已达到4kw级,光束质量获得明显改善。因此,在世界市场上,1998年固体激光器的销售金额,首次超过了CO:激光器。据估计,近期激光技术的应用在高功率激光器方面仍然会以COZ激光器和固体激光器为主。在激光应用领域,除了高功率激光应用以外,国外已经在激光精密加工领域开展了深入的研究工作,如法国利用准分子激光超精密打孔、划线,精度非常高,孔径圆整、光滑,在陶瓷如S13N;,A12O3等方面的精密处理方面已有深人的研究。本次会议涉及到准分子激光应用的文章有15篇,涉及领域有激光淀积超导薄膜,金刚石薄膜、非晶金刚石薄膜等,激光制备光栅,激光制备纳米颗粒。我国大陆学者主要把准分子激光用于制备薄膜,台湾大学是用准分子激光制备光栅,法国学者用激光制备纳米颗粒。可见国外用准分子激光加工开展面比我国广泛。从本次会议看,国外今后重点发展研究领域和前沿课题包括:高功率半导体激光器,近五年内千瓦级器件将会实现实用化;半导体激光泵浦固体激光器,特别是盘片固体激光器近五年内也将会突破千瓦级;半导体激光泵浦全固体化紫外激光器已突破3W,如果能提高一个量级,将会逐步取代紫外气体激光器;利用准分子激光对电子元器件处理作了很深入的研究,在这些方面已成为激光超精密加工应用的重要发展方向。国内外在激光制备薄膜方面的研究始终是一大热点。我国半导体工业基础差,不仅在集成电路发展方面吃了大亏,现在看来在光电子工业的发展方面又要重复以前的错误。国内有几个单位发展半导体激光器,主要侧重在通讯应用。高功率半导体激光器及短波长半导体激光器差距很大,应予以足够的重视。在发展高功率激光器件,包括气体和固体与国际水平差距更大。从会上两个非常有代表的报告可知,其一是英国He:i。t一watt大学的D.R.Hall教授报告的平板波导高功率激光器件.代表了当代国际先进水平,从基本原理到结构特性,均报告得比较详细,内容也很丰富。其二是德国柏林技术大学H.Webe:教授报告的激光二极管泵浦的固体激光器,特别是针对激光二极管泵浦源的特点,提出了一种新型的腔体结构,很有特色与创新,在他的论文中有比较精辟的论述。此外,德国斯图加特宇航技术物理研究所主任Willyl,.Bohn博士,介绍了他们的激光二极管泵浦圆盘型固体激光器,在一片直径5mm,厚度不足1mm的激光介质上,可取得500W的激光输出。部分代表与他讨论了与此有关的问题:①增益长度短为何能获得这么高的激光输出?②高掺杂晶体将产生晶格缺陷,直径5mm,厚度不足1mm的激光介质是如何制备出来的?③泵浦光如何进人激光介质,怎样实现均匀的泵浦?④是否可用更多的圆盘串在谐振腔光路上获得更大的输出?目前德国已解决了前三个问题。对于大于5kw输出的固体激光器介质热畸度仍不可忽略,输出光束质量大大下降,还有待进一步研究解决方法。在激光与材料相互作用方面,我们的研究大多注意在诸如激光的光斑直径、功率、照射时间、速度等参数和工艺的研究上。而对激光与材料相互作用的机理研究尚不够,如激光照射到材料表面后,激光是如何烧蚀材料表面的,材料对激光的吸收与反射,材料表面吸热后如何进行传热?对材料表面组织结构改变及其形成机制,缺乏深人的研究。在激光与材料相互作用机理方面应加强研究力度。对这些基础研究有一定深度后,在激光加工应用中的工艺就有了理论依据。

3生物医学光学研究的最新热点

本次会议还涉及到光学层析成像及光谱学的理论与模型、生物监测的光学成像与光谱学、适用于生物医学和临床的相干域光学方法、生物光谱学和显微学、激光与组织的相互作用、激光医疗等方面。以下就生物医学光学研究的一些最新进展和热点问题作一概述。(l)光学层析成像及光谱学技术的理论与模型。关于生物组织光学层析成像和光谱学技术的理论与建模研究一直是国际生物医学光学的研究重点。由BrittionChanee博士主持的“OptiealtomographyanDSPeetroseopy:theoryandmode1s”专题会议吸引了众多听众。来自各国的科学家报道了该领域的最新研究成果和应用。俄罗斯valeryv.Tuchin教授报道了活组织光学特性参数控制的有关成果,其离体和在体的实验均证明了通过使用葡萄糖、trazograph等渗透活性助剂可改变人眼巩膜、皮肤等纤维组织的光散射特性。美国StevenIJ.Jacques教授做了《生物组织科学和工程中的光学技术》的特邀报告,J.R.M。盯ant教授介绍了生物组织中光散射的基本机理研究的进展。麻省理工学院的李兴德博士报道了衍射层析成像技术的最新进展,提出了一种用于高散射介质中扩散光子密度波快速、近场衍射层析成像的角谱算法,该算法可用于有限大小介质,并能同时重建吸收和散射系数。宾夕法尼亚大学的张思豪博士报告了基于混浊介质中,用动态光散射技术测量深层组织中血流的一种方法,该方法可用于深层组织中的血流动力学图像的重建。华中科技大学的张智报道了用分形理论进行人眼角膜内皮细胞图像分析的初步结果。(2)生物组织的光学成像和用于生物监测的光谱学技术。九十年代以来,美国、欧洲、日本等国都在该领域投人了大量的人力和资金,本次会议共有26篇论文涉及此项专题。其内容包括组织光学成像和组织光学参数测量、光学脑功能成像、近红外光谱术的血流动力学测量、组织超微弱发光检测、扩散光子密度波和X射线层析成像等。

StevenL.Jacques教授报道了一种基于偏振光摄像机的组织成像系统.该系统可用于对浅表皮肤的成像,其优点是可避免较深层组织扩散光子对成像造成的影响,同时也能有效消除表层皮肤镜面反射及黑色素积淀的影响。美国约翰?霍普金斯大学刘乱副教授提出了一种用于数字X射线照相术的新型光学祸合电子成像技术,该技术的独到之处在于使用新颖的CCD扫描和防辐射 设计.可用小尺寸CCD成像器进行大范围视场的成像,且不损失空间分辨率.解决了现有电子成像器在成像所需分辨率下,面积不足以覆盖整个的问题。哈佛医学院DavidA.BoaS博士等人比较了采用近红外光谱术和扩散光学层析成像技术,定量测量组织整体和局部血氧变化的异同。如何定量测量组织中血氧的变化是当前迫切需要解决的问题.虽然当前有几种技术可实现定量监测,但使用不方便,因而需要研制简便易用的检测装置,以满足日益发展的市场需求。美国得克萨斯农机大学汪立宏博士?报道了声致发光层析成像和扫频超声调制光学层析成像技术的最新进展。声致发光成像技术利用聚焦超声波激发组织内部发光,实现在生物组织内部的选择性光激发,从而实现对较深层组织毫米量级分辨率的光学层析成像。会议中,利用无损伤的光学成像技术研究大脑功能和脑血液动力学变化成为与会者普遍关注的问题之一。华中科技大学骆清铭教授报道了用大脑功能近红外光学成像器研究视觉刺激、手指运动时大脑视觉、运动皮层的活动以及前额叶在工作记忆和情绪活动中作用的成果;中科院心理研究所的杨炯炯博士用大脑功能近红外光学成像器研究了左前额叶在非相关词对编码中的作用;日本Kagoshima大学王钢博士报道了用基于大脑活动内源信号检测的光学成像系统.研究不同颜色形状的物体对猴子进行视觉刺激时其大脑皮层的活动;清华大学WemaraIicllty报道了用近红外光谱术研究大脑活动时氧合作用变化的结果。

(3)生物医学和临床的相干域光学方法。在该专题中,弱相干光学层析成像(OC丁)成为会议关注的热点。近年活跃在相干域光学方法及其医学应用研究领域的加利福尼亚大学平博士报告了目前OCT.ODT(光学多普勒层析成像)的最新研究成果,日本的刘纪元博士也就OCT技术的进展做了特邀报告。中科院上海光学精密机械研究所、清华大学的代表都报道了各自在()CT方面的研究结果。(4)生物光谱学和显微术。为获得生物组织内部的微观结构信息,从细胞、分子水平研究诸多生命现象的微观机理,近儿十年来人们一直致力于各种显微成像技术的发展研究。会上,代表们报道了在激光扫描共焦显微成像、荧光与光谱成像以及散射介质中光信息的获取等方面的研究进展。如:加拿大英哥仑比亚癌症研究中心曾海山博士报道了一种利用荧光成像.可检测呼吸道与胃肠道早期癌症的系统。澳大利亚维多利亚大学顾敏教授报道了在混沌介质中,他们用角度门法代替时间门法,以提高成像的效率。(5)激光与生物组织的相互作用。激光与生物组织的相互作用和组织光学所涉及的内容十分广泛,在生物医学基础理论和临床诊断研究中具有重大的意义。代表们就激光与组织相互作用时的光散射、干涉、光机械、光热、光化学效应,生物组织中光子的迁移规律,以及低功率激光生物效应等方面进行了广泛深人的研究讨论。在光热效应方面,美国得克萨斯大学R.D.Glickman教授提出钦YAG激光器用于泌尿系统结石碎石治疗的主要机理是光热烧蚀作用。俄勒冈医疗激光中心解哗博士报道了半导体激光器用于尿道焊接的研究成果。日本自由电子激光研究所的K.Awazu报道了用红外自由电子激光研究动脉硬化区组织光热效应的进展。昆明理工大学周凌云教授报道了生物组织激光光热效应微观机理的量子理论分析。另外,华南师范大学刘颂豪院士、加拿大J.R.North和匈牙利Dezso.Gal教授等还报道了光动力治疗方面的研究进展。

全文阅读

生物医学光学探究

1会议概况

工业激光和生物医学光学国际学术会议于1999年10月25~27日在华中科技大学学术交流中心举行。H.wcber教授和干福熹院士担任大会主席,来自14个国家和地区的221位代表(境外代表46人)出席了会议。会议得到美国SPIE的支持,正式出版了会议论文集SPIE(工业激光论文集卜3862和SPIE(生物医学光学论文集关3863.前者共收录论文121篇,其中,国外作者论文13篇;后者共收录论文95篇,其中国外作者论文31篇。大会特邀了世界激光和生物医学光学领域的著名学者作主题报告,全体大会4个特邀报告,工业激光分会8个邀请报告,生物医学光学分会4个邀请报告,这些特邀报告和邀请报告学术水平高,均反映了当前国内外研究的前沿课题。

2工业激光研究的最新热点

在工业激光器领域,由于半导体激光器迅速发展,准连续器件已达到4kw.因此,在许多应用领域均有采用半导体激光器代替传统的气体激光器及固体激光器的发展趋势。但是,由于半导体激光器目前光束质量较差,作为过渡的发展阶段是大量采用半导体激光器泵浦的固体激光器,其激光输出功率也已达到4kw级,光束质量获得明显改善。因此,在世界市场上,1998年固体激光器的销售金额,首次超过了CO:激光器。据估计,近期激光技术的应用在高功率激光器方面仍然会以COZ激光器和固体激光器为主。在激光应用领域,除了高功率激光应用以外,国外已经在激光精密加工领域开展了深入的研究工作,如法国利用准分子激光超精密打孔、划线,精度非常高,孔径圆整、光滑,在陶瓷如S13N;,A12O3等方面的精密处理方面已有深人的研究。本次会议涉及到准分子激光应用的文章有15篇,涉及领域有激光淀积超导薄膜,金刚石薄膜、非晶金刚石薄膜等,激光制备光栅,激光制备纳米颗粒。我国大陆学者主要把准分子激光用于制备薄膜,台湾大学是用准分子激光制备光栅,法国学者用激光制备纳米颗粒。可见国外用准分子激光加工开展面比我国广泛。从本次会议看,国外今后重点发展研究领域和前沿课题包括:高功率半导体激光器,近五年内千瓦级器件将会实现实用化;半导体激光泵浦固体激光器,特别是盘片固体激光器近五年内也将会突破千瓦级;半导体激光泵浦全固体化紫外激光器已突破3W,如果能提高一个量级,将会逐步取代紫外气体激光器;利用准分子激光对电子元器件处理作了很深入的研究,在这些方面已成为激光超精密加工应用的重要发展方向。国内外在激光制备薄膜方面的研究始终是一大热点。我国半导体工业基础差,不仅在集成电路发展方面吃了大亏,现在看来在光电子工业的发展方面又要重复以前的错误。国内有几个单位发展半导体激光器,主要侧重在通讯应用。高功率半导体激光器及短波长半导体激光器差距很大,应予以足够的重视。在发展高功率激光器件,包括气体和固体与国际水平差距更大。从会上两个非常有代表的报告可知,其一是英国He:i。t一watt大学的D.R.Hall教授报告的平板波导高功率激光器件.代表了当代国际先进水平,从基本原理到结构特性,均报告得比较详细,内容也很丰富。其二是德国柏林技术大学H.Webe:教授报告的激光二极管泵浦的固体激光器,特别是针对激光二极管泵浦源的特点,提出了一种新型的腔体结构,很有特色与创新,在他的论文中有比较精辟的论述。此外,德国斯图加特宇航技术物理研究所主任Willyl,.Bohn博士,介绍了他们的激光二极管泵浦圆盘型固体激光器,在一片直径5mm,厚度不足1mm的激光介质上,可取得500W的激光输出。部分代表与他讨论了与此有关的问题:①增益长度短为何能获得这么高的激光输出?②高掺杂晶体将产生晶格缺陷,直径5mm,厚度不足1mm的激光介质是如何制备出来的?③泵浦光如何进人激光介质,怎样实现均匀的泵浦?④是否可用更多的圆盘串在谐振腔光路上获得更大的输出?目前德国已解决了前三个问题。对于大于5kw输出的固体激光器介质热畸度仍不可忽略,输出光束质量大大下降,还有待进一步研究解决方法。在激光与材料相互作用方面,我们的研究大多注意在诸如激光的光斑直径、功率、照射时间、速度等参数和工艺的研究上。而对激光与材料相互作用的机理研究尚不够,如激光照射到材料表面后,激光是如何烧蚀材料表面的,材料对激光的吸收与反射,材料表面吸热后如何进行传热?对材料表面组织结构改变及其形成机制,缺乏深人的研究。在激光与材料相互作用机理方面应加强研究力度。对这些基础研究有一定深度后,在激光加工应用中的工艺就有了理论依据。

3生物医学光学研究的最新热点

本次会议还涉及到光学层析成像及光谱学的理论与模型、生物监测的光学成像与光谱学、适用于生物医学和临床的相干域光学方法、生物光谱学和显微学、激光与组织的相互作用、激光医疗等方面。以下就生物医学光学研究的一些最新进展和热点问题作一概述。(l)光学层析成像及光谱学技术的理论与模型。关于生物组织光学层析成像和光谱学技术的理论与建模研究一直是国际生物医学光学的研究重点。由BrittionChanee博士主持的“Optiealtomographyandspeetroseopy:theoryandmode1s”专题会议吸引了众多听众。来自各国的科学家报道了该领域的最新研究成果和应用。俄罗斯valeryv.Tuchin教授报道了活组织光学特性参数控制的有关成果,其离体和在体的实验均证明了通过使用葡萄糖、trazograph等渗透活性助剂可改变人眼巩膜、皮肤等纤维组织的光散射特性。美国StevenIJ.Jacques教授做了《生物组织科学和工程中的光学技术》的特邀报告,J.R.M。盯ant教授介绍了生物组织中光散射的基本机理研究的进展。麻省理工学院的李兴德博士报道了衍射层析成像技术的最新进展,提出了一种用于高散射介质中扩散光子密度波快速、近场衍射层析成像的角谱算法,该算法可用于有限大小介质,并能同时重建吸收和散射系数。宾夕法尼亚大学的张思豪博士报告了基于混浊介质中,用动态光散射技术测量深层组织中血流的一种方法,该方法可用于深层组织中的血流动力学图像的重建。华中科技大学的张智报道了用分形理论进行人眼角膜内皮细胞图像分析的初步结果。(2)生物组织的光学成像和用于生物监测的光谱学技术。九十年代以来,美国、欧洲、日本等国都在该领域投人了大量的人力和资金,本次会议共有26篇论文涉及此项专题。其内容包括组织光学成像和组织光学参数测量、光学脑功能成像、近红外光谱术的血流动力学测量、组织超微弱发光检测、扩散光子密度波和X射线层析成像等。

StevenL.Jacques教授报道了一种基于偏振光摄像机的组织成像系统.该系统可用于对浅表皮肤的成像,其优点是可避免较深层组织扩散光子对成像造成的影响,同时也能有效消除表层皮肤镜面反射及黑色素积淀的影响。美国约翰•霍普金斯大学刘乱副教授提出了一种用于数字X射线照相术的新型光学祸合电子成像技术,该技术的独到之处在于使用新颖的CCD扫描和防辐射设计.可用小尺寸CCD成像器进行大范围视场的成像,且不损失空间分辨率.解决了现有电子成像器在成像所需分辨率下,面积不足以覆盖整个的问题。哈佛医学院DavidA.BoaS博士等人比较了采用近红外光谱术和扩散光学层析成像技术,定量测量组织整体和局部血氧变化的异同。如何定量测量组织中血氧的变化是当前迫切需要解决的问题.虽然当前有几种技术可实现定量监测,但使用不方便,因而需要研制简便易用的检测装置,以满足日益发展的市场需求。美国得克萨斯农机大学汪立宏博士•报道了声致发光层析成像和扫频超声调制光学层析成像技术的最新进展。声致发光成像技术利用聚焦超声波激发组织内部发光,实现在生物组织内部的选择性光激发,从而实现对较深层组织毫米量级分辨率的光学层析成像。会议中,利用无损伤的光学成像技术研究大脑功能和脑血液动力学变化成为与会者普遍关注的问题之一。华中科技大学骆清铭教授报道了用大脑功能近红外光学成像器研究视觉刺激、手指运动时大脑视觉、运动皮层的活动以及前额叶在工作记忆和情绪活动中作用的成果;中科院心理研究所的杨炯炯博士用大脑功能近红外光学成像器研究了左前额叶在非相关词对编码中的作用;日本Kagoshima大学王钢博士报道了用基于大脑活动内源信号检测的光学成像系统.研究不同颜色形状的物体对猴子进行视觉刺激时其大脑皮层的活动;清华大学WemaraIicllty报道了用近红外光谱术研究大脑活动时氧合作用变化的结果。

(3)生物医学和临床的相干域光学方法。在该专题中,弱相干光学层析成像(OC丁)成为会议关注的热点。近年活跃在相干域光学方法及其医学应用研究领域的加利福尼亚大学平博士报告了目前OCT.ODT(光学多普勒层析成像)的最新研究成果,日本的刘纪元博士也就OCT技术的进展做了特邀报告。中科院上海光学精密机械研究所、清华大学的代表都报道了各自在()CT方面的研究结果。(4)生物光谱学和显微术。为获得生物组织内部的微观结构信息,从细胞、分子水平研究诸多生命现象的微观机理,近儿十年来人们一直致力于各种显微成像技术的发展研究。会上,代表们报道了在激光扫描共焦显微成像、荧光与光谱成像以及散射介质中光信息的获取等方面的研究进展。如:加拿大英哥仑比亚癌症研究中心曾海山博士报道了一种利用荧光成像.可检测呼吸道与胃肠道早期癌症的系统。澳大利亚维多利亚大学顾敏教授报道了在混沌介质中,他们用角度门法代替时间门法,以提高成像的效率。(5)激光与生物组织的相互作用。激光与生物组织的相互作用和组织光学所涉及的内容十分广泛,在生物医学基础理论和临床诊断研究中具有重大的意义。代表们就激光与组织相互作用时的光散射、干涉、光机械、光热、光化学效应,生物组织中光子的迁移规律,以及低功率激光生物效应等方面进行了广泛深人的研究讨论。在光热效应方面,美国得克萨斯大学R.D.Glickman教授提出钦YAG激光器用于泌尿系统结石碎石治疗的主要机理是光热烧蚀作用。俄勒冈医疗激光中心解哗博士报道了半导体激光器用于尿道焊接的研究成果。日本自由电子激光研究所的K.Awazu报道了用红外自由电子激光研究动脉硬化区组织光热效应的进展。昆明理工大学周凌云教授报道了生物组织激光光热效应微观机理的量子理论分析。另外,华南师范大学刘颂豪院士、加拿大J.R.North和匈牙利Dezso.Gal教授等还报道了光动力治疗方面的研究进展。

全文阅读