首页 > 文章中心 > 交流电源

交流电源范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

站用交直流一体化电源

【摘 要】近年来,变电所站内系统智能化的要求不断地得到重视,关于智能化的方案也不断地更新。本文针对传统站用电源分散设计存在的问题,阐述了站用交直流一体化电源系统的设计方案及其技术特点。

【关键词】交直流一体化;电源;系统智能化

1 传统变电所站用电源分散设计存在的问题

一直以来,变电站站用电源包括交流电源系统、直流电源系统、UPS不间断电源系统、通信电源系统等,每个系统采用分散设计,独立组屏,不同设备由不同的供应商生产、安装、调试,各个供电子系统也分配不同的专业人员管理。这种分散设计与管理,存在着诸多问题:

1)站用变电源难以实现网络化系统管理

由于交流系统、直流系统等设备由不同厂家提供,所以通信规约一般不兼容,很难实现网络化系统管理,自动化程度低。由于没有统一的监控设备对整个站用电源进行管理,不能实现系统数据共享,无法进行站用电源协调联动、状态检修等深层次开发应用。

2)设备管理的可靠性降低

由于占用所有设备的信息不能网络共享,对于一些设备的故障和报警不能够综合分析和管理,不同专业的巡检人员分别管理各个电源子系统,缺乏对系统的综合分析判断,及时发现事故隐患。

全文阅读

单元220V交流不间断电源

摘要:单元220V交流不间断电源系统(简称UPS),相当于发电机组的供血中心;UPS工作的可靠性直接关系着发电机组的安全、稳定运行。针对抚顺发电厂2号机UPS所发生三起典型的断电故障和异常运行情况,根据UPS装置的工作原理,对其故障现象和原因进行分析,并提出了解决办法和实施措施;可供同类用户参考、借鉴。

终了或UPS故障时,UPS向负载供电电源只有备用市电。若备电电压超出标准,UPS拒绝切换,势必造成供电中断。因此备用市电的质量对UPS系统来讲是至关重要的。

第六,在闭合电池开关之前必须先将UPS主机的充电器开启,待其输出电压升至额定值后,才能操作电池开关使其闭合。因为在UPS的直流回路中,有一组容量比较大的电解电容器,过高的电压差,将使电容器的充电电流过大,一则可能使电容器损坏,二则可能使开关触点烧坏,甚至伤及人体。

第七, Q050开关是先合后断式,具有两个位置,当开关处于位置“AUTO”(正常运行)时,负载由UPS系统供电(逆变器或静态旁路);当开关处于位置“BYPASS”,负载直接由备用市电供电, UPS主机可以退出运行,但此时若备用市电中断,UPS系统即将断电。

第八,UPS系统故障必定会造成DCS系统失电,当DCS系统故障时,不仅INFI90计算机控制系统失灵,而且大部分保护及联锁也将失效;由汽轮机远方打闸不良、EH油泵误启动可见,设法提高UPS系统可靠性至关重要。

解决办法与建议实施 3.1为改善UPS系统缺陷,提高其运行可靠性,特此建议采取以下解决办法。

缺陷未排除前,采取相关技术措施,设法提高母线电压,以克服UPS系统不安全运行隐患。 立即联系青岛整流器厂,令其来人诊断故障并提供质量合格的UPS主控板,以便及时更换。 联系厂家对稳压调压器所出现的手动、自动均失调现象查找原因,并进行处理;以提高设备健康水平。 将UPS系统主回路电源由380V厂用ⅡB段改接在380V公用ⅡA段上运行,以提高输入市电质量。 设法尽快恢复UPS系统主回路供电,在空载状态下完成各项试验;并进一步考验静态旁路持续供电能力。 3.2配合厂家处理缺陷

今年5月26日厂家派专业维护人员来做售后服务,再更换F021保险后,UPS主回路空载运行,以考验UPS主控板(因怀疑此主控板有故障);主回路于14点55分投入后,17点45分逆变器关断。次日,连续三次启动逆变器,均在5分钟内关断;厂家确认UPS主控板故障,将UPS主控板更换备用板,并进行修复(备用板系为存在缺陷未能出厂元件),并将主回路在空载状态下运行观察。

全文阅读

不间断交流电源过流保护设计

摘 要:不间断交流电源带容性负载易出现断电或损坏的故障,传统过流保护措施并不能完全解决,依然存在隐患,为解决此故障,设计了一种新型过流保护措施[1]。

关键词:不间断交流电源;过流保护;SPWM

不间断交流电源[1]正常是用于在有交流输入时交流电供电,当交流电断开或者交流电不正常时用电池来供电。在电池馈电交流电供电时,开机后输出接的容性负载太大,则负载的瞬间启动电流就很大,电源检测到峰值电流关断后,输出恢复时间太长,从而会导致输出断电故障。

1 故障分析

造成输出断电故障原因是在负载在开机瞬间,内部的开关电源对滤波电容器充电会产生一个很大的浪涌电流,比系统正常工作电流大几倍乃至几十倍。因此电源会在负载上电瞬间出现断电问题。采用加大电源的输出功率余量和提高电源的过流保护措施可以解决这个问题。

2 系统设计

系统框图见图1:

将主控芯片产生SPWM脉冲[2]作为电源的控制信号,经功率驱动电路驱动和保护IGBT开关管,另外电流检测电路检测到过流信号,短时间关断SPWM脉冲信号,一旦没有过流信号,将立刻打开SPWM脉冲信号。

全文阅读

PWM交流斩控技术在交流稳压电源中的应用

摘要:讨论了交流斩控技术在交流稳压电源中的应用原理,分析了主电路及控制电路的结构,并阐述了交流斩控补偿式交流稳压电源的优点。 关键词:交流斩控;补偿稳压;非互补控制

引言

交流稳压技术的发展一直倍受广大用户和生产厂商的关注,其原因在于我国市场上现有的各种交流电力稳压产品,在技术性能上都有不尽人意之处。

在我国应用较早,且用户最广的交流电力稳压电源当属柱式(或盘式)交流稳压器,虽然这种稳压电源有很多优点,但由于它是用机械传动结构驱动碳刷(或滚轮)以调节自耦变压器抽头位置的方法进行稳压,所以存在工作寿命短,可靠性差,动态响应速度慢等难以克服的缺陷。

近年来不少生产厂家针对柱式交流电力稳压器所存在的缺点,纷纷推出无触点补偿式交流稳压器,大有取代柱式稳压器之势。这种电源实质上仍然是采用自耦方式进行调压,所不同的只是通过控制若干个晶闸管的通断,改变自耦变压器多个固定抽头的组合方式,来代替通过机械传动驱动碳刷改变自耦变压器抽头位置的一种调压方法。这种方法固然提高了稳压电源的可靠性和动态响应速度,但却失去了一个重要的调节特性——平滑性,即调节是有级的,其必然结果是稳压精度低(一般只有3%~5%),并且在调节过程中,当负载电流很大时会冲击电网并产生低频次谐波分量,对负载也会产生冲击;另外采用这种方法所用变压器较多(一相至少需二台,即一台自耦变压器,一台补偿变压器),这就增加了电源的自重和空载损耗。

伴随着全控开关器件的容量和性能以及模块化程度的提高,集成控制电路功能的不断完善,吉林市长城科技有限责任公司凭借自己的科技实力,率先研制出采用PWM技术,通过全控开关器件IGBT,对交流进行斩波控制的新型补偿式交流稳压电源——JJY-ZK/BW系列斩控补偿式交流稳压电源。为我国交流稳压技术的创新和满足市场对高性能交流稳压电源的需求开创了新局面,下面对PWM交流斩控技术在该种交流稳压电源中的应用原理及性能做一简要介绍。

1 PWM交流斩控调压原理

图1(a)所示,假定电路中各部分都是理想状态。开关S1为斩波开关,S2为考虑负载电感续流的开关,二者均为全控开关器件与二极管串联组成的单相开关[见图1(b)]。S1及S2不允许同时导通,通常二者在开关时序上互补。定义输入电源电压u的周期T与开关周期Ts之比为电路工作载波比Kc,(Kc=T/Ts)。图1(c)表示主电路在稳态运行时的输出电压波形。显然输出电压uo为:

全文阅读

一种交流稳流逆变电源的设计与实现

摘要:描述了一种用于低压电器热测试实验的交流稳流逆变电源的设计与实现。逆变器的控制采用了带有电感电流瞬时值反馈的双环控制策略,以提高系统的稳定性和动、静态性能,并对控制环节进行了建模和详细分析。实验结果显示电流源的设计达到了国标要求。 关键词:逆变器;正弦波脉宽调制;瞬时值反馈

引言

本文所描述的交流稳流逆变电源应用于低压电器长延时热脱扣试验,适用于对断路器、热继电器等低压电器作长延时特性的校验和测试。为保证温升试验的准确性,测试正弦电流必须稳定、精确。根据国家标准GB14048.2-94要求,长延时热脱扣试验的电流误差≤±2%,正弦波失真度

目前国内大多数采用的长延时热脱扣试验方案是通过变压器直接对断路器施加一个电压以获得测试电流[1]。在测试过程中,由于电网电压的波动、载流电路中引线电阻变化、负载本身电阻发热变化,使测试电流随之变动,难以满足国家标准的要求。本文介绍了一种新型的交流稳流逆变测试电源,具有工作稳定可靠、输入功率因数高、输出精度高、波形失真度小、效率高的优点。

1 交流稳流逆变电源体系结构

功率主电路采用AC/DC/AC结构,如图1所示。前级为功率因数校正(PFC)电路,由Boost变换器构成,用于提高网测功率因数、降低网侧电流的THD值,并为逆变部分提供一个合适的直流母线电压。后级的全桥逆变电路完成正弦波逆变、快速调压稳流功能。逆变输出的高频SPWM波经过LC滤波,得到平滑正弦波。由于负载电阻小,电压低,电流大(15~160A连续可调),采用升流变压器进行降压增流,可以使逆变电路主开关管的选取容易许多。由图1中可以看出,该逆变器实际上是一个电压型电流源,即通过对逆变桥输出电压的快速调节来实现恒流输出。

交流稳流源采用全桥SPWM逆变电路,并工作于倍频单极性模式下,这样逆变桥在不增加开关损耗的情况下,其输出电压的频率比开关频率再提高一倍,而且谐波含量较小,可以简化输出LC滤波电路,也有利于减小波形的失真度。

数字部分由MCS-51单片机电路组成,具有两个功能:其一,作为人机接口界面,带有键盘输入和液晶显示模块,实现给定值设定、负载电流显示等功能;其二,单片机与控制电路接口,实现标准正弦波的给定、逆变电路的软启动、电路时序控制、负载检测等诸多功能。

全文阅读

一起110kV变电站交流电源系统事故分析

摘 要:交流站用电系统是一个变电站的重要组成部分,交流站用电系统运行的可靠性直接影响电力一次系统的安全运行。本文介绍了一起由于运行人员操作不当引起的交流电缆绝缘烧坏接地事故。同时通过对事故原因进行分析,提出了防范对策。

关键词:变电站;站用电;失电;事故;防范对策

DOI:10.16640/ki.37-1222/t.2017.07.160

0 引言

交流站用电系统是一个变电站的重要组成部分,担负了变电站开关储能、主变冷却器 、直流系统蓄电池充电等重要回路的供电任务,因此交流站用电系统运行的可靠性直接影响电力一次系统的安全运行 。为了提高站用电系统的运行可靠,一般变电站都使用两路电源,有的重要变电站甚至使用三路电源。交流站用电系统同时还使用了自动投切功能,以保证站用电供电的连续性 。但是在使用了多路电源后,在站变并列时,也带来了一些新的问题。本文介绍了一起由站用电系统自投站变并列运行导致的交流站用电事故。

1 事故情况简述

2012年1月16日,110kV某变电站因运行人员操作不当,导致交流系统发生10kV #1站用变电源和35kV #2站用变电源两个变比不同的站用变强行并列,从而使该站交流系统出现较大环路电流,致使#1交流电源屏“110kV场地I路交流电源空气开关”与“10kV场地I路交流电源空气开关”以及#2交流电源屏“110kV场地II路交流电源空气开关”与“10kV场地II路交流电源空气开关”全部跳开,相关的电缆绝缘烧坏接地。

2 故障发生经过及分析

全文阅读

变电所交流电源系统故障排除探讨

【摘要】本文主要阐述了变电所交流电源系统的一些故障类型,例如交流接触器KM1与KM2失电,中间继电器2KA烧毁以及交流空气开关QF跳闸等等。然后针对这些故障本文提出了一些应对措施,例如采用主备方式电源互投、并列方式互投以及并列方式转主备供电方式现场实验等等方法使问题有效解决。

【关键词】变电所;交流电源系统;故障分析;应对措施

一、交流电源系统故障类型分析

本文以京九线变电所自用交流电源系统为例。在很长一段时间内,京九线变电所交流电源系统经常出现跳闸、熔断器烧毁以及交流中间继电器烧毁等等故障。产生这些故障的主要原因在于,变压器供给交流配电盘上的电源出现突然失压的情况,从而导致中间继电器与低压保险烧坏,所以就会跳闸停电。经分析,故障可以分为以下五种类型:

(1)中间继电器KM烧坏。在交流电源回路中没有加入低压熔断器.,当母线电压突然失压的时候。220V的电压就会同时失压,而中间继电器失压之后,KM的接点就会断开,而220V的电源就会从27.5KV切换成10KV,然后进行供电。在短时间内,母线的电压开始慢慢恢复,220V电压处也随之有了电压,中间继电器KM接触到电以后,常开接点就会闭合,常闭接点就会断开,在KM的节点转换期间,因为受到拉弧的作用的影响,KM的两个接点就可以接通,最后导致电源出现通路的情况。但是,两侧电压的值存在很大差距,从而导致电流短路,所以出现了中间继电器KM出现烧坏的现象。

(2)中间继电器2KM烧坏。当110KV进线失压的时候,母线与220V电压同时也会失压。当PLC装置判断也失压的时候,中间继电器的1KA就会失点,然后断开,2KA接电以后就闭合,从而使交流接触器断开、KM2闭合。这时的供电者为10KV侧的380V电源。在此期间,中间继电器的容量是非常小的,在经历了几次的断开与闭合以后,继电器就很容易被烧坏,最终导致停电。

(3)变电所交流电接触器KM断开。变电所母线电压失压以后,PLC本体监控模块的交流电源同时也失去电。等母线恢复电压以后,电源突然受到冲击作用,PLC就会出现程序混乱,甚至还会死机,从而使中间继电器失去电,交流接触器也失去电,造成变电所交流二次电源失去电。

(4)低压保险烧毁。当变电所的母线电压出现失压的时候,中间继电器之所以会出现烧毁的现象主要是因为二次电源在切换期间出现了电流短路的现象,造成了电路接触不良。由于接触器接点容量非常大,所以,就会使低压熔断器被熔断,从而导致交流接触器出现失电,造成变电所停电。

全文阅读

交流配电单元通信电源论文

一、交流配电单元设计

电源系统交流输入设计两路,一路从市电接入,一路从柴油发电机输入,当市电出现异常时,自动切换至柴油发电机发电,如图1所示。三相市电R,S,T分别由空开L1、L2、L3接入,给整流模块供电,控制板上设有市电过高或者过低的指示灯,在市电正常供电时,报警指示灯熄灭,市电过高或者过低时,相应的报警指示灯会亮起。考虑到可能会有浪涌电流的产生,损坏通信设备,在开关整流模块和交流辅助输出口之前安装C级防雷系统。

交流配电单元(屏)设计方案:(1)交流接入电路:市电经过交流空气开关输入通信电源系统,交流空气开关的额定容量即为交流配电单元的额定容量。安装基站装机容量为8KW计算,交流配电容量属于50A等级。选取50A三相交流空气开关,具体型号为施耐德空气开关C65N系列三相50A4P50型。(2)整流模块交流输入开关:在市电接入空气开关之后,交流配电单元分别为每个整流模块提供一路单独的交流输入开关,开关额定电流大小根据开关整流模块的容量确定,本系统设计选用台达DPR2000C系列开关整流模块,故选择额定电流12A的施耐德单相空气开关。(3)交流辅助输出:电源系统的交流配电除了给整流模块提供交流电外,还需配置额定容量不同的各种的交流输出接插口,供基站内交流用电设备使用,因此外加一个交流配电排,供其他交流设备取电使用。(4)交流侦测电路:由1:20的交流变压器和整流滤波器件组成,将交流配电单元的原始电压、电流和频率等参数转化为监控电路可以接收的采样信号。(5)交流监控电路:通信电源监控单元有专门处理交流配电情况的微处理器电路,可以自动完成采样信号的接收、处理、报警、显示等功能。(6)防雷器:选用电源C级电涌保护器,具体型号选用ASP公司的AM1-80/3+NPE。

二、直流配电单元设计

直流配电单元的正负母排分别与整流模块输出的正负极相连,同时它还接入了三组电池组BAT1、BAT2、BAT3。电池通过熔断器,LVDS直流电流切断器及分流器接入-48V铜排。霍尔传感器检测电池1、电池2、电池3的各自电流及负载的总电流,接触器CB1-CB6由直流断电控制板及监控模块来控制,实现电池及负载的自动切断及重新接入功能,电流信号经信号转接板转换后送入监控单元。

LVDS为电池直流电流切断器,做一次或者二次下电使用,本设计方案设计只有一路直流下电控制,以保护蓄电池组,防止过度放电造成电池损坏。当交流中断,系统靠电池电流维持运转时,监控系统会检测蓄电池组当前电压值,当目前电压值低于预设电压时,会发出跳脱信号,控制LVDS切断直流供电。负载电路所选用短断器由每路设计通过电流决定,24载频通话,直流功耗为3KW,选择施耐德EA9AN2C60,60A断路器,WCDMA机柜每个1.5KW,选择施耐德EA9AN2C30,30A断路器3个,还有一路提供给传输设备,传输设备功耗0.5KW,选择施耐德C65N-2P-10A,10A断路器,剩余3个直流负载位置预留,为以后基站升级扩容留下空间。

电池断路器按照电池最大充放电电流选择,电池配置为3组,均充电流最大为200A,每路限制电流设计为65A,选用施耐德C65系列型号的断路器。

作者:肖欣单位:飞依诺科技(苏州)有限公司

全文阅读

核电厂直流和交流不间断电源系统的介绍

摘 要:本文以方家山核电项目作为参考,描述了核电厂中电气直流和交流不间断电源(UPS)系统的结构组成和系统运行,同时讲述了直流系统主要设备蓄电池、充电器和直流配电柜以及交流不间断电源(UPS)系统主要设备逆变器的功能特性。针对主要设备的调试内容做了简要介绍。

关键词:直流系统 交流不间断电源系统 充电器 逆变器

中图分类号:TG457.6 文献标识码:A 文章编号:1672-3791(2013)06(b)-0107-02

核电厂的直流系统作为断路器的分闸、合闸回路,继电保护装置的操作、控制、信号和保护回路的工作电源,是核电厂厂用电系统最重要组成部分。220 V交流不间断电源(UPS)系统是核电厂计算机、通信系统以及安全保护设备必需的一种不间断、高可靠的电源。直流系统和UPS系统对保证核反应堆的安全运行有着至关重要的作用,为了满足单一故障准则,核安全级的直流和交流不间断电源系统需要冗余配置。并且电气上隔离,实体上分隔。

1 直流和UPS系统的运行

1.1 直流系统的运行方式

在核电厂中,直流系统按电压可以分为24 V、48 V、110 V和220 V四种等级,其中某些系统为核安全级,必须按照RCC-E标准进行设计制造和试验。

核电工程的直流系统接线通常采用单母线分段形式,包括两台充电器和一组蓄电池,母联开关将母线分为A和B两段,A段母线上连接有一台充电器、一组蓄电池和蓄电池试验回路;B段母线连接有另一台充电器、微机绝缘监测仪以及馈线回路。正常运行时,由B段母线上的充电器向直流负荷供电,同时向蓄电池组浮充电,该充电器能提供最大持续负荷电流,同时维持蓄电池组端电压不变。当运行的该台充电器发生故障时,就地手动切换到A段母线上的充电器,切换期间由蓄电池组为负荷进行供电,为了提高供电的可靠性,两台充电器允许并联运行,中间不设机械闭锁。直流系统进线电源取自不同的380 V母线段。

全文阅读

交流电源串入直流电源回路导致断路器跳合闸原因分析

摘要 目前,电厂和变电站在工作时,通常会遇到交流电源串入直流电源回路导致断路器跳合闸的现象发生。本文对电厂断路器跳合闸的情况进行了一些分析,并提出了一些相关的建议。

关键词 交流电源;直流电源;断路器跳合闸

中图分类号TM561 文献标识码A 文章编号 1674-6708(2011)52-0027-02

目前,电厂和变电站大多采用直流电源对继电器保护和断路器的回路控制进行供电,因为直流电路具有数量多、分布广等特点。电厂和变电站在工作运行时,常常会出现建筑施工或设备改造和工作同时进行的情况,一旦工作出现失误,交流电源很有可能串入直流电源回路,导致断路器跳合闸的现象产生。考虑到直流电路有分布电容的存在,可能会有交流电源通过分布电容开启继电器的现象出现,这样会使得多台电路器都出现跳闸或者合闸,造成很严重的影响。本文列举了一些地方电厂断路器跳合闸的情况,并对跳合闸的原因进行了一些分析,提出了一些相关的建议。

1 断路器跳合闸故障现象

1.1 陕西电厂35 kV断路器跳闸故障

故障现象:断路器跳闸,具体故障为:合闸接触器线圈烧坏,故障结果:输出断路器跳闸、合闸电磁铁和合闸机构损坏。

相关检查:该装置带有10 kV真空断路器电磁接触器线圈,合闸时输出0.4 A的电流,同时还有35 kV SF6断路器弹簧储能机构,合闸时线圈输出2.2 A的电流。合闸线圈以及接触器线圈将会长时间的带有0.4A~2.2 A的电流,他们长时间的带电,很容易被烧坏。

全文阅读