首页 > 文章中心 > 粉末冶金

粉末冶金范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

粉末冶金技术

干摩擦条件下SiC/MoSi_2与WC-Co对磨时的磨损特性研究席俊杰 吴中 (243)

反应合成的TiC对铜基摩擦材料摩擦磨损性能的影响陈百明 刘晓斌 王珺 尹新权 张振宇 (248)

氢气含量对电弧等离子法制备纳米Ni粉影响的研究侯聪花 鲁玉玲 张景林 王晶禹 (253)

放电等离子体烧结W粉数值模拟陈小安 尚福军 宋顺成 (256)

超细硬质合金棒料挤压成形剂预脱除工艺研究孙丹 李广生 林春芳 杜玉国 孙卫权 (262)

材料·制品·应用

制备工艺对粉末高钒高速钢组织和力学性能的影响王浩强 燕青芝 旷峰华 葛昌纯 (266)

电弧离子镀ZrN/TiN涂层对烧结NdFeB的耐腐蚀及磨损性能的影响杜军 张平 蔡志海 赵军军 (269)

全文阅读

粉末冶金工业

制造高密度零件的一种新工艺Semel F.J. 亓家钟(译) 韩凤麟(校) (1)

化学共沉淀-共还原法制备Fe70Ni27Co3触媒粉末及金刚石合成实验研究赵文东 徐骏 郭宏 李成栋 朱学新 宋月清 (8)

火花等离子体放电法制备高温合金粉末鲍俊敏 葛昌纯 郭双全 张宇 沈卫平 (14)

爆炸冲击合成法制备氮化碳粉末的研究于雁武 刘玉存 郑欣 李玉平 (20)

时效制度对粉末冶金高温合金FGH95组织和性能的影响贾建 陶宇 张义文 张莹 (25)

流动温压成形“十”字形零件及其烧结工艺的研究郑军君 倪东惠 胡昌旭 肖志瑜 周水波 李元元 (32)

加入纳米Ni粉对微米级Fe粉试样烧结工艺及性能的影响王树杰 樊云昌 王建强 孟凡爱 (37)

高性能硬质合金长条薄片状制品的研制贾佐诚 吴诚 (47)

全文阅读

粉末冶金新技术

摘要:粉末冶金是一项非常先进的制造技术,现在已经在材料和零件制造业处于无可替代的位置。这项技术是将材料制备和零件成形融为一体,成为当代材料科学发展领域的领先技术。它具有节能、节材、高效、最终成形、少污染的特点。当前粉末冶金技术越来越高致密化、高性能化、低成本化,本文主要分析的是几种新型的粉末冶金零件的成形技术。

关键词:粉末冶金 温压技术 流动温压技术 模壁技术 高速压制技术 动磁压制技术 放电等离子烧结技术 爆炸压制技术

1 温压技术

虽然温压技术只是一项新技术,在近几年才取得了一些发展,但是由于它生产出来的粉末冶金零件具有高密度、高强度的特点,现阶段已经得到了大量的应用。这项技术和传统的粉末冶金工艺不同,它可以采用特制的粉末加温、粉末输送和模具加热系统,将加有特殊剂的预合金粉末和模具等加热至130~150℃,并将温度波动控制在±2.5℃以内,之后的压制和烧结工序和传统工艺是一样的。与传统工艺相比,区别点就集中在温压粉末制备和温压系统两个方面。采用这项技术不管是从压坯密度方面来说,还是从密度方面来说,都比采用传统工艺要好很多。在同样的压制压力下,使用温压材料比采用传统工艺不管是屈服强度、极限拉伸强度,还是冲击韧性都要高。此外,由于温压零件的生坯强度比传统方法下的生坯强度要高很多,可达20~30MPa,如此一来,既降低了搬运过程中生坯的破损率,也保证了生坯的表面光洁度。另外,采用该技术生产出来的零件不仅性能均一,精度高,而且材料的利用率很高。温压工艺的成本不高,而且工艺并不复杂。与传统的工艺相比,温压工艺下的粉末冶金的利用率高,耗能低,经济效益高,是节能、节材的强有力手段。

2 流动温压技术

流动温压粉末冶金技术(Warm Flow Compaction,简称WFC)是一种新型粉末冶金零部件成形技术,目前国外还处于研究的初试阶段,它的核心价值就是能够提高混合粉末的流动性、填充能力和成形性。

WFC技术有效利用了金属粉末注射成形工艺的优点并在粉末压制、温压成形工艺的基础上被发现。这项技术可以将混合粉末的流动性提高,这样就使混合粉末可以在80~130℃温度下,只需要在传统的压机上经过精密成形就可以形成各种各样外形的零件,省掉了二次加工的步骤。WFC技术在成形复杂几何形状方面具有很大的优势,是传统工艺无法比的,而且成本不高,具有非常广阔的应用前景。

综上所述,我们可以归纳出WFC技术具有以下四个优势:一是能够制造出各种各样外形的零件;二是有着很好的材料的适应性;三是工艺简单,成本低;四是压坯密度高、密度均匀。

全文阅读

粉末冶金发展方向

1粉末冶金技术特点与发展趋势

1.1粉末冶金技术特点

粉末冶金技术作为一种应用比较广泛的精密成形技术,具有少无切削加工、材料利用率高、制造过程清洁高效、生产成本低、可制造形状复杂和难以机械切削加工的特点。一般认为,粉末冶金技术工艺的特点如下:

1)不需要或者只需要极少量的切削加工;

2)材料利用率可高达97%以上;

3)零件尺寸的制造公差较小且具有再现性,从而产品可获得很高的尺寸精度和良好的一致性;

4)材料成分、微观组织及组成可以科学调整;

5)零件表面光洁度较好;

全文阅读

简述粉末冶金成型方法

摘要:粉末冶金成型是将金属粉末或混合料装在阴模型腔内,通过模冲对粉末施加压力压制成具有一定形状、尺寸、孔隙度和强度坯块的工艺。成型的方法合理与否直接决定产品能否顺利生产以及能否具备批量生产的能力,降低成本。此外成型的效果将影响产品随后的工序和产品的最终质量。本文通过阐述粉末冶金模压成型常见的几种方法,以及不同的方法对应的原理及其压制的坯件的密度分布。并为不同类型产品的成型压制如何选择最合适的方法提供理论依据。

关键词: 单向压制 双向压制

中图分类号:TP217.4 文献标识码:A 文章编号:1672-3791(2015)02(b)-0000-00

1、引言

粉末冶金是用金属粉末(或金属粉末与非金属粉末的混合料)作为原料,经过成型和烧结制造金属材料、复合材料以及各种类型制品的工艺过程【1】。随着粉末冶金技术发的发展,粉末冶金产品的性能要求也不断提高,相对产生多种不同的成型方法。目前传统压制成型方法有:单向压制和双向压制两种。其中双向压制又分为阴模浮动式压制和阴模拉下式压制。

2、成型方法

2.1单向压制

单向压制工作原理:阴模型腔和下模冲的位置固定不动,上模冲在压机凸轮带动下,向下进入阴模型腔,并对阴模型腔的粉末加压,使粉末压制成具有一定密度和强度的坯件。【2、3】

全文阅读

粉末冶金TiAl基合金的研究进展

摘 要 本文综述了粉末冶金制备钛铝基合金的几种工艺方法,如预合金粉末工艺,元素粉末制备工艺,自蔓延高温合成工艺方法等,介绍了有关力学性能的研究及进展情况,对各方法的优势及局限性进行了论述,同时指出了粉末冶金TiAl基合金制备技术目前存在的问题及今后研究重点。

关键词 TiAl基合金;粉末冶金;力学性能

中图分类号TF12 文献标识码A 文章编号 1674-6708(2013)91-0045-02

0 引言

作为高温结构材料,TiAl基合金正受到业内界人士的越来越高度关注,良好的抗氧化性能,低密度,耐高温性能等,让其比之镍基合金和钛基合金更具优越性[1],因此成为航空,国防,军工等高科技领域极具吸引力的材料。然而,室温塑性低,高温屈服应力高和加工成形性差等,使得TiAl合金广泛应用受到严重的制约。因此,研究和开发针对TiAl合金合理高效的制备与成形技术,是科技工作者的一个重要课题。常规制备TiAl基合金的方法主要有粉末冶金,铸造,铸锭冶金等。其中粉末冶金方法有其显著独特优点:克服了铸造缺陷,如疏松缩孔等;加入合金元素来制备复合材料变得容易;材料成分均匀,显微组织细小,力学性能优异;复杂零件易于实现近净成形。

1 预合金粉末制备工艺

采用预合金粉末成型工艺制备TiAl基合金首先要制备γ-TiAl预合金粉末,之后经过模压成型与烧结反应而制得所需制件的工艺。此工艺的成本有些昂贵,因为,Ti熔点高且活性比较大,需要在制备过程中严格控制工艺,故难度也较大。现阶段,发展出来很多方法制备γ-TiAl预合金粉,其中主要被采用的有:雾化法、机械合金化法(MA)、自蔓延高温合成法(SHS)等。此工艺所获材料其晶粒大小,相分布以及合金元素分布的均匀性与相应的锻件相比,都得到显著提高。用预合金法,德国姆波公司制造出大型客机连接臂,和直升机叶片连杆接头,产品相比于锻件,材料和成本分别节省40%和34%[2]。随后美国坩埚公司又开发出,可以制备全致密,形状复杂的钛合金近形产品的陶瓷模热等静压技术,使得合金材料的力学性能得到进一步提升。

2 元素粉末法

全文阅读

粉末冶金的现状以及发展趋势

【摘 要】粉末冶金是用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制成金属材料、复合材料以及各种类型制品的工艺过程。粉末冶金它具有低耗节能、材料利用率高、高效省时等优点,但其也存在一定不足,如金属粉末和模具费成本高,产品尺寸的大小和形状受限制,产品韧性较差等。目前粉末冶金广泛应用在硬质合金制作、多孔材料、难熔金属材料、磁性材料、金属陶瓷等。

【关键词】粉末冶金历史 基本工序 粉末冶金优势与不足 趋势

1 粉末冶金的历史

粉末冶金发展经历三个阶段:

20世纪初,通过粉末冶金工艺制得电灯钨丝,被誉为现代粉末冶金技术发展的标志。随后许多难熔金属材料如钨、钽、铌等都可通过粉末冶金工艺方法制备。1923年粉末冶金硬质合金的诞生更被誉为机械加工业的一次革命;20世纪30年代,粉末冶金工艺成功制得铜基多孔含油轴承。继而发展到铁基机械零件,并且迅速在汽车、纺织、办公设备等现代制造领域广泛应用;20世纪中叶以后,粉末冶金技术与化工、材料、机械等学科互相渗透,更高性能的新材料、新工艺发展进一步促进粉末冶金发展。并使得粉末冶金技术广泛应用到汽车、航空航天、军工、节能环保等领域。

2 粉末冶金的基本工序

(1)粉末的制取。目前制粉方法大体可分为两类:机械法和物理化学法。机械法是将原材料机械地粉碎,化学成分基本不发生变化。物理化学法是借助化学或物理作用,改变原材料的化学成分或聚集状态而获得粉末。目前工业制粉应用最为广泛的有雾化法、还原法和电解法;而沉积法(气相或液相)在特殊应用时也很重要。

(2)粉末成型。成型是使金属粉末密实成具有一定形状、尺寸、孔隙度和强度坯块的工艺过程。成型分普通模压成型和特殊成型两类。模压成型是将金属粉末或混合料装在钢制压模内,通过模冲对粉末加压,卸压后,压坯从阴模内压出。特殊成型是随着各工业部门和科学技术的发展,对粉末冶金材料性能及制品尺寸和形状提出更高要求而产生。目前特殊成型分等静压成型、连续成型、注射成型、高能成型等。

全文阅读

探究粉末冶金的发展及现状

摘 要:粉末冶金是冶金和材料科学的一个分支,它是运用金属或金属粉末(或金属粉末与非金属粉末的混合物)作为原料烧结,制造出各种金属材料、复合出各种类型的产品。本篇文章将从粉末冶金的发展与探究出发,对其进行探讨,为今后学者们面对问题时的处理与解决提供了参考与借鉴。

关键词:粉末冶金;发展;探究

DOI:10.16640/ki.37-1222/t.2017.06.011

1 粉末冶金的起源c概述

1.1 粉末冶金的起源

在1930年代,螺旋磨削后还原铁粉,因此铁粉和碳粉制成的铁基粉末冶金方法的机械零件获得快速发展。 第二次世界大战后,粉末冶金技术就得到了快速发展,新的生产技术和技术设备,许多新材料和产品可以衍生出一些特殊材料的制造领域,成为现代工业的重要组成部分。

1.2 粉末冶金的概述

粉末冶金是一项能将金属粉末或金属粉末(或金属粉末和非金属粉末的混合物)作为原料烧结,制造出金属材料、复合材料以及各种类型的产品技术。粉末冶金方法和生产陶瓷有相似的地方,都是粉末烧结技术的一部分,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。由于粉末冶金技术的优点,它已成为解决问题的关键性新材料,在整个工程系统领域的发展中发挥关键作用。但是从定义上说粉末冶金产品往往是远超出了材料和冶金的范围,通常跨越多个学科(材料、冶金、机械、力学等)的技术。特别是现代金属粉末3 d打印技术,集机械工程、AUTOCAD、逆向工程技术,分层制造技术、数控技术、材料科学、激光技术共同与粉末冶金产品技术进入一个更全面的现代技术的学科。

全文阅读

粉末冶金在汽车上的应用

[摘 要] 汽车行业的飞速发展也带动了粉末冶金在汽车上的应用。本文介绍了粉末冶金的基本工艺特点,列举了几个粉末冶金在汽车上的应用实例,对粉末冶金的发展做出了展望。

[关键词] 粉末冶金;汽车;零件;展望

doi : 10 . 3969 / j . issn . 1673 - 0194 . 2016. 13. 060

[中图分类号] F407.471 [文献标识码] A [文章编号] 1673 - 0194(2016)13- 0114- 02

0 引 言

随着汽车产量的攀升,汽车产业的节约材料、节能、减排以及降低生产成本,毫无疑问成为汽车产业目前面临的重要挑战。粉末冶金是节能环保、节材的金属加工制造工艺,在现代汽车制造中无疑扮演着不可或缺的角色。

1 粉末冶金技术介绍

粉末冶金技术是先进的金属成形加工技术。1910年美国的Coolidge W D“The Production of Ductile Tungsten”,是近代粉末冶金的诞生的标志。目前粉末冶金已经发展逾百年,应用领域也在不断拓展。粉末冶金包括三个重要技术步骤,分别是原料粉末的制备、粉末成型为所需形状的坯块、坯块的烧结、产品的后序处理。粉末冶金可以直接制造出尺寸准确、表面光洁的零件,减少了金属切削过程,节约材料和加工工时,可以加工形状复杂普通铸造难以加工的金属零件。

全文阅读

粉末冶金技术在新能源材料中的应用

摘 要:随着社会的不断发展,能源需求增加,而仅仅依靠传统能源的开发,很难满足整个社会的需要,同时,也对环境产生威胁,不利于可持续发展。只有积极研发新能源,才能实现对能源危机的有效缓解。粉末冶金应用新型材料,形成合成技术,推动新能源材料的有序发展。文章分析了粉末冶金技术在新能源材料中的应用。

关键词:粉末冶金技术;新能源材料;应用

前言

为了寻求长远的发展,需要重视能源问题。在全球经济以及热口增长的环境下,传统能源彰显匮乏性,无法满足社会发展的实际需求。同时,也无法进行再生。因此,面对严重的资源危机,要对新能源的开发与利用作为项目对待。粉末冶金对传统冶金技术进行了发扬过大,积极融合现代科技,推动信息化建设,实现现代工业的良性运转,也为新能源的开发提供更多的技术保障。

1 对粉末冶金技术特征的分析

粉末冶金技术具有长远的历史,其主要立足传统冶金技术,达到了对诸多学科知识的融会贯通,形成优势突出的新型冶金技术。粉末冶金主要对象是粉末状的矿石。在传统的冶金方法中,矿石的形式为整块,先进行提炼,而后进行冶炼。应用传统技术,块状矿石提炼技术受制于技术和矿石的大小,只能达到80%左右的利用率,产生大量材料的废置。但是,在粉末冶金技术的应用下,资源利用率得以大幅提升,有效降低资源浪费。另外,块状形式的矿石材料长期处于露天堆放,对环境产生不良影响,甚至破坏。由此可见,冶金技术的改善势在必行,要重视冶金技术水平的提升,使得材料各尽所用,发挥不同冶金材料的作用,切实提升使用效率,形成高性能的新材料,达到成本的降低。利用现代粉末冶金技术,能够对废矿石、旧金属材料进行再利用,有效节约资源,极大推动经济效益的获取,对可持续发展意义重大。因此,粉末冶金技术在原材料选择方面相对较为宽松,能够充分利用废旧金属、矿石等,形成不规则的粉末,满足原材料节约和回收的目标。另外,鉴于粉末冶金可塑性以及相关材料的添加,促进性能的增强和平衡。

2 对新能源技术的阐述

在科技的推动下,新能源技术逐渐被科学界重视。在传统能源开发与应用中,出现严重的资源匮乏现象,加之对环境的不良影响,使得新能源问题的出现备受关注。新能源材料需要在开发、存储以及转化方面具有突出优势。由此可见,新能源材料是发展新能源的关键因素。为了更好地实现转化和存储,其在配件、生产要素等方面都极具特色,与传统能源行业的材料截然不同。粉末冶金技术在整个新能源开发应用中占据举足轻重的地位。

全文阅读