首页 > 文章中心 > 废水处理工艺论文

废水处理工艺论文范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

SBR工艺下气化废水处理论文

1工艺特点及主要构筑物

1.1除钙沉淀池气化废水中含有大量Ca2+、Mg2+等物质,在进入生化系统前应进行去除,否则会造成生物处理单元结垢,严重影响处理效果。本项目采用化学中和沉淀除钙的方法,投加磷酸进行中和,生成磷酸钙,同时投加PAC混凝剂,以便形成絮体快速沉淀。然后排至污泥浓缩池。该沉淀池有效容积为328m3,尺寸:9m×9m×4.8m,池体采用半地下钢筋混凝土构筑物,池内设刮泥机、排泥泵等设备。

1.2格栅井及初沉池厂区混合污水通过下水道依靠重力流至格栅井,通过格栅,将混合污水中大的杂物去除,确保后续设备安全运行,机械格栅宽度700mm,栅距5mm。之后用泵提升至初沉池,进一步沉淀去除废水中悬浮物质,初沉池2座,单座有效容积为328m3,尺寸为:9m×9m×4.8m,池体采用半地下钢筋混凝土构筑物,池内设刮泥机、排泥泵等设备。

1.3事故池事故池是化工废水处理站所必须的构筑物,由于化工厂在出现生产事故后,会在短时间内排放大量含有各种生产原料的有机废水,这些高浓度废水一旦进入,会给运行中的生物处理系统带来较高的冲击负荷,造成的影响需要很长时间来恢复,甚至会造成致命破坏。该池有效容积为10000m3,尺寸为47m×33m×7.0m,可容纳化工厂1个事故期排水量,地下钢筋混凝土构筑物,内设2台提升泵,可将事故池水排入均质调节池。

1.4均质调节池由于废水排放量及水质波动性较大,因此有必要在生物处理前设置均质调节池起到调节水量、水质的作用,使得后续工艺的处理负荷基本处在相同的水平,有利于处理工艺的连续、稳定、可靠运行;另外为防止废水中的悬浮物沉淀结块,设置潜水搅拌机进行搅拌。该池有效容积6000m3,尺寸为60m×22m×5.0m,地上钢筋混凝土构筑物。

1.5射流曝气型SBR生物反应池SBR生物反应池是整个系统的核心,反应池共6座,半地上钢筋混凝土结构,每座池尺寸为27m×21m×6.0m,池容3400m3,池内设置碟式射流曝气器6台,循环泵2台,滗水器1台,排泥泵1台,每池对应曝气风机1台,设计运行周期为6h,生物反应池设备见表2。废水先进入1号SBR,在进水的同时开启循环泵、鼓风机,以及氢氧化钠投加泵,在第1小时后停止进水,循环泵从池中进水端抽水,送至曝气器处,与鼓风机空气混合,曝气的同时对池水进行搅拌,至第4小时,风机运行20min后停止,再隔20min开启,间歇曝气,使池水不断处于缺氧、好氧交替变化状态。甲醇补充是在风机停止,池中处于缺氧状态时投加,氢氧化钠在第15分钟后停止投加,在第4小时所有设备停止运行,进入静止沉淀阶段,该阶段最后10min开启排泥泵排泥。在第5小时滗水器开始滗出上清液,经过1h排水后,第1周期结束。6座池子依次循环。去除氨氮的过程是:在进水初期,供氧量不足,池内残留的游离氧首先被消耗,反硝化菌以污水中的有机碳作为供体,把池内残留的NOx-N还原成氮气或供自身合成反应需要的有机氮。风机曝气后,同时循环泵开启增大曝气强度,随着曝气量增加,氨氮在硝化作用下转变成硝态氮,风机停止曝气,减少了系统供氧,污水处于缺氧状态,絮凝体形成菌胶团将进水期吸附贮存的碳源释放出来,使兼性反硝化菌进行反硝化脱氮,此时投加甲醇提供有机碳源作为电子供体,使反硝化过程更快地完成,风机开启后再次处于好氧状态时,开始硝化反应,在静沉、排水期间,风机停止供氧后,微生物处于内源呼吸状态,反硝化菌以内源碳作为供体进行反硝化反应将硝态氮转化成气态氮排出。射流曝气型SBR生物反应池特点如下:1)曝气效率高。选用的JAS碟式射流曝气器,因采用了气液混合式的射流喷头结构,大大提高了氧溶解率。与风机和水泵相结合进行射流曝气,同时具有鼓风和喷射曝气的优点,动力效率高(4.0~5.4kg/(kW•h)),充氧能力好(2.2~5.6kg/h)。2)循环搅拌。本设计采用水泵提供循环动力,使反应池内污水从进水端(缺氧段)至曝气机(好氧端)之间形成循环,循环水量接近处理水量的600%,强于A/O脱氮工艺中的活性污泥回流量,使得该系统具有较高的生物脱氮功能;同时,大流量循环搅拌还使得池内污泥始终保持良好的活性状态。3)运行方式灵活。通过PLC控制风机、水泵的启停,即可多次转换池中A/O阶段,即曝气—搅拌—曝气—搅拌,满足脱氮需求。同时可对曝气时间、沉淀时间、排水时间有效的控制,运行方式更加灵活,并可以在一定程度上适应进水浓度的变化。

1.6监测池按国控重点污染源自动监控项目现场端建设规范要求,监测池安装在线氨氮、COD、浊度及pH监测仪表,安装温度、流量、压力变送器,安装取样及数据采集仪器,传输各种监测参数到集中控制室,达标后外排或泵送回用,不达标换至电动阀,自流回前端均质池重新处理,并在监测池上面设分析化验小屋,可就地对监测水样进行化学分析,校验在线水质仪表。该池有效容积570m3,尺寸为14m×9m×5.0m,半地上钢筋混凝土构筑物。

1.7污泥处理系统本工程采用污泥浓缩池+带式污泥脱水机处理污泥,除系统的沉淀污泥和SBR反应池的剩余污泥外,同时接收厂区中水回用站的污泥,污泥浓缩池采用半地上钢混结构,结构尺寸14m×14m×5.0m,有效容积780m3,配套中心传动污泥浓缩机,采用污泥浓缩脱水一体机2套,带宽2.5m,配套全自动溶配加药装置。

全文阅读

废水处理工艺设计论文

1工艺设计

根据废水处理工艺流程,养鸭污水直接泵入细格栅,经细筛网分隔出鸭毛等污物后流入水解池进行大分子水解酸化降解,然后流入生物接触氧化池(设有微孔曝气装置),使小分子有机物进一步降解,达到排放标准,同时完成氨氮硝化,通过混合液回流,使硝态氮在水解池中还原成氮气,降低NH3-N含量,接触氧化池出水经斜板沉淀池泥水分离后清水自流入水生植物塘,经进一步吸附后泵回至养鸭池。

2工艺特点

2.1废水处理工艺的选择原则

在工艺选择和设计过程中充分考虑污水特点,并根据同类废水处理设计和实践经验,进行主体工艺选择时,注意重点考虑以下原则。一是采用生化处理原则。采用水解酸化结合生物接触氧化工艺流程,脱氮方式采用A/O泥膜法工艺。二是采用先进可靠的系统设备。降低系统维护工作量,保证系统长期正常运转。三是采用适宜的自动化控制系统。保证处理效果和减少劳动力需求。

2.2废水处理主体工艺的确定

2.2.1水解酸化工艺

水解池内培养厌氧菌,废水经厌氧菌降解,使大部分大分子有机物分解为小分子有机物。

全文阅读

采油工艺废水处理论文

1含油污水处理工艺

(1)隔油池。

在炼厂一般都采用利用油、水的比重差进行油水分离的隔油池。其中比重小于1的油品上浮至水面而得到回收;比重大于1的其他机械杂质沉于池底。所以,隔油池同时又是沉淀池,但主要起除油作用。

(2)浮选。

浮选就是向污水中通入空气,使污水中的乳化油粘附在空气泡上,随气泡一起浮升至水面。一般为了提高浮选效果,向污水中投加少量浮选剂。由于炼厂的生产污水中本身含有某些表面活性剂,如脂肪酸盐、环烷酸盐、磺酸盐等,故不需另外加入浮选剂,也能获得较好的浮选效果。所以,近几年来在国内外都广泛地用它来处理炼厂的含油污水。

(3)絮凝。

对于颗粒直径小于10-5m的油粒,一般称之为乳化油。这种乳化油由于其表面吸附有水分子,此水层使油粒不能相互聚合。另外,因油粒表面带有相同电荷,由于静电排斥作用也妨碍油粒间的相互聚合而在水中呈稳定的悬浮状态。这两种因素构成了乳化油在水中的稳定状态。再者,油粒间由于水分子运动产生的布朗运动,促使油粒相互碰撞聚合而变成较大的油粒,以及由于范德华力所产生的油粒间相互吸引力,促使它们相互聚合,以上所有这些因素就构成了油粒的不稳定因素。为了使具有这种特性的油粒凝聚,就应消除其稳定因素。絮凝法的基本原理主要是根据油粒稳定因素之一——静电排斥力发生电中和作用的现象来进行絮凝。仅用双电层原理来解释絮凝原理尚有许多现象不能说明,因此絮凝作用还应考虑金属氧化物的水化物对油粒的吸附、包围圈带等各种现象的综合作用。

(4)过滤。

全文阅读

工艺废水处理论文

1工艺废水处理单元运行中出现的问题及处理方法

1.1工艺废水单元的堵塞问题及应对措施

秦山第二核电厂从投运以来,工艺废水处理单元发生了堵塞、树脂频繁失效等问题,经过逐步改进,系统运行逐步恢复正常。导致系统堵塞的原因和诸多处理措施主要包括以下几个方面:

1)工艺废水单元水质差,存在浊度高甚至是浑浊的现象。目前通过对地坑、贮罐的定期清淤以及严格检修废水的分类倾倒等方式解决水质差的问题,工艺废水入口增加滤网,滤除进入系统的大颗粒杂质;

2)通过技改将预过滤器的过滤孔径由5μm改型成1μm,改善下游除盐床的运行条件;

3)前置过滤器破损后杂质堵塞在除盐床上部滤头导致除盐床堵塞。解决该问题的办法是除盐床入口管改造增加可拆卸盲板,便于用吸尘器等工具清理聚积在上部滤头处的大颗粒杂质;

4)降低系统除盐流量,降低流量运行最主要的原因是给离子交换提供足够的时间;

5)通过技改将系统中使用的树脂改型成对110mAg具有较好吸附性能的大孔树脂,阳床采用陶氏化学的罗门哈斯9766#核级大孔阴树脂和77#核级阳树脂的配置,混床采用9882#核级大孔树脂;

全文阅读

乳饮料废水生化处理工艺设计论文

1前期处理阶段

前期处理阶段主要是对乳饮料生产基地内的废水进行收集,初期过滤,去除其中大块悬浮杂质。同时,对废水进行水质水量调节。该阶段包括格栅、集水井、调节池、中和池等构筑物。(1)格栅。在集水井前设置粗格栅和细格栅装置,避免集水井内的潜污提升泵被废水中混有的瓶盖、锡纸等细小杂物堵塞,从而降低维修频率。粗格栅建议选用10~15mm的栅距,细格栅建议选用栅距为3~5mm的链条式格栅。(2)集水井。生产车间的排污管道一般为地下式,设置废水集水井,可通过提升泵将废水集中提升到下一工序,从而可提高其它构筑物的标高,减少土建施工过程中的土石方开挖量。(3)调节池。生产车间设备管道的清洗具有一定周期性,车间排水的浓度随清洗时间的不同而有较大变化,因此需设置调节池,保证调节池有足够的停留时间,以不小于12h为佳。同时,距离调节池底30cm处装设穿孔曝气管,进行曝气搅拌,一方面可很好地使水质、水量混匀,另一方面可使设备清洗废水中含有的消毒剂与空气接触而氧化。(4)中和池。生产设备的清洗有多种形式,常用的有酸洗工序和碱洗工序。产生的酸碱废水先经调节池充分调节,再进入中和池进行中和,可大量减少酸碱用量。(5)事故池。在乳饮料生产线刚投产运行或产品换线生产时,极有可能会产生事故排料,此时废水的CODCr质量浓度将高达5000mg/L以上,甚至几万mg/L。设置事故池,可将事故排料时产生的高浓度废水先行收集,然后逐步排到调节池内混合处理,避免处理工艺直接受到冲击。

2物化处理阶段

乳饮料废水中含有一些呈胶体状态的食品添加剂,诸如增稠剂、稳定剂等。这些物质大多是长链分子,生化降解所需时间较长。在生化系统之前先通过物化处理,将这部分胶体物质去除,可减轻生化系统的处理压力。乳饮料废水具有一定的粘滞性,不溶于水的胶体物质,通过加药混凝形成的矾花依然质轻,易上浮,可采用气浮处理。气浮处理装置有多种形式,对乳饮料废水而言,实际工程经验显示平流式加药溶气气浮效果较好,对CODCr的去除率可达到30%~40%。加压溶气水的产生可采用溶气罐或溶气水泵的形式。德国的EDUR水泵通过叶轮切割直接形成溶气水,效果较好,但造价昂贵,维修费用高。

3生化处理阶段

生化处理系统是废水处理的中心环节,它直接关系到出水水质的好坏、运行成本的高低。在生化系统的设计上,要注重各生化水池布水的均匀性,尽量减少水流阻力,确保水流通畅。对乳饮料废水的A/O生化处理系统,A为水解酸化池,O为接触氧化池。对生化处理阶段的设置有以下建议。水解酸化池可将大分子物质转化为小分子物质,提高废水的可生化性,为后续的好氧生化处理创造良好的环境。水解池的水力停留时间以不小于5h为佳,容积负荷取6.0~7.5kg[CODCr]/(m3•d),溶解氧的质量浓度取0.3~0.5mg/L。水解酸化池可分为膜法和泥法2种形式。采用膜法水解酸化池,在反应池内加挂组合填料,设置曝气器或潜水搅拌机以维持污泥和废水处于一个稳定的混合状态。膜法水解酸化池进水方式推荐采用推流式,该进水方式应用效果较好。采用泥法水解酸化,反应池内不需要悬挂填料和设置搅拌装置,废水通过池底的布水装置进水。采用泥法设置时,要重点考虑进、出水系统。进水可采用产品化的布水器或设置穿孔布水管。在池中悬浮污泥层设置静压排泥管,及时抽泥,避免进水口堵塞,影响布水均匀性。泥法水解酸化池受进水方式的影响较大,不易控制。接触氧化池是一种膜法处理工艺,在曝气池中设置填料,将其作为生物膜的载体,避免污泥膨胀并提高微生物的量。当废水流经填料时,在生物膜和悬浮的活性污泥共同作用下,废水得到净化。接触氧化池的水力停留时间以20h以上为佳,容积负荷取1~2kg[CODCr]/(m3•d),溶解氧的质量浓度取2~4mg/L。在接触氧化池曝气器的选择上,目前广泛采用盘式微孔曝气器和管式微孔曝气器,其中盘式曝气器常用有膜片式、旋流剪切式等。膜片式微孔曝气器有直径200、250、300mm等不同规格,旋流剪切式有260、460mm等。管式曝气器长度常选用500、750、1000mm等。几种曝气器各有优点,膜片式曝气器曝气均匀,使用效果好;旋流剪切式曝气器使用寿命长;管式曝气器安装方便。膜法生化池最大的特点是在池内悬挂填料,常用的生化填料有弹性填料、软性填料、组合式填料等,对乳饮料废水处理工程,因污泥质轻,采用组合式填料较好。悬挂填料采用的填料支架,直接决定填料的使用寿命。目前,关于填料支架尚没有相应的标准及规范要求。很多工程项目采用塑料绳作为填料的支撑架,投入使用不足1a,塑料绳遇水发胀断裂,就需重新更换填料,使生化系统的维护周期缩短。因此,在生化水池的设计上,应设置牛腿,并在牛腿上设置预埋铁板或不锈钢板,以固定填料支架。对设置牛腿的生化水池,填料支架做法可参考图2进行。生化池内设置牛腿,上下两层,牛腿上预埋M1板。采用10#槽钢,焊接在预埋板上,间距1.8m,中间增设横梁和立柱,填料支架采用12#螺纹钢制作,螺纹钢间距为150mm。填料直接悬挂在硬性承接螺纹钢上,可大大提高填料的使用寿命。若条件允许,填料支架可采用不锈钢材质制作,日后生化水池维护,只更换填料即可,无需再次制作填料支架。一些改造项目,生化池内未设置牛腿,对此类生化水池,填料支架做法可参考图3进行。对于未设置牛腿的生化水池,尤其是旧有系统的维护,填料支架的做法可采用池底生根布置,用10#槽钢或同类材料,固定于池底,并在侧部固定,作为立柱,随后主支撑采用10#槽钢布置,间距为1.8m,填料支架采用12#螺纹钢制作。取消填料支架直接固定池壁的做法,避免水池清理时,池壁受到水力挤压及填料拉伸的影响,维持构筑物池壁稳固。

4沉淀-污泥处理阶段

二沉池的运行对污水处理站的出水水质有着至关重要的影响,一旦二沉池运行出现问题,出水SS浓度就会明显升高,导致出水水质恶化。针对乳饮料废水处理工程,二沉池的表面负荷取0.75~0.90m3/(m2•h)。同时应慎用斜管沉淀池,不少小型乳饮料废水处理站,二沉池多采用斜管沉淀池。只考虑到了斜管沉淀池节省占地及投资的优势,而忽略了实际使用效果。乳饮料废水的生化污泥质轻,不易沉淀,污泥发酵产生的沼气,会冲击斜管,导致斜管填料塌陷。在小型乳饮料废水处理工艺中二沉池的选择上,建议选用竖流式或平流式二沉池。二沉池污泥泵建议选用自吸式污泥泵,同时二沉池池底每个泥斗应单独设立排泥管,不可并用。气浮系统产生的物化污泥与生化系统的剩余污泥都混合在污泥浓缩池内浓缩,因物化污泥质轻,会导致污泥浓缩池出现上层气浮泥渣、中层水、下层生化污泥的现象,故而污泥浓缩池的设计除设计泥斗外,可加设框式搅拌机,将物化污泥混入生化污泥内,以保证物化污泥得到及时处理。浓缩后的污泥可通过自吸污泥泵或螺杆泵抽入压滤机压滤,压滤后的干污泥交由专业机构处理。

全文阅读

基于工艺改造的废水处理论文

1废水处理工艺改造

1.1废水处理改造工艺设计MBR工艺是利用大量的微生物(活性污泥)在生物反应器内与基质(废水中的可降解有机物等)充分接触,通过氧化分解作用进行新陈代谢以维持自身生长、繁殖,同时使有机污染物降解。膜组件通过机械筛分、截留等作用对废水和污泥混合液进行固液分离。大分子物质等被浓缩后返回生物反应器,从而避免了微生物的流失。该工艺及其组合工艺在含高氨氮废水处理中具有较好的处理效果,如利用A/O+MBR工艺处理合成氨废水[1]、养猪沼液[2]、高氨氮生活废水[3]以及利用改良MBR工艺[4]或者UASB+PACT+A/O+MBR工艺处理高氨氮化工废水[5]等。同时该工艺具有负荷变化适应性强,耐冲击负荷、系统启动速度快等优点。因此在该废水处理项目改造中,充分利用原有的废水处理构筑物,通过在主体工艺增加MBR装置,以达到处理出水达标的目的。

1.2废水处理工艺流程经技术改造后的废水处理工艺为水解酸化+厌氧/好氧+MBR工艺,其工艺流程见图1。该工艺具有以下特点:(1)增加缺氧池至水解酸化池的污泥回流,回流量为0~300%,提高水解酸化池的水解效率,使大部分乙二胺等物质在水解酸化阶段进行水解;(2)更换原水解酸化池和缺氧池的搅拌系统,采用Ф325的潜水搅拌机,混合效果较好,极大提高水解酸化池和缺氧池的处理效率;(3)好氧池改部分为MBR池。MBR系统具有A/O系统不可比拟的优越性,该工艺形成了A/O系统和MBR系统的互补,既保证了出水水质,又合理调整了运行费用;(4)增加MBR池和好氧池的回流,保证好氧池的污泥浓度;(5)原二沉池改为清水池,方便清水回用,而不需新建设施。

1.3建后新增构筑物及设备水解酸化池、厌氧池潜水搅拌机更换:主要目的是为了改善废水混合均匀程度,增加污泥和废水的混合效率,提高废水处理效果。增加的主要设备有:在水解酸化池增加潜水搅拌机12台,Ф320,2.2kW。在厌氧池增加潜水搅拌机8台,Ф320,2.2kW。缺氧池至水解酸化池回流系统:主要目的是使水解后没有分解成无机氮的有机氮分解成无机氮,增大缺氧池除去氨氮的效率。增加的主要设备有:回流泵4台(2备2用),100WQ100-15-7.5,Q=100m3/h,H=15m;电磁流量计2台,DN100。MBR反应器:MBR反应器2座,尺寸10.0m×5.0m×4.0m,有效水深3.5m,设计温度15~32℃,处理流量2400m3/d,膜材质为PVDF,膜孔径0.4μm。主要设备:膜组件5组,PVDF。自吸泵3台(2用1备),50m3/h,5.5kW。风机2台(1用1备),53.23m3/min,40kPa。膜池污泥回流泵3台(2用1备),80WQ50-10-3。清水泵1台,24m3/h,30m。清水罐1个,φ1320mm×1855mm。逆通液注药泵1台,1L/min,3Bar。静态混合器1台,De110,7~15m3/h。NaClO(主要作用是清洗膜组件)罐1台,φ1320mm×1855mm。NaClO注药泵1台,250L/h,3Bar。柠檬酸罐1台,φ1060mm×1375mm。柠檬酸注药泵1台,0.25m3/h,3Bar。过滤器1台,孔径1mm。MBR系统附带MBR池至好氧池的污泥回流系统原二沉池改为清水回用池:将现有二沉池改为清水池,作为回用水池。

2废水处理效果及效益分析

2.1废水处理工艺运行效果分析改造后的废水处理工艺在调试运行期间的进出水COD及COD去除率变化见图2,进出水NH3-N及NH3-N去除率变化见图3。调试结果表明,在工艺调试前期,出水COD为130mg/L,出水NH3-N质量浓度为30mg/L左右,工艺连续运行约25d后,出水COD降低到100mg/L以下,NH3-N质量浓度降低到15mg/L以下,出水水质达到了设计的排放要求。系统稳定后,出水水质稳定。

2.2经济效益分析该项目土建投资3.5万元,设备投资232.27万元,其他费用包括安装、设计等,合计328.65万元。该废水处理工艺运行成本主要包括电费、人工费和药剂费等。其中电费0.64元/t,人工费0.45元/t,药剂费0.25元/t,合计运行费用为1.34元/t。

3结论

全文阅读

CSTR-ABR工艺中养殖废水处理论文

1工程概况

淮南市天顺生态养殖有限公司位于安徽省淮南市潘集区芦集镇秦圩村,公司占地4.67hm2,主要以种猪繁育和商品猪养殖为主。现有猪舍12栋,存栏母猪近500头,每年为市场提供育肥猪10000头以上。该养猪场实行雨污分离,猪舍采用干清粪方式,污水主要来自猪舍冲洗污水,日排污水约100t,总固体浓度(TS)为1.2%~1.5%。福州北环环保技术开发有限公司根据淮南市天顺生态养殖有限公司现状、养殖规模,结合当地气候条件及项目设计要求,建设红泥塑料沼气池500m3,贮气袋200m3。

2工艺流程

该工程采用基于CSTR-ABR工艺的红泥塑料畜禽污水处理技术。

3工艺技术

3.1前处理系统

前处理系统包括格栅、沉砂池、集水井、固液分离机、竖流式沉淀池、酸化调节池。由于采用干清粪方式,养猪场废水包括猪尿、散落的饲料末和猪舍冲洗水,悬浮固体浓度(SS)、TS高,这些固体物质在系统中很难被降解,容易造成堵塞,对整个厌氧过程影响很大。所以,在废水进入厌氧处理系统之前分离出废水中的固体物质,能有效地去除污水中的SS、TS,从而减轻后续处理负荷,为高效的厌氧工艺创造了条件。该工程使用的固液分离机为全自动高效固液分离机,整机为不锈钢结构,契型水切滤网配挤压装置,可实现全自动连续工作(启动、过滤、压干、中间洗网、停机时洗网),使用、维护方便。分离后液体部分进行厌氧发酵,固体粪渣可生产有机肥,有利于农作物的增产增收和生态农业的良性循环,同时又给养殖场带来了良好的经济效益。

3.2厌氧处理系统

全文阅读

两种工艺对有机磷农药废水的预处理实验研究

摘要:有机磷农药废水COD值高、毒性大、可生化性差,在进行生化处理前需进行必要的预处理。本文重点研究了两种不同工艺:碱性水解+磷酸铵镁除磷脱氮技术(MAP)和微电解工艺对有机磷废水预处理的效果。实验表明:微电解工艺对COD、总磷的去除率较高,达63.67%和52.06%;MAP工艺对氨氮的去除率较高,为59.67%。

关键字:有机磷废水 MAP 微电解

中图分类号: TE08 文献标识码: A

前言

目前国内有400多家农药生产厂家,生产200多种农药,年产量近30万t其中80%是有机磷农药[l]。有机磷农药在防治农业病虫害方面具有高效、经济、方便和广谱等优点,但长期大规模生产和使用,对环境特别是水体造成了严重污染,这己经成为严重的环境问题。

有机磷农药废水的处理方法大多用生物法,即以细菌或真菌为降解媒介,但由于这些废水具有浓度高、毒性高和含盐量高等特点,对微生物具有毒害作用,故直接使用生物法难以达标处理。现在还没有有效的有机磷农药废水预处理方法,国内普遍采用清水稀释数倍后再用生化法处理,稀释倍数有的高达20-40倍。这种方法不但加重了生化处理装置的负荷,浪费水资源,还同时增加了水费、排污费和处理费用。在此背景下,研究探索农药废水的预处理技术已成为一个迫切的研究课题[2-5]。

本文以安徽菱化实业股份有限公司有机磷农药废水为例,研究了两种不同工艺(碱性水解+磷酸铵镁除磷脱氮工艺和微电解工艺)对有机磷农药废水预处理的效果,为我国有机磷农药废水预处理工艺的选择提供依据。

2实验料与方法

全文阅读

壳聚糖生产废液资源化处理

1.改进的工艺流程

设计原理:针对传统工艺中存在反应时间长、浓碱消耗大、废液污染环境等问题,本文设计一套新的工艺流程,提出在静态浸润条件下制备壳聚糖[11],工艺流程示意图见图1.如图1所示,此工艺分为三个阶段,每个阶段可以在废水处理的同时回收有一定附加值的资源,具有明显的经济效益和环境效益。本文主要阐述在本工艺基础上,壳聚糖生产废液的综合利用。

2.改进工艺分析

2.1稀酸脱钙阶段

此阶段的废液中主要污染物为稀盐酸和氯化钙,用脱乙酰后的废碱液来调节该稀酸液的pH使之大于12,要达到此pH值,一般要消耗50%的前述碱液,得大量Ca(OH)2沉淀,收率97%.Ca(OH)2/壳聚糖产率质量比为2.22:1.

2.2稀碱脱蛋白阶段

此阶段的污染物主要是NaOH废液和蛋白质。有研究报道此阶段废水可以加碱后回用,继续脱蛋白[2],但据本文在实际工厂考察,此部分出水COD、SS分别高达12000mg/L、2250mg/L,如果回用将影响蛋白质脱除,因此本工艺对此部分废水加浓硫酸调pH=4后。

图1壳聚糖改进工艺流程图

全文阅读

印染项目工业废水水质在环境影响评价过程中的预测

摘 要:文章主要利用具有典型代表性的某纺织印染企业实例,通过理论计算以及同类企业实测数据介绍了在该类项目环境影响评价过程中各废水环节及水质指标的预测。希望为相关人员提供帮助。

关键词:印染;环境影响评价;废水

1 概述

1.1 纺织印染行业的环境概况

中国纺织工业自改革开放以来高速发展,已成为世界上纺织服装生产和贸易第一大国,也是纺织服装出口第一大国,纺织品出口曾多年居全国出口商品之首。与此同时,纺织行业发展也面临着资源、环境约束和日趋激烈的国际市场竞争等严峻挑战。

从环境保护的角度来讲,印染行业属于高污染高耗能行业,印染工艺废水产生环节多,水质变化幅度大,污染物成分复杂。文章以国内某大型纺织印染企业为实例,介绍该企业在环境影响评价过程中废水排放环节及水质指标的预测。

1.2 实例企业、项目概况

某企业于1998年9月创立,公司现有员工5300多人,占地30多万平方米,集印染、整理等家纺产品生产加工流程于一体,覆盖产品研发设计、物料采购、生产制造、仓储物流、营销终端等家纺产业链的几乎全部过程,拥有自主知识产权。企业新建项目投资7.5亿元,新增10万棉纺纱锭、300台毛巾织机及其配套设备,年产各类高档环保巾被9340万条(12510吨)。

全文阅读