首页 > 文章中心 > 电子设备

电子设备范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

电子设备管理

摘要:建筑物内的电子元件和设备已成为低压电网中不可忽视的谐波源。本文根据几组检测数据,对最常用的电子设备和元件的谐波及其影响进行了分析,提出相应的对策。

关键词:电子设备谐波问题对策

随着小区和建筑楼宇智能化的兴起和信息处理技术的普及,电子计算机、彩色电视机和电子节能照明光源等电子设备和元件已广泛进入到我们的学习、工作、生活中。这些元件和设备属于非线性负载,在大量集中使用的建筑物或居民小区中,其非线性产生的谐波电流,如果不加以抑制,会使低压电网的电压电流波形产生畸变,影响电能质量。

一、电子设备的谐波现象及原因

电子设备的电源一般是整流电源,只在交流电压接近峰值时,整流管才导通有输入电流。由于在一周期内导通的时间很短,又必须维持设备正常的工作电流,所以输入电流呈脉冲状。这种脉冲状输入电流的基波含量小,而谐波含量大,且工作电流越大,脉冲电流的幅值就越大,形成严重的畸变电流注入低压电网,成为不可忽视的谐波源。

电子计算机和电视机的谐波电流含量大,谐波电流总畸变率高。这样高含量的负载谐波电流在负荷使用高峰期注入低压电网,会造成电网电压和电流总谐波畸变率升高,对电能质量产生影响,如果超过国标规定的限值,还可能造成危害。

据有关资料,在家用电器(主要是电视机)集中使用的居民小区,对低压电网的电压质量有明显的影响。在负荷高峰时,电压的总畸变率和3次、5次谐波均已达到或超过国标规定的限值,而且还有进一步增加的趋势。

二、谐波对电力系统设备的影响

全文阅读

电子设备在变“轻”

C=CBNweekly S=Rob Shaddock

过去几年中,电子设备的生产数量和使用量显著增加。一方面,信息存储与电脑计算的使用成本正在大规模地降低,另一方面,电子设备愈加复杂的特点为人们带来了更简易的操作方法,电子元器件开始前所未有地入侵人们的生活。而技术的革新则让污染重大的电子设备变得更加绿色环保,同时也为生活带来更多好的可能性。“未来,能源的采集和电子设备的能源供应方式可能还会深入到细微的人体运动的层面。”全球著名的连接器产品供应商TE Connectivity的执行副总裁兼首席技术官Rob Shaddock与《第一财经周刊》分享了他的经验。

C:目前全球技术领域的主要趋势有哪些?

S:技术行业大的趋势一直在持续,尤其是在电子方面,发展非常快,比如说绿色新能源的运用、物联网的发展、海量数据的传输、工业自动化和基础设施的升级。其中,随着信息存储的成本越来越低,电脑计算的成本越来越低,电子元器件成本也越来越低。这些成本的降低让越来越多的人大量使用电子设备,当然,使用的方式也会越来越复杂。而随着电子产品的复杂化,材料方面会有更多的创新。计算技术的发展可以让材料使用更加准确,不论是性能还是使用量,计算机模拟设计可以把许多不必需的材料去掉。

C:你认为绿色能源目前在全球范围内有哪些进展和革新?

S:高新能源的使用仍处于起步阶段,当然,以后会有更多的创新。从目前看来,新形态的电池是每个人都希望的东西,但革新是很慢的。总体来讲,清洁能源的广泛使用仍然是一个比较长期的过程,其中,风能和太阳能的使用会比较多且有效。另一个值得一提的问题是能源的存储,因为清洁能源的制取经常是非连续性且有波动性的,因此,其产生的电能的存储量是清洁能源能否有效利用的关键所在。

我们虽然不独立开发全套新能源系统,但是会配合客户的系统提供他们所需的与连接相关的解决方案,减少连接过程中的电力损失,帮助客户节约能源,这同样是我们在节能方面的一个贡献。比如说,在汽车领域,我们跟客户合作把车载传输信号和输电用的铜线缆改成了铝线缆,大大减轻重量,降低能耗。同时,客户可以继续使用之前跟铜线缆配套的一些生产和设计工具,而不需要投资很多昂贵的新设备。在运输航天行业,我们也帮助客户一起降低部件的重量,减少能耗,提高传输效率。在通讯领域的大型数据中心里,能耗几乎是最大的运营成本,我们为此开发了一系列高效光纤数据传输技术,把用电传输改为用光传输。这样不仅减少能耗,还能帮助散热,进一步减少能量消耗。此外,我们开发了很多关于连接器的技术,使光纤网络的连接和安装变得更加简单有效,通过光纤网络的建设,降低整个社会在通讯方面的能耗。

C:在你看来,目前什么样的能源使用方式是最为理想的?

全文阅读

电子电气设备接地浅析

【摘 要】电子电气设备的接地工作是用电安全以及用电设备安全使用的重要保证。本文分析介绍了电子电气设备接地的作用、分类、原则和方式。

【关键词】电子电气;设备接地;原则;方式

1 电子电气设备接地的作用

电子电气设备接地的作用众多,除了防止设备使用者发生触电事故以外,还有防止设备损坏、预防雷击及静电危害等多方面的作用,下面进行具体分析。

1.1 防止触电事故设备接地

人体具有导电性,并且人体电阻值的大小与人体所处环境的湿度密切相关,随着所处环境湿度的增大,人体电阻值将会减小,发生触电事故的可能性也会相应增大。电子电气设备的接地处理是防止触电事故发生的有效措施,电子电气设备接地后,设备电位大小会逐渐趋于地电位大小;但是,实际生产工作中设备接地存在不可避免的接地电阻,并且接地电阻值越大,设备电位相对于地电位越大,越容易造成严重触电事故。然而,如果不对电子电气设备采取接地措施,则会在设备出现故障时使设备外壳电位远大于设备接地时的接地电位,增加发生触电事故发生的可能性与严重性。

1.2 防止设备损坏设备接地

为有效防止电力系统故障造成电子电气设备损坏,实际生产工作中常常会采取电力系统接地措施。电力系统接地适用于变电站和变电所运行工作,通常采用电子电气设备接地网来实现设备中性点的接地工作,并且要求接地电阻阻值尽可能小以保证设备中性点相对于地的电位为零。配电站与配电所运行中常常会出现设备线路与设备外壳接触,以及设备线路断裂并接地的情况,此时,一旦设备中性点未能有效接地,势必会造成其他两相相电压的大幅度升高,损坏电子电气设备;在设备中性点采取了接地措施的情况下,一旦三相电流导线中某一相发生短路,其他两相相电压仍可以保持稳定,避免电子电气设备的损坏。

全文阅读

电源电子设备分析论文

摘要:本文全面地论述了电子设备的电磁兼容性问题。比较详细地分析了干扰源、干扰的传递途径,并介绍了有效抑制和防止干扰的各种措施及其原理。

关键词:电子设备电磁兼容性干扰源有效抑制

1引言

随着电子技术的迅速发展,现代的电子设备已广泛地应用于人类生活的各个领域。当前,电子设备已处速发展的时期,并且这个发展过程仍以日益增长的速度持续着。电子设备的广泛应用和发展,必然导致它们在其周围空间产生的电磁场电平的不断增加。也就是说,电子设备不可避免地在电磁环境(EME)中工作。因此,必须解决电子设备在电磁环境中的适应能力。电磁兼容性(EMC)是一门关于抗电磁干扰(EMI)影响的科学。目前,就世界范围来说,电磁兼容性问题已经形成一门新的学科。电磁兼容的中心课题是研究控制和消除电磁干扰,使电子设备或系统与其它设备联系在一起工作时,不引起设备或系统的任何部分的工作性能的恶化或降低。一个设计理想的电子设备或系统应该既不辐射任何不希望的能量,又应该不受任何不希望有的能量的影响。

2电磁干扰源的分类

各种形式的电磁干扰是影响电子设备电磁兼容性的主要因素,因此,它是电磁兼容性设计中需要研究的重要内容。

2-1内部干扰

内部干扰是指电子设备内部各元部件之间的相互干扰,包括以下几种。

全文阅读

电子设备的电磁屏蔽

[摘 要] 消除电子设备电磁干扰最好的防护措施就是对电子设备进行电磁屏蔽,本文论述了电子设备的几种常见电磁屏蔽原理并提出了电子通信设备具体的电磁屏蔽措施。

[关键词] 电子通信设备 电磁干扰防护 屏蔽技术

电子通信设备在加电工作的时候,在其外部和内部存在着各种电磁干扰信号,干扰信号会影响电子设备的正常工作。这些外部干扰信号是指除电子通信设备所要接收的信号以外的外部电磁波信号。有自然产生的信号,如宇宙干扰、大气放电等干扰信号,也有人为所产生的干扰信号。内部干扰是由于电子通信设备在加电时存在着内部寄生耦合。寄生耦合有电容耦合、电感耦合,这不是人为设计的。为了保证电子设备正常地工作,就需要防止来自产品外部和内部的各种电磁干扰信号,而对于这些干扰信号最好的防护措施就是电磁屏蔽。

一、电子设备电磁屏蔽的原理

在电子设备进行电磁兼容性设计过程中,屏蔽是最常用的电磁干扰的防护措施。屏蔽就是用屏蔽体将干扰源或敏感体(受干扰的设备或部件)包围起来,以隔离被包围部分与外界电的、磁的或电磁的相互干扰,是解决电磁兼容问题最重要的手段之一。屏蔽是一种直接而有效地控制电磁干扰的方法,它对电磁辐射有良好的抑制作用,主要用于切断通过空间辐射的干扰传输途径。按照屏蔽的作用原理来分类,一般可将屏蔽分成以下几类:

1、电场的屏蔽

电场的屏蔽是为了抑制寄生电场耦合,隔离静电或电场干扰。由于产品内的各种元件和导线都具有一定电位,高电位导线相对的低电位导线有电场存在,也即两导线之间形成了寄生电容耦合。通常把造成影响的高电位叫感应源,而被影响的低电位叫受感器。实际上凡是能幅射电磁能量并影响其它电路工作的都称为感应源(或干扰源),而受到外界电磁干扰的电路都称为受感器。电场屏蔽的最简单的方法,就是在感应源与受感器之间加一块接地良好的金属板,就可以把感应源与受感器之间的寄生电容短接到地,达到屏蔽的目的。

2、磁场的屏蔽

全文阅读

电子工艺设备的热设计

摘要: 随着电子工业的发展,电子工艺设备的应用越来越广泛,而可靠的热设计是保证电子设备可靠性的重要措施,主要简单介绍电子工艺的热设计、热设计的基本原则、热量传递基本方式及计算。

关键词: 电子工艺设备;热设计;可靠性

中图分类号:TP391.9文献标识码:A文章编号:1671-7597(2012)0110053-01

随着电子工艺的发展,电子工艺设备利用的已经不仅仅是电气和机械技术的结合,而是更多的综合应用到声、电、光、热、等离子物理、计算机等多项技术。并且随着电子工艺设备的应用越来越广泛,因而对其运行的稳定可靠性的要求也越来越高。而可靠的热设计又是保证电子设备可靠性的重要措施。

1 电子工艺的热设计

电子工艺的热设计主要是指利用热传递技术,降低电子设备发热部件、元器件的温度,使设备的内容温度处在正常运行允许的范围内,使电子设备的抗温度应力能力得以提高。热设计的主要目的就是为了控制电子工艺设备内部所有元器件的温度。电子工艺内部元器件的最高安全的计算分析应该是基于元器件的应力,并且保证设备内部元器件的失效率和所要求的设备可靠性的一致。通过热设计,保证设备的安全使用、性能稳定,避免元器件失效从而提高整个设备的无故障工作时间。减缓部件的老化、氧化、磨损等,延长整个设备的使用寿命。

通常电子设备的热设计可以分为系统级热设计、封装级热设计、元器件级热设计三个层次。系统及热设计主要是指对电子设备的方腔、机箱和机框等系统级别的热设计;封装级的热设计主要是指对电子模块、PCB级主板和散热器等级别的热设计;而一些组件级别的热设计通常就被称为是元器件热设计。

系统级的热设计主要是以电子设备所处的环境作为研究对象,如温度、湿度、沙尘、盐分、海拔、震动、冲击等对其的影响。并且环境温度也是电路板热设计的一个重要边界条件。

全文阅读

谈电子设备静电防护

【摘 要】静电放电对人体的影响似乎并不明显,但在电子元件的生产过程中,或在电子产品的安装、调试及检验过程中如不消除静电,将会影响生产或降低产品质量。尤其是半导体器件和微电路生产行业,由于静电放电更会引起器件失效。

【关键词】电子;设备;静电;防护

人们对这种静电放电现象已经习惯,尽管它有时给人们带来不适,但这一切对人体来说并没有产生什么直接的危害。但对于电子设备而言就不同了,半导体器件的高密度、高增益对静电放电越来越敏感,MOS电路的击穿仅为100V,而新的器件仅为30V左右。静电放电的危害性及静电防护的重要性,在现代电子制造业越来越被人们所重视。事实上,与静电放电有关的损害给世界的电子制造工业带来每年数十亿美元的损失。

1.静电在电子设备装接过程中的危害

1.1人在地毯上行走、在工作台上工作、操作普通材料等活动都会产生上千伏的静电。如果静电电压的聚集产生火花放电,电子元件、印制电路板组件和其他电子组件会受到破坏或损坏。

1.2随着科学技术的飞速发展,电子、通信、航天航空等高新产业迅速崛起,需求的电子仪器仪表和设备等电子产品日趋小型化、多功能及智能化,高密度集成电路已成为不可缺少的器件。这种器件具有线间距短、线细、集成度高、运算速度快、低功率、低耐压和输入阻抗高的特点,因而导致这类器件对静电越来越敏感。静电放电的能量对传统的电子元器件的影响甚微,人们不易觉察,但是这些高密度集成电路器件,不论是MOS器件,还是双极型器件都可能因静电电场和ESD电流而导致“硬击穿”或“软击穿”。“硬击穿”会一次性造成芯片内热二次击穿、金属喷键熔融、介质击穿、表面击穿、体积击穿等,使集成电路彻底损坏、永久性失效;“软击穿”则可造成器件的性能劣化或参数指标下降,但还没有完全损坏而形成隐患,在最后质量检验中很难被发现。在使用时,静电造成的电路潜在损伤会使其参数变化、品质劣化、寿命降低,使设备运行一段时间后,随温度、时间、电压的变化出现各种故障,不能正常工作,给整机留下潜在的隐患,直接影响着电子产品的质量、寿命、可靠性和经济性。

2.防静电解决方案

2.1静电防护材料的种类

全文阅读

舰船电子设备的热设计

【摘要】本文通过介绍热量传递的方式、散热方式的选择、舰船电子设备的自然散热设计等几方面阐述了舰船电子设备热设计的一般原则。

【关键词】舰船;电子设备;热设计

1.引言

舰船电子设备内部存在大量的元器件,电子设备在工作过程中这些元器件会产生大量的热量,设备内部的温度也随之升高,当温度升高到一定的程度将会影响设备的正常工作,需要结构设计时对舰船电子设备进行散热设计。散热设计是舰船电子设备结构设计的重要内容,是保证舰船电子设备能否安全可靠工作的重要条件之一,它对于提高舰船电子设备的工作可靠性,延长其使用寿命具有非常重要的意义。

2.传热的基本形式及原理

2.1 热传导

传导是热量在直接接触的两个物体之间传递。其物理本质是物质微粒通过微观热运动以内能的形式在接触面上传递。

利用热传导散热可采用以下措施:(1)采用导热系数大的材料制作导热零件。导热系数以金属为最大,非金属次之;―般采用铝型材作为散热零件。(2)加大与热传导零件的接触面积。空气导热系数小,如果两物体之间接触不好有空气,则空气起到隔热作用,导热量减少;因此应压力均匀地增大接触压力(减小接触面粗糙度)以排除空气减小热阻。

全文阅读

电子设备热设计概述

【摘 要】热设计在电子设备设计中具有重要作用,散热效果的好坏直接影响设备的性能指标和使用寿命。如何提高产品的散热性能成为迫切需要解决的问题。本文就热量传递方式、冷却方式的选择以及电子设备热设计方法等方面进行了简要概述。

【关键词】热设计;热量传递;散热 0.引言

现代电子设备结构越来越小,性能要求越来越高,不但支持多任务功能,而且具有更好的便携功能,由此会产生更多的系统热量,更大的热流密度。大量的系统热量在设备中聚集,会严重影响设备的性能指标及使用寿命。在电子产品中,高温对电子产品的影响包括,绝缘性能退化,元器件损坏,材料的热老化,低熔点焊缝开裂及焊点脱落,从而导致整个产品的性能下降以至完全失效。因此在许多现代化产品的设计,特别是可靠性设计中,热设计已占有越来越重要的地位。

1.热设计概述

1.1 热设计概述

热设计是整个系统设计的一部分,它往往与结构设计、内部布局、电磁兼容要求等设计耦合在一起,必须综合考虑才能使整个产品达到优异的性能。根据相关标准和规范,通过对产品各组成部分的热分析,确定所需散热措施,以调节所有机械部件、电子器件和其它一切与热有关的零部件的温度,使其本身及其所处的工作环境的温度都不超过标准和规范所规定的温度范围。对于电子产品,最高和最低允许温度的计算应以元器件的耐热性能和应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。通过热设计在满足性能要求的前提下尽可能减少设备内部产生的热量,减少热阻,选择合理的冷却方式,保证设备在散热方面的可靠性。

1.2 热量传递方式

热量传递有三种方式:传导、对流和辐射。传导:两个良好接触的物体之间的能量交换或一个物体内由于温度梯度引起的内部能量交换。对流:流动的流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式。根据引起流动的原因可以分为自然对流和强制对流。辐射:物体通过电磁波来传递热量的方式称为热辐射。热辐射不需要依赖介质传递,任何物体都存在热辐射,物体不断的向空间发出热辐射,也不断的吸收其他物体的热辐射。

全文阅读

自愈电力电子设备论文

在现代工业、交通、国防、生活等领域中,电力电子设备能够将一种频率、电压、波形的电能变换为另一种频率、电压、波形的电能,使用电设备处于各自理想的最佳工作情况,或满足用电负载的特殊工作情况要求,以获得最大的技术经济效益。如:串联谐振耐压试验设备、特高压直流输电、电动汽车、太阳能发电以及电镀和电解等领域。电力电子设备中应用最多的元件就是大功率高耐压的功率器件,如构成直流输电的换流装置的基本器件是功率器件,其中应用最为多的是晶闸管和IGBT等。由几十到数百个功率器件串联可构成一个换流阀。换流器一般由6或12个桥臂(换流阀)构成,因此一个直流输电工程所需功率器件的数量巨大,一般在数千只甚至多达几万只。电力电子设备中功率器件数量庞大,单一元件损坏后就会导致整套设备不能工作,甚至导致多个器件同时损坏,因此电力电子设备自愈功能尤其重要,这不仅能大大提高电力电子设备的工作可靠性,同时能够将不可预知的突然事故转化为可以预知的计划检修工作,这对特高压直流输电等电力电子设备尤为重要。

1原理与设计

大功率,高电压的电力电子设备都是有数量较多的单个性能参数一致的功率器件经过并联、串联、串联后再并联等方式组合而成。

1.1多个功率器件并联时自愈工作原理多个功率器件并联时如图1所示,并联于功率器件匀流电阻两端的光电隔离开关输出信号会同步于功率器件的开断工作状态,该信号与同步触发脉冲器的输出信号进行比较。这两个信号如果同步则比较器不输出,如果不同步则比较器输出控制命令,令与该功率器件串联的断路开关断开,自动断开故障的功率器件,同时通过显示控制总线向显示控制屏发出显示该功率器件故障的指示信息。

1.2多个功率器件串联时自愈工作原理多个功率器件串联时如图2所示,并联于功率器件的光电隔离开关的输出信号会同步于功率器件的开断工作状态,该信号与同步触发脉冲器的输出信号进行比较。这两个信号如果同步,则比较器不输出,如果不同步则输出控制命令,令与该功率器件并联的旁路开关闭合,自动短路掉故障的功率器件,同时通过显示控制总线向显示控制屏发出显示该功率器件故障的指示信息。

2应用实例

以串联谐振耐压试验设备的变频电源为例进行试验测试,变频电源的输出采用大功率高耐压多只IGBT器件并联后组成桥式输出电路。变频电源的技术参数为:额定输出功率:100kW;额定输入电压:三相380V±12%50Hz;输出电压:0~350V连续可调,输出电压不稳定度≤1%;额定输出电流:286A。图3为桥式输出四分之一桥臂的部分电路,QA11和QA21为输出功率器件IGBT;KA11和KA21分别为QA11和QA21功率器件的自动剔除的高速继电器;RA11和RA21为功率器件的匀流电阻;AI1为功率器件的驱动输入信号端;AO11和AO21为对应功率器件异常后输出指示信号端,高电平为异常;UA11和UA21为比较器;OUTA为桥臂输出端。电路工作原理为,比较器UA11和UA21始终比较输入端1和2的信号,若这两个电平信号始终同步则,它的输出端3处于低电平,继电器KA11和KA21不动作,功率器件QA11和QA21全部正常工作;若某个功率器件击穿或开路,该路对应的比较器1和2路的输入端将会不同步,此时比较器输出端3将输出高电平,驱动该路继电器闭合,切断了该功率器件电源回路,同时使继电器自保持,且输出一个高电平报警信号,其余的功率器件由于电路设计时都具有比较大的冗余,能够继续工作,能够确保试验过程继续进行下去,直到试验工作全面完成。实现了预知故障,提高了电力电子设备工作可靠性。对于串联的功率器件可以采用类似的方法进行单个功率器件损坏后自动剔除。

3结论

全文阅读