首页 > 文章中心 > 电源设计原理

电源设计原理范文精选

电源设计原理范文第1篇

关键词:移动通信终端;电源管理;可充电锂离子电池

引言

移动通信终端产品如GSM手机、CDMA手机及PHS小灵通电话已经深入普及到我们的日常生活中,促进了中国电信事业的发展,也为我们的生活带来了方便与快捷。但同时,由于一些移动终端厂商的设计缺陷,多次出现了手机爆炸伤人事件,而造成爆炸的主要原因在于电源管理部分设计有缺陷或设计存在不完善的地方。

与其他现有电池相比,可充电锂离子电池具有多项优势,这使它们成为更适合于便携式应用的电源。它们可以提供更高的能量密度(最高达200W·h/kg或300~400W·h/L,分别是Ni/Cd或者Ni/MeH电池的2.5倍和1.5倍)和更高的电池电压(碳阳极电池为4.1V,石墨阳极电池为4.2V)。它们具有无记忆效应,自放电率小,可快速充放电及更高的充放电次数等优点。

锂离子电池的更高化学能量密度和更高电池电压使得我们可以为移动终端产品应用制造出更小和更轻的电池,而更轻和更小的电源对目前中国移动通信终端产品追求最小尺寸来说是至关重要的。要想充分利用电池容量或延长电池寿命,必须极其严格地控制充电参数。

鉴于锂离子可充电电池的上述优点,本文将详细介绍如何设计高效、安全的锂离子可充电电池管理电路。

1 移动通信终端产品锂离子电源管理的原理及设计

锂离子电源管理的设计主要是针对锂离子电池的特性来进行的。锂离子电池的安全性能及供电性能主要体现在其充放电参数的控制上。图1为锂电池电源管理原理图。该图由控制芯片和电路组成。接下来,我们就图1从锂电池放电、充电两个方面来探讨如何实现锂电池的管理。

1.1 放电工作原理

电池过放可能会给电池带来灾难性的后果,特别是大电流过放或反复过放,对电池的影响更大。一般而言,过放电会使电池内压升高,正负极活性物质的可逆性受到破坏,即使充电也只能部分恢复,容量会有明显衰减。锂离子电源管理电路的功能之一就是为了保护锂电池不至于过放。

图1

锂电池的正常工作电压为2.575~4.2V。当电池电压在此范围内,管理电路将MOSFET管S4打开,在电池(CELL)电压与BATT+之间建立低阻通道,有利于电流从电池流向手机负载。在此情况下,过放就体现为输出电流过大。在整个输出过程中,电源管理电路不断地检测从电池输出到负载的电流。当电池输出电流超过通常的保护值3.5A的时候,手机短路保护电路开始工作,关闭S4,切断电池与BATT+的连接。

当电池持续放电到电池电压低于文献[1]规定的放电终止电压2.375V以下时,则属于电压过放。此时,图1中的手机低电压及短路保护电路开始工作,同电流过放一样,关闭S4,切断电池与BATT+的连接达到保护锂电池的目的。

1.2 充电工作原理

充电管理电路在对锂电池进行充电时,更是一个复杂的过程,既要保证锂电池能够充满,又要保证锂电池的性能,最重要的是要保证锂电池不能过充。如果锂电池在充电过程中充电电流过大,或充电时间过长,产生的氧气来不及被消耗,就可能造成内压升高,电池变形,漏液等不良现象。同时,其电性能也会显着降低。

整个充电电路应该具有以下几种充电模式:

——低电压预充电模式;

——全速充电模式;

——涓流充电模式;

——顶端截止、脉冲充电模式;

——充电截止模式。

1.2.1 低电压预充电模式

当电池电压低于3.0V时,电源管理电路进入低电压预充电模式。当电池极度过放时,为了防止过量的充电电流对电池性能造成损伤,充电电路应该采取渐进的充电方式。

对于一块极度过放的,电压已低于0.7V的锂电池,电源管理电路将提供预充电涓流给电池。此时S1关闭,充电器通过R1提供电流给管脚Vdect,充电器提供电流的大小完全由R1决定,整个充电器几乎工作在无负载情况下。这种充电模式甚至可以对电压已经为0V的电池进行充电;当电池电压高于0.7V低于1.98V时,外部S1及S2工作,电源管理电路可以以更高的电流对电池进行充电。但是,此时三极管S1的功耗检测电路还没有工作,必须限制其功耗低于800mW,以免烧毁S1;当电池电压高于1.98V低于3.0V时,整个电源管理电路都正常工作,此时S1的控制电路使S1以较高的电流,但远低于全速充电电流对电池进行充电,该电流一般超过100mA。

1.2.2 全速充电模式

当电池电压高于3.0V时,预充电模式结束,进入全速充电模式。此时,电源管理电路将S1及S2打开,并使S1工作在饱和模式,充电器提供全速充电电流给电池充电。但是,电源管理电路将限制最大充电电流小于1.5A。

这种充电模式对充电器也有一定的要求,要求其实现限流输出。这样做的目的是便于移动通信终端厂商,在产品设计时可以根据产品的定义,选择不同的充电电流,实现对具体锂电池快速有效的充电。在典型应用中,一般要求充电器提供的输出电流限制在1A以内,具体的电流可以根据所用锂电池厂商推荐使用的充电电流,以便电池能够具有一个较高的循环寿命。

1.2.3 涓流充电模式

该充电模式其实也是一种恒压充电模式,当电池表面达到控制电路设定的终止充电电压Vterm时,即进入该种充电模式。由于在全速充电模式下,电流比较大,电池表面电压与实际电池芯的电压有比较大的落差,涓流充电模式就是用来减小甚至消除该落差。此时,电源管理电路通过控制S1的开闭情况,将提供给电池的最大电流限制在100多mA。由于电池被充得越来越足,因此,涓流就越来越小,直到截止。

1.2.4 顶端截止脉冲充电模式

当电源管理电路处于涓流充电模式时,它会周期性地跳转到全速充电模式,形成脉冲电流对电池进行充电。大电流脉冲宽度一般<100μs,这样有利于电池更快被充满。

1.2.5 充电截止模式

电源管理电路会有一个控制引脚,由手机的CPU决定什么时候停止充电。进入这种模式,一般会有这样几种情况:手机检测到充电电路包括锂电池温度过高;不是原装的锂电池;已经进入涓流充电,不需要充电时间过长;充电器设计不合理等等。

2 结语

电源设计原理范文第2篇

引言

移动通信终端产品如GSM手机、CDMA手机及PHS小灵通电话已经深入普及到我们的日常生活中,促进了中国电信事业的发展,也为我们的生活带来了方便与快捷。但同时,由于一些移动终端厂商的设计缺陷,多次出现了手机爆炸伤人事件,而造成爆炸的主要原因在于电源管理部分设计有缺陷或设计存在不完善的地方。

与其他现有电池相比,可充电锂离子电池具有多项优势,这使它们成为更适合于便携式应用的电源。它们可以提供更高的能量密度(最高达200W·h/kg或300~400W·h/L,分别是Ni/Cd或者Ni/MeH电池的2.5倍和1.5倍)和更高的电池电压(碳阳极电池为4.1V,石墨阳极电池为4.2V)。它们具有无记忆效应,自放电率小,可快速充放电及更高的充放电次数等优点。

锂离子电池的更高化学能量密度和更高电池电压使得我们可以为移动终端产品应用制造出更小和更轻的电池,而更轻和更小的电源对目前中国移动通信终端产品追求最小尺寸来说是至关重要的。要想充分利用电池容量或延长电池寿命,必须极其严格地控制充电参数。

鉴于锂离子可充电电池的上述优点,本文将详细介绍如何设计高效、安全的锂离子可充电电池管理电路。

1 移动通信终端产品锂离子电源管理的原理及设计

锂离子电源管理的设计主要是针对锂离子电池的特性来进行的。锂离子电池的安全性能及供电性能主要体现在其充放电参数的控制上。图1为锂电池电源管理原理图。该图由控制芯片和电路组成。接下来,我们就图1从锂电池放电、充电两个方面来探讨如何实现锂电池的管理。

1.1 放电工作原理

电池过放可能会给电池带来灾难性的后果,特别是大电流过放或反复过放,对电池的影响更大。一般而言,过放电会使电池内压升高,正负极活性物质的可逆性受到破坏,即使充电也只能部分恢复,容量会有明显衰减。锂离子电源管理电路的功能之一就是为了保护锂电池不至于过放。

图1

锂电池的正常工作电压为2.575~4.2V。当电池电压在此范围内,管理电路将MOSFET管S4打开,在电池(CELL)电压与BATT+之间建立低阻通道,有利于电流从电池流向手机负载。在此情况下,过放就体现为输出电流过大。在整个输出过程中,电源管理电路不断地检测从电池输出到负载的电流。当电池输出电流超过通常的保护值3.5A的时候,手机短路保护电路开始工作,关闭S4,切断电池与BATT+的连接。

当电池持续放电到电池电压低于文献[1]规定的放电终止电压2.375V以下时,则属于电压过放。此时,图1中的手机低电压及短路保护电路开始工作,同电流过放一样,关闭S4,切断电池与BATT+的连接达到保护锂电池的目的。

1.2 充电工作原理

充电管理电路在对锂电池进行充电时,更是一个复杂的过程,既要保证锂电池能够充满,又要保证锂电池的性能,最重要的是要保证锂电池不能过充。如果锂电池在充电过程中充电电流过大,或充电时间过长,产生的氧气来不及被消耗,就可能造成内压升高,电池变形,漏液等不良现象。同时,其电性能也会显著降低。

整个充电电路应该具有以下几种充电模式:

——低电压预充电模式;

——全速充电模式;

——涓流充电模式;

——顶端截止、脉冲充电模式;

——充电截止模式。

1.2.1 低电压预充电模式

当电池电压低于3.0V时,电源管理电路进入低电压预充电模式。当电池极度过放时,为了防止过量的充电电流对电池性能造成损伤,充电电路应该采取渐进的充电方式。

对于一块极度过放的,电压已低于0.7V的锂电池,电源管理电路将提供预充电涓流给电池。此时S1关闭,充电器通过R1提供电流给管脚Vdect,充电器提供电流的大小完全由R1决定,整个充电器几乎工作在无负载情况下。这种充电模式甚至可以对电压已经为0V的电池进行充电;当电池电压高于0.7V低于1.98V时,外部S1及S2工作,电源管理电路可以以更高的电流对电池进行充电。但是,此时三极管S1的功耗检测电路还没有工作,必须限制其功耗低于800mW,以免烧毁S1;当电池电压高于1.98V低于3.0V时,整个电源管理电路都正常工作,此时S1的控制电路使S1以较高的电流,但远低于全速充电电流对电池进行充电,该电流一般超过100mA。

1.2.2 全速充电模式

当电池电压高于3.0V时,预充电模式结束,进入全速充电模式。此时,电源管理电路将S1及S2打开,并使S1工作在饱和模式,充电器提供全速充电电流给电池充电。但是,电源管理电路将限制最大充电电流小于1.5A。

这种充电模式对充电器也有一定的要求,要求其实现限流输出。这样做的目的是便于移动通信终端厂商,在产品设计时可以根据产品的定义,选择不同的充电电流,实现对具体锂电池快速有效的充电。在典型应用中,一般要求充电器提供的输出电流限制在1A以内,具体的电流可以根据所用锂电池厂商推荐使用的充电电流,以便电池能够具有一个较高的循环寿命。

1.2.3 涓流充电模式

该充电模式其实也是一种恒压充电模式,当电池表面达到控制电路设定的终止充电电压Vterm时,即进入该种充电模式。由于在全速充电模式下,电流比较大,电池表面电压与实际电池芯的电压有比较大的落差,涓流充电模式就是用来减小甚至消除该落差。此时,电源管理电路通过控制S1的开闭情况,将提供给电池的最大电流限制在100多mA。由于电池被充得越来越足,因此,涓流就越来越小,直到截止。

1.2.4 顶端截止脉冲充电模式

当电源管理电路处于涓流充电模式时,它会周期性地跳转到全速充电模式,形成脉冲电流对电池进行充电。大电流脉冲宽度一般<100μs,这样有利于电池更快被充满。

1.2.5 充电截止模式

电源管理电路会有一个控制引脚,由手机的CPU决定什么时候停止充电。进入这种模式,一般会有这样几种情况:手机检测到充电电路包括锂电池温度过高;不是原装的锂电池;已经进入涓流充电,不需要充电时间过长;充电器设计不合理等等。

2 结语

电源设计原理范文第3篇

【关键词】开关电源EMI滤波器 原理 设计

中图分类号: TM643 文献标识码: A 文章编号:

开关电源的特点是频率高、效率高、功率密度高和可靠性高。然而由于其开关器件工作在高频通断状态,使得电磁干扰非常严重。防电磁干扰主要有三项措施,即屏蔽、滤波和接地。往往单纯采用屏蔽不能提供完整的电磁干扰防护,唯一的措施就是增加滤波器,来切断电磁干扰沿信号线或电源线传播的路径,与屏蔽共同构成完美的电磁干扰防护。

开关电源EMI滤波器的原理

1、开关电源的电磁干扰源

(1)开关管产生干扰。开关管导通时由于开通时间很短及回路中存在引线电感,将产生较大的du/dt和较高的尖峰电压。开关管关断时间很短,也将产生较大的di/dt和较高的尖峰电流,其频带较宽而且谐波丰富,通过开关管的输入输出线传播出去形成传导干扰;

(2)整流二极管反向恢复电流引起的噪声干扰

由于整流二极管的非线性和滤波电容的储能作用,二极管导通角变小,输入电流成为一个时间很短,而峰值很高的尖峰电流,含有丰富的谐波分量,对其他器件产生干扰。二级滤波二极管由导通到关断时存在一个反向恢复时间。因而,在反向恢复过程中由于二极管封装电感及引线电感的存在,将产生一个反向电压尖峰, 同时产生反向恢复尖峰电流,形成干扰源;

高频变压器引起EMI问题

隔离变压器初、次级之间存在寄生电容,这样高频干扰信号很容易通过寄生电容耦合到次级电路,同时由于绕制工艺问题在初、次级出现漏感将产生电磁辐射干扰。另外,功率变压器电感线圈中流过脉冲电流而产生电磁辐射,而且在负载切换时会形成电压尖峰;

2、干扰信号频段分析

当开关电源的谐波电平在高频段(频率范围30MHz以上)时,表现为辐射干扰,而当开关电源的谐波电平在低频段(频率范围0.15 MHz~30 MHz)表现为传导干扰。传导干扰电流按照其流动路径可以分为两类:一类是差模干扰电流,另一类是共模干扰电流。开关电源的差模干扰和共模干扰分布在不同的频段,在截止频率范围内大致可分成3个频段,在0.5MHz以下,主要是以抑制差模干扰为主;在O.5 MHz一1 MHz(或0.1MHz一1 MHz)范围内,差模和共模干扰共存;在1MHz—30 MHz范围内主要是以抑制共模干扰为主。

二、设计开关电源EMI滤波器的实际方法

1、设计中的几点考虑

EMI滤波器的效果不但依赖于其自身,还与噪声源阻抗及电网阻抗有关。电网阻抗通常利用静态阻抗补偿网络(LISN)来校正,接在滤波器与电网之间,包括电感、电容和一个50电阻,从而保证电网阻抗可由已知标准求出。而EMI源阻抗则取决于不同的变换器拓扑形式。

以典型的反激式开关电源为例,如下图(a)所示,其全桥整流电路电流为断续状态,电流电压波形如下图所示。对于共模噪声,下图(b)所示可以看作一个电流源和一个高阻抗并联;下图(c)中对于差模噪声,取决于整流桥二极管通断情况,有两种状态:当其中任意两只二极管导通时,等效为一个电压源与一个低值阻抗串连;当二极管全部截止时,等效为一个电流源和一个高阻抗并联。因而噪声源差模等效阻抗以2倍工频频率在上述两种状态切换 。

EMI滤波器设计

(1)电容、电感选取原则

一般的EMI滤波器中有两组电容,即跨接在电源线之间起差模抑制作用的X电容和接在电源线和地之间起共模抑制作用的Y电容。对于X电容其额定电压应和电网电压相当,其容量可以选的大些,典型值为零点几微法到1。对于Y电容取值允许的情况下越大越好,但Y电容会导致人员电击,所以对其最大漏电电流有限制,的大小由产品规定。

另外,为了获得较好的高频特性,降低高频等效串联电阻和等效串联电感,X和Y电容通常都是通过几个较小的电容并联来满足其容量要求。对于滤波器中的共模或差模扼流圈一般情况下要自己动手设计。磁芯材料一般是铁氧体。电感量的估算要考虑阻抗和频率。共模扼流圈典型取值为1.5 mH~20mH,差模扼流圈典型取值为10H~50H。

(2)设计EMI滤波器的步骤

要使EMI滤波器有良好的工作特性,元件在选材时有很多需要注意的地方。差模滤波电容(C)通常选取金属膜电容,金属膜电容具有较大的电容值,自谐振频率在1 MHz~2 MHz之间,对于较低频率的差模干扰信号有非常好的抑制效果,设计时通常选取值为0.1uF一1uF。共模滤波电容()选用瓷片电容,具有高达10 MHz以上的自谐振频率,所以对较高频率的共模干扰信号有较好的抑制效果,设计时通常选取值为1000 pF~6800 pF。共模电容因为要进行接地,则共模滤波电容的最大容量可用下式计算:

出于安全考虑,漏电流要尽量小,通常应小于5 mA。

为了取得良好的滤波效果,电感的取值和材料的选取原则从以下几个方面考虑:第一,磁芯材料的频率范围要宽,要保证最高频率在1 GHz,即在很宽的频率范围内有比较稳定的磁导率;第二,磁导率高,但是在实际中很难满足这一要求,所以,磁导率往往是分段考虑的。共模扼流圈磁心尽量选用起始磁导率高、高频性能好的磁心,这样对共模噪声有很好的抑制效果。绕制共模扼流圈的时候尽量让导线均匀包裹住磁心,以减少漏感,这样绕制出的电感线圈与设计值更为接近。

EMI滤波器抗共模部分的截止频率的计算式:

EMI滤波器抗差模部分的截止频率的计算式:

在实际的计算过程中,如同计算共模滤波器的步骤一样,首先确定需要的 以及厂的大小,再带人由式(4)推导出来的式(5)中,计算出的值。再由式(6)计算出的大小。一般情况下共模扼流圈的漏感取值为自身电感量的0.5% ~2%。

经过上面的步骤以后,就可以得到针对不同频率开关电源的EMI滤波器中所有元件的参数。

开关电源EMI滤波器的设计电路

①开关电源共模干扰等效电路

下图所示,开关管 由导通变为截止状态时.其集电极电压会马上变为一个高电压.这个襄变电压会引起下图中Icm2向 集电极到地之间的分布电容充电。这个突变电压还生成电流Icm1向高频变压器初、次级问的分布电容充电 形成共模电流(Icm1+Icm2)。 其充电频率就是开关电源的工作频率(即脉冲重复频率)。其中,与开关管的结构有关.而的数值视高频变压器的具体结构和工艺而定 因此可知.共模干扰电流的流动方向有两条:一条沿着电源正极到地;另一条沿着电源负极到地。LISN表示测试等效电路时连接线路阻抗稳定网络。

②开关电源差模干扰等效电路

下图所示.当导通时,差模电流和电源电流都沿着导线、变压器初级及开关管回到电流负极上。当截止时,视为开路。这时数量很小并且也对差模电流是高阻抗的。因此,差模电流是沿着电源正极到负极方向流动的。

总结

提出的EMI滤波器,完全滤除了开关电源输出端的尖峰干扰,其对开关电源传导性共模、差模噪声干扰体现了较强的抑制作用。

参考文献

[1] 付明民,袁登科,张逸成,龚增,王晖。 用于开关电源的EMI滤波器设计[J]. 电气自动化. 2009(04)

[2] 冯楠,曾国宏,张佳。 高频开关电源的EMI滤波器的研究[J]. 电气技术. 2006(12)

[3] 张逸成,苏丹,朱学军,姚勇涛。 抑制开关电源高频噪声的电磁干扰滤波器设计方法[J]. 城市轨道交通研究. 2007(09)

[4] 杨志辉,韩泽耀。 应用于开关电源的有源共模EMI滤波器[J]. 安全与电磁兼容. 2006(04)

电源设计原理范文第4篇

关键词: 边界层; MSP430F149单片机; DC/DC; 功耗

中图分类号: TN964?34 文献标识码: A 文章编号: 1004?373X(2013)06?0136?03

0 引 言

深海海底原位监测技术是一种对海底界面生物地球化学过程进行长期、原位、多参数同步测量的水下监测技术。该技术在海底水合物系统及其勘探试采过程中的环境效应监测评估等方面有重要的应用前景。

因系统在深海海底长期使用且更换电池不方便,故电源管理系统的主要功能是使其工作时电流消耗尽可能的小、不工作时电源可以被切断,以及采集模拟量。单片机在不断电的情况下,实现长期控制整个电源系统的功能。由于海底原位监测工作具有长期性的特点,要求系统具有较高的稳定性和较低的功耗。

1 电源管理系统结构和总设计方案

本电源系统以MSP430F149为主控制器件,是一款16位超低功耗的单片机,其CPU功耗可以通过开关状态寄存器的控制位来控制:正常运行时电流160 μA,备用时为0.1 μA,低功耗的优点为系统设计提供了有利条件;内部集成了8路12位具有高速、通用特点的ADC12模块,可在没有CPU干预的情况下进行16次独立采样并保存结果[1],系统中用到2路模拟通道来分别采集模拟量DO和PH;其所有的I/O端口的管脚都是双向的[2],设置I/O口可控制DC/DC模块,图1中C1~C6为单片机I/O口输出的DC/DC模块的Ctrl信号,即通过I/O口输出1或者0控制DC/DC模块的开启或关断。

2 电源管理系统软件设计

整个系统的管理主要分为3个阶段:甲板上设置参数阶段、设备投放阶段、数据采集阶段。甲板上设置参数阶段主要是对单片机进行对时、设置投放阶段睡眠的时间长度以及数据采集周期。设备投放阶段主要是控制上位机和深海设备处于断电状态并且单片机进入低功耗状态,等待先前设置的投放阶段睡眠的时间长度到了之后退出低功耗,给上位机供电,然后等待上位机的命令。数据采集阶段主要是周期性的给上位机供电,上位机给单片机命令给相应的深海设备供电或断电。系统的设计中涉及到功耗、时钟切换、RTC等,以下是各个部分的具体实现过程。

2.1 低功耗设计

系统的功耗可以由公式P=CV2f计算出来[3],式中C为负载电容,V为电源电压,f为系统工作频率,可见一个系统的功耗主要由电源电压决定,其次是工作频率、负载电容。因负载电容不可控制,要设计一个低功耗的系统,在不影响其性能的前提下,应该尽可能地降低电源电压和使用低频率的时钟。

电源电压方面,一方面MSP430F149具有1.8~3.6 V的低电源电压工作范围;另一方面,系统中使用的DC/DC模块为程序可控的,即只有在要求给相应的负载供电时,才会程序控制相应的DC/DC模块开启,否则其一直处于关断状态。从以上2个方面,降低了整个系统电源电压以降低整个系统的功耗。

另外,MSP430F149具有1种活动模式和5种低功耗模式(LPM0?LPM4)[4],通过程序控制可使单片机在指定的时刻通过定时器中断退出低功耗模式进入活动模式,其他时刻均处于LPM3模式下。因系统中用定时器B实现软时钟,定时器B的时钟源选择的是ACLK,LPM4模式下CPU及所有的时钟(包括ACLK)都停止工作,但是系统要求软时钟即使在低功耗的状态下可用且可中断唤醒CPU,故选择的是LPM3模式。

系统设计中有两路模拟量采集用到ADC模块,此模块仅在单片机接收到上位机发送来的采集这两路模拟量的时候才开启,采集完之后可通过程序控制把ADC模块关闭,在一定程度上这也可以降低系统功耗[5]。

2.2 时钟切换设计

由2.1知,从低功耗的角度出发,选择了较低的工作频率,但是系统中涉及到单片机控制步进电机。MCLK为32 768 Hz时,由此时钟延时产生的矩形脉冲的频率太低,导致步进电机不能转动,所以在系统中考虑到时钟的切换,即在调整步进电机时,要把单片机的主系统时钟(MCLK)从LFXT1切换到LFXT2。BCSCTL2|=SELM1+SELM0该语句实现的是选择MCLK的时钟源为LFXT1,即设置了BCSCTL2寄存器的高两位为1(默认为0)。当要把MCLK的时钟源选择为LFXT2时,如果寄存器BCSCTL2的各个位仍为默认值,则只需BCSCTL2|=SELM1语句便可成功的设置MCLK的时钟源为LFXT2[6],但是程序没能达到预期目标。分析发现寄存器BCSCTL2被设置过之后,被设置的相应位的默认值就发生了改变,在进行下一次设置之前要保证把上一次设置过的相应位恢复为默认值,然后再进行设置才能达到预期目标,意思就是说在语句BCSCTL2|=SELM1前面加上语句BCSCTL2&=0X3F即可成功的将MCLK的时钟源由LFXT1切换到LFXT2。

2.3 实时时钟RTC的设计

一方面,系统长期工作于深海海底,甲板上设置好参数后,从投放到回收期间,不会再有外部工作人员的干预,系统自动化的完成数据的采集工作,对电源管理系统提出了能够按点、按周期周期性给嵌入式系统和深海设备加电的要求;另一方面,深海海底原位监测的DO,PH,CO2,CH4等要在严格的准同步下测得,才具有研究的意义和价值。以上两方面要求电源管理系统要有RTC,能够接受上位机发送来的时间,并以此时间为基准开始计时。程序能记录上次数据采集的时刻,并计算出下次数据采集的时刻。每次数据采集完单片机关闭电源,进入LPM3模式,等待到下一个数据采集时刻从低功耗状态退出然后给上位机供电,然后等待上位机命令给哪些深海设备供电与断电。

2.4 系统的健壮性

系统从硬件和软件2个方面来保证系统运行的稳定性。

(2)核对工作状态:ARM板相对于单片机有3个阶段,且其信息断电不丢失,而单片机一旦出现意外断电,其信息将全部丢失,程序被重新初始化,就会出现单片机和ARM板的工作状态不一致。为了消除因两者工作状态不一致给整个系统带来的风险,程序中设置了接收上位机核对工作状态的命令,单片机一旦发现两者工作状态不一致,将修改自己的状态,以与ARM板保持同步。系统流程图如图3所示。

3 结 语

通过2次海试,结果表明系统可以稳定地实时给上位机供电,系统功耗低,程序结构灵活稳定,修改方便,能够满足深海原位监测的要求。

参考文献

[1] 谢兴红.MSP430单片机基础与实践[M].北京:北京航空航天大学出版社,2008.

[2] 秦龙.MSP430单片机常用模块与综合系统实例精讲[M].北京:电子工业出版社,2007.

[3] 胡淑军.嵌入式系统低功耗技术研究[EB/OL].[2007?07?23].中国科技论文在线,http://.

[4] 张晞,王德银,张晨.MSP430系列实用C语言程序设计[M].北京:人民邮电出版社,2005.

电源设计原理范文第5篇

关键词:在线式UPS,全桥逆变;SPWM;计算机机房设备

中图分类号:TN86 文献标识码:A 文章编号:1006-8937(2013)06-0020-02

近年来,随着社会的发展,计算机机房设备系统在全国普遍应用,在生产和学习过程中对于网络的依赖程度越来越高,一旦出现网络故障,将严重影响我们的生产和学习。而事实表明,计算机机房设备系统的故障出现,有55%以上都是计算机电源系统的故障而引起的,例如电厂因故障发生的断电,电网的失压,电源的谐波对计算机设备造成的干扰等。因此,UPS(不间断电源)是预防和解决这些故障的重要设备。

1 UPS的分类以及主要功能

目前UPS的种类繁多,这些UPS除了额定功率的区别以外,按照其基本工作原理,可以分为三大类:第一,离线式(OFF LINE),即UPS处于备用状态,一旦故障发生,立即工作;第二,在线式(ON LINE),即UPS不断处于工作状态并且一般是并网工作;第三,在线互动式(Interactive),这种UPS是实时监控电网,并且更具具体情况在备用和工作之前进行切换。本文主要是讨论第二类在线式UPS的工作原理、方案设计及其在计算机机房中的应用与维护。

2 在线式UPS在供电系统中的工作原理

2.1 输入输出端的配线与空气开关选择

输入输出的配线选择,对于整个UPS工作系统是很重要的。选择的线径太粗会造成一定程度上的浪费;而选择的线径太细,不能够在合理的工作电流之上留有裕量,会导致配线发热,引起无法预料的后果。选择适当的输入输出配线,需要考虑金属导线的电气特性,防火等级,耐温等级等等。一般的,多股铜芯配线的散热量为6 A/mm。在计算机机房设备系统中,我们选用多股铜线配线,如表1所示。

2.2 在线式UPS的工作原理

在计算机机房设备这种重要的应用场合中,在线式UPS是作为供电系统辅助和应用的最佳选择。在线式UPS除非故障状态下,是不断的处于工作状态之下的。电网电源分成两路,一路通过AC-DC充电器对蓄电池组进行充电,以保证蓄电池组后备供电的能力;另一路通过带有功率因素校正的整流器(Power Factor Corrector——PFC),将220 V的市电转换为直流电,然后再通过DC-AC逆变电路,将直流电转换为220 V的交流电,供给计算机机房设备。

当电网电压正常时候,DC-AC的工作电源是由电网电压输入到PFC整流器获得的,然后逆变输出,供给计算机机房。

当电网电压出现异常情况时刻,例如电网电压高于264 V或者低于175 V(220 V+/-20%),或者断电时刻,蓄电池组直接通过DC-AC逆变器将蓄电池组的直流电转换为交流电,供给计算机机房设备。

旁路开关是在UPS的负载过重的情况下或者逆变器出现故障停止工作的时候接通,以保护UPS的主电路部分。当上述故障恢复到正常状态以后,旁路开关立即翻转为正常的工作状态,在线式UPS工作系统如图1所示。

3 在线式UPS的主要电路设计

下面介绍一种单相小型在线式UPS系统,本系统总共分为DC-AC全桥逆变模块、主控制电路模块、隔离驱动模块、信号采样检测模块、滤波系统、辅助电源。

输入滤波部分主要是将经过蓄电池和配线的直流电压和电流进行简单滤波,由于PFC整流器输出的直流电压和电流相对来说较理想,所以UPS的输入滤波部分也并不复杂,通常由电解电容和高频电容组成,加上安规电路后,都能够满足输入电压和电流的纯净。一般根据输出功率的大小和输入蓄电池的电压来确定电解电容和安规器件的选择。

主电路采用大功率IGBT全桥拓扑逆变电路,相比较来说,有很大的功率富余量,在输出动态范围内输出阻抗非常小,具有快速响应的特性。由于采用高频调制限流技术,及快速短路保护技术,使逆变器无论是直流供电电压的瞬变,还是负载迅速变化的冲击,都可以保证UPS安全可靠地工作。

输出滤波LC参数的确定:要求输出为50 Hz的正弦波,系统的SPWM频率设定为18 kHz,采用LC低通滤波器将截至频率设置在400 Hz,根据■计算,综合电感在回路中的分压作用和电容的分流作用的影响,取电感值为1.5 mH,电容取值为1 uF。

4 计算机机房设备中UPS的维护

4.1 蓄电池的维护以及注意事项

蓄电池在整个在线式UPS系统中是至关重要的。UPS之所以能够在电网异常甚至断电的时候提供不间断的电源,正是因为蓄电池源源不断的提供能量。目前,小型UPS大多数使用的是免维护,全密封的铅酸蓄电池。整个蓄电池的成本占据了整个在线式UPS系统的1/3到1/2。维修经验表明,在线式UPS系统的蓄电池失效的主要表现为输出端的电压不够,容量随着时间的使用会降低,或者是瞬间的放电电流不能够满足启动电流的要求等等。通常的,计算机机房系统所使用的在线式UPS系统的寿命在5~7 a年左右。但是在国内维修反馈中,有些在线式UPS系统的蓄电池在投入使用了不到一年就出现了各种问题。出现这样的问题的原因追究起来,一方面是因为部分蓄电池本身的质量问题,另一方面,在系统投入使用之后,没有进行相关必要的维护和检修,使得蓄电池的工作状态不清晰,成为了整个系统的安全隐患,造成不必要的损失。

在新的在在线式UPS系统投入使用后,必须保证系统所处的环境温度以及适度的适宜。更重要的是,需要定期对蓄电池的各个电压,当出现了各个电池的电压不均匀时候,就要对各个电池进行均匀充电;除此之外,需要定期的对蓄电池进行容量测试和深度放电,使得电池组的性能能够得到正确检测,保持电池的活性。

4.2 蓄电池的维护以及注意事项

目前,计算机机房系统使用的在线式UPS系统基本上都是智能型系统。对于环境要求比较高,温度偏高会直接导致UPS系统的过热,引起系统本身的保护,从而停止输出。UPS在使用过程中,各个参数不能够随意更改,以免出现输出的混乱以造成不必要的损失。不能够令UPS系统工作在超负载的情况之下,否则会引起过度发热,轻则自动关机,不再工作,重则使得逆变功率部分发生损坏。在断电时刻,应该先切断负载与UPS系统的连接,等待UPS系统正常开启以后,再启动负载,否则会直接导致多负载的冲击电流和供电流,造成UPS电源瞬时过载,这样的结果也会严重损坏逆变器的功率部分。

5 结 语

在线式UPS 不间断电源对计算机机房设备正常运行非常重要,在对于计算机网络服务系统的工作起着不可替代的作用。正确使用和维护好UPS 能够提高计算机机房设备的数据安全以及设备的安全使用。

参考文献:

[1] 刘少慧.浅析UPS不间断电源的原理及维护[J].福建电脑,2011,(4).

电源设计原理范文第6篇

摘要:随着LED技术的日益成熟,LED已经被应用到很多领域,特别是在大功率商业照明领域,LED凭借其具有节能、长寿命、可靠性高、低成本等优点,充分地展现出高性价比的特点。本文设计一种反激式原边反馈低成本方案的驱动电源,在100-240V电压范围内输出电流精度达到±5%,功率因数大于0.9,效率大于85%,并具有过压、短路保护功能。通过分析其工作原理并对具体参数给出详细的计算过程。对LED驱动电源工程师在设计的过程中具有一定的参考价值。

关键词:原边反馈;MPS4021;LED电源

中图分类号:TM402文献标识码:A

1引言

LED作为新型的节能光源,具有高光效、环保、长寿命等特点。LED使用时需要恒流输出的驱动电源,目前大多数采用次级反馈方案[1-2],该方案从输出端进行电流采样,再通过运算放大器将信号进行放大后利用光耦进行初次级隔离反馈控制。该方案输出电流精度较高,但反馈电路元件较多,成本相对较高。本设计采用反激式原边反馈低成本方案,通过检查高频变压器初级绕组的电流实现对次级输出电流的控制,输出电流精度可达到±5%,基本达到LED驱动电源对电流精度的要求,并且集成了功率因数校正电路,所设计电源功率因数大于0.9,能够符合能源之星对灯具功率因数的要求。电路结构简单、低成本、高可靠性,在现有市场上具有一定的竞争力。

2原边反馈方案的工作原理

原边反馈方案具有结构简单、低成本、高可靠性等优点。变压器起到变压和传递能力的作用,控制芯片通过检测反激变压器初级绕组的峰值电流来控制次级绕组的输出电流[3-4]。如图1所示,电路反馈具有两个反馈环,一个是通过辅助绕组检查输出电压信号的电压外环,另一个是通过检查初级绕组的峰值电流的电流内环。通过设计好这两个反馈环路,提高系统的稳定性,可以得到较高精度的输出电流。

3基于MPS4021控制芯片的电路设计

MPS4021是一个初级端控制的离线LED照明控制器。原边控制可以显着简化了LED照明驱动系统消除了光电耦合和在一个孤立的单级转换器的次级反馈组件[5-7]。其专有的实时电流控制方法,可以从检测初级电流来准确地控制次级输出电流。内部集成了电流精度补偿模块,可以提高线路的LED电流精度。

如图2 MPS4021芯片引脚功能图所示,MPS4021集成了功率因数校正功能,并在临界导通模式下工作。功率因数校正功能可以实现在通用电压范围内PF>0.9。边界导通工作模式可减少开关损耗,提高了EMI性能。极低的启动电流和静态电流,可以减少功率消耗,同时MPS4021提供了多种先进的保护措施,包括过电压保护,短路保护,逐周期电流限制和热关断,以提高系统的安全性。

本设计采用MPS4021方案设计一种反激式原边反馈低成本的驱动电源,LED灯板为14串29并排列,本设计选用406颗3528灯珠芯片做为LED负载,每颗灯珠正向导通电压Vf为3.0V-3.4V,工作电流If为20mA,输出电压额定值为45V、输出电流额定值为580mA,LED灯光功率约为26W,设计要求驱动电源效率大于85%,则电源输入功率约为30W。具体电路原理图如图3所示,驱动电路主要包括浪涌保护电路、功率因数校正电路、MOS管驱动电路、RCD吸收回路、电流反馈电路和过压、短路保护电路。每一模块电路合理地设计可以保证电源稳定的工作,提高电源的可靠性,本文主要分析电流反馈电路和过压、短路保护电路并给出了反激变压器的详细计算过程。

4结论

本文采用了MPS4021方案设计了一种反激式原边反馈低成本的驱动电源,双闭环反馈系统,电流内环反馈保证了电源输出电流的稳定,电流精度达到±5%,同时电压外环反馈也保证了过压、短路等故障时系统的可靠性。本设计分析原边反馈方案的工作原理,并对驱动电源的反馈电路、保护电路和高频变压器进行了详细的计算。最终所设计的产品经验证能够达到预期设计的效果。

参考文献

[1]董晓伟,裴云庆,曹建安,等 .一种新型单级PFC变换器的研究[J]. 电力电子技术,2004, 38(4):32-38.

[2]靳文汇,范蟠果,闫少雄. 一种反激式开关电源变压器改进设计方法研究[J].电力电子技术,2009,43(1):62-63.

[3]王兆安,黄俊 .电力电子技术[M].北京:机械工业出版,2002.

[4]杨恒 .LED照明驱动器设计步骤详解[M].北京:中国电力出版社,2010.

[5]Marty Brown .电源设计指南(第二版)[M].北京:机械工业出版社,2004.

[6]Steve Winder .LED驱动电路设计[M].北京:人民邮电出版社,2009.

[7]Abraham I.pressman .开关电源设计(第三版)[M].北京:电子工业出版社,2010.

[8]邱关源,罗先觉 .电路 第五版[M].北京:高等教育出版社,2006.

电源设计原理范文第7篇

【关键词】电气控制柜;设计;施工

电气控制柜的主要作用是负责配电和线路保护,因此其组成部分主要包含电源和开关两大部分。同时,电气控制柜还肩负着控制功能。在控制功能的结构内部,有断路器、接触器、继电器、PLC、变频器以及接线端等原件。电气控制柜要实现的功能根据不同的需要制定。被控制设备的数量以及被控制设备功率的大小是电气控制柜选择电器元件的依据。根据被控制设备的数量和功率大小选定电气元件之后,将其集中组合在一个电柜中,从而形成了需要的电气控制柜。但是电气控制柜为了保障运行和操作的基本安全,要在设计过程中充分的考虑,尽量做到结构简单,造价经济适用。

1 电气控制柜的设计

电气原理图设计和工艺设计是电气控制柜设计的主要组成部分。要想实现电器控制柜的设计与施工,做好电气原理图的设计与工艺设计,对于保障电气控制柜功能的实现,作用至关重要。

1.1 子系统电气设计

所谓的电气原理图设计是为了满足机械或者其他生产设备的工艺要求而进行电气控制系统的设计,其主要目的是可以实现机械或是其他生产设备的电气控制。在电气自动化控制系统中,被控机械或是其他生产设备的可用性、先进性以及设备的自动化程度都直接受影响于电气原理图的设计质量。因此,电气原理图设计的好坏,对于电气自动化的实现而言,重要性不言而喻。所以,电气原理图的设计被认为是电气自动化设备可以实现运行的核心组成部分,可以帮助电气自动化控制系统实现合理有效的运行。清楚明白电气控制柜要实现的功能和控制逻辑是设计电气原理图的基础条件。对于十分简单的而控制系统而言,为了能够降低成本,省略编程带来的麻烦,我们尽量不选用PLC进行电气设备的控制,而是用最基本的控制器进行控制。对于比较复杂的包含PLC、继电器、变频器和接触器相互配合的控制系统而言,所控制的设备除了要实现变频之外,还要实现工频,正确分析信号输入和输出的关系是复杂控制系统设计的难点,也是设计的重点,这些要求也是PLC的I/0容量及模块选择、PLC及在主机所允许范围内变频器I/0地址分配和PLC控制程序编写的关键。同时,CPU工作电源、模拟量模块工作电源、输出负载的供电电源以及输入有源开关量信号的接法问题的处理,也是对于PLC复杂控制系统需要正确对待和处理的问题。

对于交直流电气件的选择问题,要在清楚交直流电路的基础上对电气件进行选择定型。如负载是380V的三相感应电动机,在对应电气件的选择上,应该选用380V的交流接触器控制电机。除此之外,电气件在选型时,除了要清楚交直流电路基本原理之外,还要考虑电气件所处环境的条件状况和安装方式。如在冷却条件较差的箱柜内,接触器安装后电流要降低10%~20%使用,才能确保电气件的安全运行。在一般的电气件选择定型时,接触器的型号选择要选择额定电流1.2倍的设备进行安装,才能保证设备运行正常。接触器敞开安装时,电流要允许提高10%~25%的范围,以确保接触器电流突然变大时,保证接触器的安全。在断路器的选择过程中,应尽量选择既有短路保护又有过载保护,同时还具备断相和欠压保护功能的电动机起动器,以对电动机进行控制和保护,这些要求都可以满足断路器最基本的保护特性,同时可以匹配被保护对象的过载特性,实现断路器的安全运行,保证设备在出现异常状况时设备不至于被损坏。

在电气控制柜设计过程中,电气设计的设计原理图是实现控制柜控制功能的基础。首先,清除需要设计的电源的线制。电源线制根据使用范围的不同而不同,在工业和民用设备过程中使用的电气控制柜的电源线制一般都是采用三相五线制,而家用电气或是照明系统一般都是采用单相三线制。三线无限制和单相三线制是电源线制最基本的两种设计方式。在设计原理图时,所有的图形符号、文字符号和回路标号都要按照相关规定进行绘制,避免产生误解。为了后续生产方便,可以让施工工人很清楚的明白图纸的设计原理,电路的设计,需要按照动作顺序和信号自左向右的原则进行绘制。将主电路放在整个线路图的左边,电源线路按照水平线的要求绘制,主电路和电源线路垂直,在两个水平电源线之间绘制控制电路,接地的水平电源线上直接连接耗能元件,在耗能元件和上方水平线之间设计触点,保证设计的通用性和易读性。

1.2 子系统工艺设计

对电气控制柜进行合理的工艺设计,是在电气原理图设计完成之后,保证电气控制柜生产和使用的极为重要的环节。所谓工艺设计,其目的是为了简便电气控制柜的生产制造,完成电气设计图设计的各项要求,实现电气控制柜的安装、调试、验收、维护、使用以及后期维修而积累起来的相关技术资料。在工艺设计过程中,各种电气件进行分开布置,可以有效的保障电气件独立顺畅运行。当电气控制柜空间有限,不能实现电气件的分开布置时,要在电气件之间加设绝缘隔板。电气控制柜工艺设计时,为了确保电气控制柜的质量,要充分考虑其防护等级的要求,并根据具体要求进行材质的选择。在食品行业内,对于电气控制柜要求采用不锈钢材质,配线以桥架为热浸锌材质。除以上要求之外,在设计时,还要考虑紧急制动功能,以保证在积极状况下,可以快速紧急制动,停止设备运行。

2 电气控制柜的安装调试

电气控制柜的安装过程,要根据安装环境是否存在震动,安装设计要求存在一定的差异。在存在震动的环境中,为了确保电气控制柜的正常运行,要采取防震措施。设备接电线要尽量利用粗、短的线路连接公共接地点。在安装完成调试过程中,要根据电气控制柜的特点,对子系统单独调试后进行联机调试,遵循由简单到复杂、由局部到整体的原则。确保电气控制柜各项性能运能达到设计要求,满足客户的需求。

3 结束语

以上内容简单介绍了电气控制柜电气原理图设计和工艺设计需要注意的重要事项和电气控制柜安装调试的基本要求。电气控制柜作为电气自动控制重要的组成部分,要严格按照国家标注和技术规范进行设计和施工,确保其性能稳定,运行正常。

参考文献:

[1]冯银玲.电气控制柜设计与施工探讨[J].城市建设理论研究(电子版),2012(21).

电源设计原理范文第8篇

【关键词】整车电气原理设计;电源分配设计;接地分配设计;回路匹配设计;压接点设计

【Abstract】The schematic is used to indicate the vehicle electrical system of the vehicle wiring harness to each electrical power and signal transmission connection between circuits. Vehicle electrical schematic design, all related to the vehicle’s electrical functions to achieve, is an important basis for the analysis of electrical circuits, troubleshoot electrical faults.

【Key words】Vehicle electrical schematic design; Power distribution design; Ground distribution design; Matching circuit design; Splices design

0 引言

整车电气原理,是整车电气系统的核心,它表明了整车线束系统为实现各用电器的功能,一方面通过导线将电源及用电器连接构成回路,为用电器传导电流,另一方面通过导线回路实现相连接的用电器之间的信号传递,从而使各电器件能够按照操作者的意图正常工作。整车电气原理设计是否合理,直接关系到汽车电器件能否正常工作以及全车的安全性、可靠性、经济性和舒适性,它是整车开发过程中的一个重要环节。

整车电气原理设计的主要内容包括电源分配设计、接地分配设计、回路匹配设计、INLINE的选型以及回路压接点设计。

1 整车电气原理的设计输入文件

整车电气原理的设计输入阶段,应获得以下文件:①整车配置表;②各电器子系统信息,包括子系统工作原理图、接口定义及负载特性等;③各电器件在汽车上的布置信息。

2 整车电气原理设计

2.1 电源分配设计

电源分配主要是基于整车各用器的工作原理,在满足各子系统工作原理的前提下,确定采用何种方式给用电器供电,同时对线路保护进行设计。

整车电源类型大致可分为以下三种:①蓄电池直接供电系统(常电或30电);②点火开关控制的供电系统(IG电或15电);③发动机起动时卸掉负载的电源(ACC电)。根据车型的电气系统组成情况,给与合理的电源分配。

电源分配设计一般要遵循以下原则:①所有电源回路都需要进行回路保护;②考虑负载的重要等级以及行车安全,对于重要的安全件,需要单独的熔断器来保护,如近光灯回路;③考虑不同系统的功能关联性和失效模式,减少不同系统和功能之间的相互影响;④区分负载类型是扰动负载还是稳态负载;⑤就近原则,靠近负载的实际安装位置分配电源。

电源分配设计的步骤如下:首先,根据整车蓄电池、起动机、发电机的相关参数,以及子系统负载信息,进行电源类型的分配,以及保险丝、继电器的种类及个数确定。然后,结合车内空间、可扩展性、成本、平台化等因素,对电器盒进行选型并确定其个数。一般车型主要有前舱电器盒和仪表板电器盒,外加蓄电池处的前端保险丝盒,有的车型可能会增加后行李箱电器盒。最后,根据就近原则及负载布置信息,进行电器盒内的负载电源分配。如前舱电器盒主要对前舱的电器件进行供电,仪表板电器盒主要对驾驶舱内的电器件进行供电。

2.2 接地分配设计

在整车电路中,一般会使用导线与车身、发动机或变速箱连接在一起,这样可以车身、发动机、变速箱实现共地。这种实现接地的做法,称为“搭铁”。

为避免接地导线过长,造成不必要的电压降,一般采用就近接地。另外,接地分配也需要考虑到以下三种接地要求:①发动机ECU、ABS/ESP、EPS、SRS等对整车性能及安全影响大,且易受其他用电设备干扰,所以这些件需要单独接地。尤其对于安全气囊系统SRS,其接地点不仅应单设,而且为了确保其安全可靠,最好设计两个及两个以上接地点。其目的是其中一个接地失效,系统可通过另一接地点搭铁,确保系统安全工作。②音箱系统为避免电磁干扰,也要单独接地;弱信号传感器的接地最好独立,接地点最好是在离传感器较近的位置,以保证信号的真实传递。③有些电器件必须共用接地点,以防止不同接地点之间的电位差影响到电器件之间功能的正常实现。

其他电器件可根据具体布置情况相互组合共用接地点。蓄电池负极线、发动机搭铁线等因导线截面较大,因此一定要控制好线长和走向,减小电压降。为增加安全性,发动机、车身一般要单独连到蓄电池负极搭铁。

2.3 回路匹配设计

回路匹配设计,主要是根据负载信息,设定熔断器的型号和容量,从而确定匹配的回路线径。

2.3.1 负载信息确认

根据收集到的整车子系统信息,确认负载类型、负载电流特性曲线。负载类型、负载电流特性曲线如下图1所示:

2.3.2 设定熔断器的型号和容量

熔断器的作用是保护导线,其类型分为快熔型熔断器和慢熔型熔断器。小电流负载和短时间脉冲电流负载,一般选择快熔型熔断器,大电流负载和锁电流负载一般选择慢熔型熔断器。

熔断器的容量设定主要遵循以下原则: 一般来说,熔断器负荷电流不超过熔断器额定电流的70%。同时,还要考虑以下因素。①快熔型熔断器容量:需要考虑负载额定电流值、负载类型、环境温度影响、继电器盒类型、暂态电流波形;②慢熔型熔断器容量:需要考虑和区分连续负载、间歇性负载、特殊负载。

2.3.3 确定回路线径

根据已确定的熔断器来选择与之匹配的回路线径。此过程要综合考虑回路所在的环境温度、回路导线的容许温度、通电时回路导线的温升以及成捆线束容许电流的折减系数。总的原则是要求发生短路时熔断器的熔断时间短于导线发烟时间。如图2,橙色线代表熔断器的熔断时间,粉色线代表导线的发烟时间,回路导线与熔断器的匹配判定左图是可取的,右图则是不可取的。

2.4 INLINE选型

INLINE即线对线连接器。INLINE的选型,需要考虑以下三点:第一,INLINE的端子线径压接范围要与所接回路的线径匹配;第二,INLINE连接器的孔位数要满足所接回路的总数;第三,回路走向要与INLINE所在车上的安装位置匹配,一般采用就近原则。特殊回路如安全气囊系统回路对端子镀层有特殊要求,一般不与其他回路共接同一INLINE。

2.5 回路压接点设计

整车电气原理回路的压接点设计,需要遵循以下三点:第一,单边回路数最多不超过7根,总回路数最多不超过12根;第二,压接的所有回路中,最小回路线径与总回路线径之比必须大于或等于5%;第三,各回路之间的线径匹配须满足导线的压接工艺要求。

3 整车电气原理设计校核验证

整车电气原理需与子系统信息作进一步的校核,并通过以下相关试验进行验证其设计的合理性:①过载试验;②堵转试验;③短路保护试验;④整车配电工作电流测试;⑤供电及接地回路电压降测试;⑥熔断器熔断情况下的功能故障测试;⑦接地不良情况下的功能故障测试;⑧整车搭载耐久试验。

4 结束语

整车电气原理,是整车电气系统的核心。整车电气原理设计得合理,才能保证汽车各用电器能按照操作者的意图来实现其功能,也才能保证汽车的安全性、可靠性、经济性以及舒适性。

【参考文献】

[1]李元胜.汽车电路系统设计与Multisim仿真[D].青岛大学,2014.

[2]吴建刚.目前汽车电路存在的问题与对策[J].汽车电器,2007.

电源设计原理范文第9篇

关键词:混合动力;开关电源;单端反激

中图分类号:TP211+.4 文献标识码:A 文章编号:1005-2550(2017)03-0030-04

Design of Power Supply for an Automotive IGBT Drive

YANG Xian-guo, ZHANG Hong-xia, PENG Jin-cheng, ZHAO Wei

( Dongfeng Motor Corporation Technical Center, Wuhan430058, China )

Abstract: This paper introduce a single-end flyback converter with multiplexed output for IGBT drive. The design process and the specific of the circuit are introduce. The test indicates that this power has outstanding reliability, stability and lower ripple. This power fully comply with the requirements of the automotive IGBT driver.

Key Words: hybrid power; switching power supply; single-end flyback converter

引言

IGBT是目前混合恿ζ车高压混合动力系统中必须采用功率开关器件。IGBT栅极驱动对电压要求极为苛引 言刻,而汽车电气环境较为复杂。所以电源需要在宽电压环境中工作,且输入与输出必须隔离开来,必须具有高可靠性和高稳定性。单端反激式开关电源具有体积小、重量轻、效率高、结构简单等优点,非常适合用于设计功率器件的驱动电电源。

开关电源控制电路分为电流控制型和电压控制型。电压控制型控制电路是一个单闭环控制系统,控制过程中电源的电感电流未参与控制,是一个独立变量,开关变换器为有条件稳定二阶系统。电流控制型控制电路是一个电流、电压双闭环控制系统,电感电流不是一个独立的变量,开关变换器为一阶无条件的稳定系统,从而可以得到更大的开环增益和完善的小信号、大信号特征。为此本文选择流控型芯片LM3478设计了一款车载IGBT驱动电源。主要技术参数:输入8-16V直流,输出:4路输出(每路28V/0.16A),工作频率100KHz,输出纹波小于1%。

1 主电设计

1.1 主电路拓扑

主电路拓扑如图1所示。主电路采用单端反激式变换电路,+12V为电池直流经电源预处理后的输出电压,作为开关电源输入电压。开关电源分四路输出提供给IGBT驱动电路。

1.2 电源预处理电路设计

电源预处理电路如图2,是外部电源与内部电路的链接部分,它承担着减轻外部电源干扰和降低内部电源对外的传导干扰。在这一部分电路设计要针对性的考虑到企业标准相关试验要求,并作出详细的计算以满足电路设计要求。以静电保护电容为例,根据企业标准要求本设计所搭载控制器,需要进行最严酷静电试验为,带电25KV[1]。图2中电容C1、C2:470nF(100V)为ESD保护电容,计算如下:

由以上可知电源接入端口BAT+可以耐受25KV静电。

其中C1、C2在电路布局时还应当相对垂直布置,避免由于单方向震动引起电容同时失效而引发控制器着火。

1.3 变压器设计

变压器是开关电源最重要的组成部分,它对电源效率和可靠性,以及输出电源的电气特性都起到至关重要的作用。在设计时需要充分考虑功率容量、工作频率、输入输出电压等级和变化范围,铁芯材料和形状,绕组绕制方式,散热条件,工作环境等综合因素[3]。

根据技术指标要求,电源输出功率Pout为:

原边峰值电流为

式中Vin(min)为电源输入最低电压8V。

Ton取最大值0.5,初级电感量为Lpri:

初级匝数Npri为:

,取6。

AL为磁芯制造厂提供的一个气隙长度参数。这个参数是在磁芯上绕上1000匝的后的电感数据。根据磁芯生产商提供的磁芯和导线参数本设计中AL=10mH/1000,式中Lpri初级电感量单位为mH。

次级匝数Nsec为:

式?max中为最大占空比(反激式开关电源50%),VD 为次级整流二极管导通压降。

2 控制电路

2.1 PWM控制电路

本设计采用TI公司汽车级芯片LM3478作为开关电源控制器。LM3478是一个多用途底边开关电源NMOS控制器,可用于BOOST,flyback,SEPIC 等多种拓扑结构开关电源[4]。

PWM控制电路如图3所示,图中引脚8是电源输入端,芯片为宽电压输入,输入范围是3-40V,本设计中连接到电源预处理的输出端典型值为13.5V。引脚7连接电源频率配置电阻,根据使用手册提供的工作频率与阻值关系,本电源的工作频率为100KHz,R6配置为200KΩ。引脚2为补偿引脚,C6、R7构成补偿回路为控制电路提供补偿。引脚6为输出端,经过一个限流电阻(R4)限流后驱动功率MOSFET(Q2),为保护MOSFET,在引脚6并联一个电阻。

2.2 电压反馈电路设计

为了使多路电源输出一致性更好,和降低负载对反馈电源的影响。本设计采用独立回路进行电压反馈设计,反馈回路变压器绕组匝数Nfb为:

反馈电路通过外部分压连接到LM3478的FB引脚与内部基准电压1.26V进行比较。因为变压器原边与输出回路和反馈回路的绕组匝比固定,所以当输出回路电压升高,反馈回路的电压也会升高。反馈回路分压电阻分压就会高于1.26V,控制器将关断外部NMOS,缩短NMOS导通时间以降低电压。

2.3 电流反馈控制电路设计

LM3478电流控制通过在电流环内串联电阻的方式,将电流信号转换为电压信号,从控制器引脚ISEN引入控制器内部,与LM3478电流控制基准电压vsense进行比较,当ISEN脚上电压高于基准电压vsense时控制器将关断开关管,起到限流和过流保护作用。

本设计的最大电流限值为原边最大电流与原边电感最大纹波电流之和。对于本设计原边最大电流为Ipk。根据LM3478使用手册,RSENSE计算如下:

DMAX式中为0.5,vsense、vsL、vsL可从LM3478 使用手册中查询相关数值和公式。

3 测试结果

本设计集成在IGBT驱动电路中,在典型电压值9V、13.5V、18V下分别测试本开关电源的轻载和满载(用大电阻模拟负载)情况下的相关参数。表1和表2为典型测试值示例,测试表明电源输出符合设计要求。

图4为输入13.5V满载时开关MOSFET栅源级波形,图中可以看出满载情况下占空比小于50%,电路工作在完全能量转换状态下,满足设计要求。D5为开关MOSFET漏源电压,从图(a)中可以看出在开关管关闭、次级线圈电流为零时原边的电压在理论上应该降为零,实际上却发生了震荡。原因是当变压器释放完所有能量,电源开关管的漏源级电压会降到输入电压值的电平上。这一转变激发了原边吸收电容与原边电感的谐振回路,从而产生了一个衰减的振荡波形,并持续到开关管下次导通。这一振荡波形会影响电路的EMI特性,需要调整吸收电路电容使振荡波的频率低于电源开关频率,得到如图(b)的波形。

4 结束语

本文设计的反激式开关电源,具有体积小、重量轻、输出电压纹波小、稳定性好等优点,本设计应用在基于英飞凌HP2 IGBT驱动电路中,所搭载控制器通过了DV、PV测试,并成功应用于东风某ISG车型中。在开关电源设计过程中会遇到很多问题,比如变压器啸叫、开关管过热等,这些问题需在测试过程中不断总结和整改,器件参数也需要在测试过程中不断调整,如文中所提到的吸收电路的调整。同时PCB布局对电源的品质和可靠性影响很大,如文中提到的防静电电容布置。所以在原理设计完成后要仔细阅读相关企业标准和芯片PCB Layout指导手册,以降低不恰当的布板对电源造成不利影响。

参考文献:

[1]EQC-1204-2007 电气和电子装置环境的基本技术规范电气特性, 2007.

[2]王志强.开关电源设计第二版[M].北京:电子工业出版社, 2005.

[3]徐德鸿.开关电源设计指南[M].北京:机械工业出版社, 2004.

电源设计原理范文第10篇

关键词 交流电 负载平衡效益

一、三相交流电源负载不平衡引发的问题

随着我校计算机数量的增加和显示屏尺寸的加大,以及计算机设备对电源质量要求较高的情况下,原有的三相交流50KVA的两台DJDW稳压电源设备经常出现前端开关烧毁和断电等现象。经过多次调查发现,是由于当时室内计算机是利用原来墙壁上的电源供电,就使得三相交流稳压电源不能不出现在某相有超载或轻载现象,使三相交流稳压供电不平衡,使三相交流稳压电源系统供电工作极不稳定。严重影响了正常教学秩序的进行。

二、通过三相负载平衡,提高三相交流稳压电源的功效

为有效解决我校计算机房三相交流稳压电源严重不平衡的问题,让我校计算机房三相交流稳压电源充分发挥出应有的效率,为了有效的节约资金,根据供电负载平衡原理,其运用解决方式如下:三相四线制可输送两种电压:一种是端线与端线之间的电压叫线电压,另一种是端线与中线之间的电压叫相电压。三相负载做星形连接,在对称三相电压作用下,流过对称三相负载中每相负载的电流相等。流过中线的电流为零。

由基尔霍夫定律得知:中线电流in=i1+i2+i3 对应的矢量式IN=I1+I2+I3可知三相对称负载星形连接时的中线电流为零。那么在三相交流电路中,三相负载消耗的总电功率为各相负载消耗功率之和:

所以在此三相交流电路中,只要三相负载对称,平衡供电,每相都可以提供给75A额定电流。每台计算机额定电流是1.4A,但实际测量17寸显示器计算机工作电流在0.8A—1A之间,那么每相稳压单相电源可带75—93台电脑。每台50KVA的三相交流稳压电源,如在三相负载平衡的情况下,带240台电脑符合用电要求,这样提高功率1/4倍。应该说按三相负载平衡情况下带270台电脑也没问题,那就是提高功率1/3倍。我将两台稳压电源所带动的机房都进行了线路平衡改造,由原来的只能带6个微机室360台电脑增加到带8个微机室480台电脑。既保障了教学秩序的正常进行,又为学校节约了资金。不仅使480台计算机的电源得到有效的保证,并且还留有40台计算机电源使用余量,做为用电安全保护系数。

三、改造电源供电平衡电路

如何改造我根据三相负载平衡原理,并对照以前供电情况提出了新的供电方案,新的电路改造方案。当时有6个计算机室,大的计算机室103台电脑,小的计算机室38台计算机,计算机室用三相交流稳压电源按三相负载平衡原理供电,再根据计算机室的特点,为其设计电路。以103台计算机为例,每个计算机室有一台服务器和一台教师用计算机在前排面对着学生。学生计算机横有13排,每排8台计算机,竖排4排,(横13×8=104)靠墙两侧各一排(2台计算机)每侧26台计算机,中间两竖排并在一起(4台计算机)中间共有52台计算机,总共为106台计算机。考虑到教师用计算机和服务器的应用特点,单独用开关控制,每个插排供两台计算机用电(每个插排由四个三孔插座组成)。每个计算机房电源控制箱靠北墙(每个计算机房电源控制箱的电源是由2台DJDW 50KVA三相交流稳压电源组成的稳压电源室提供),室内电源控制箱是由1个三相空气断路器作为室内计算机总电源控制开关,A、B、C、三相室内计算机供电线路分别由3个单相空气断路器分别实施控制。I路由A相空气断路器控制供电,Ⅱ路由B相空气断路器控制供电,Ⅲ路由C相空气断路器控制供电。

通过改造使原来的两台DJDW三相交流50KVA稳压电源仅供360台计算机,还会经常出现提供电源断电故障,后经供电线路平衡改造后,增加到480台电脑。照原来设备增加容量1/4倍。还留有增加设备负载的余量,作为安全系数,还能确保安全。这些说明什么,说明利用一些原理和技术的应用就能发挥一些设备的自身的能量,使其发挥最大效率,达到节约资金的目的和效果。

从以上的线路改造和实际应用,应该说其实际的功率提高是远远超过这些,因为计算机机型的换代,显示器300台由原来的15英寸,全部更换为17英寸,每台计算机实际工作电流大约增加0. 1A—0.2A,实际工作电流无形中其电流增加了。可以发现改造后的两台DJDW50KVA的三相交流稳压电源供电的平衡电路,增加的容量可以说远远不止1/4倍。在我校计算机房中的480台计算机全部采用17英寸显示器的情况下,完全经住了考验。可以说不但节约了近5万元的资金,也使供电线路更加流畅,确保了正常的教学秩序的需要。达到了充分利用设备让设备发挥最大的效率、实现节约资金的目的、应该说利用三相负载平衡原理的效果是显著的。

参考文献: