首页 > 文章中心 > 电源滤波器

电源滤波器范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

家用电脑EMC电源滤波器

摘要:本文指出了当前市面上家用电脑电源关于EMC方面不足的情况,并依据国家标准研制出一种新型的可以解决家用电脑电源EMI问题的无源滤波器。

关键词:电脑;电源干扰;无源滤波器

中图分类号:TN912 文献标识码:A文章编号:1009-3044(2008)06-1pppp-0c

1 电脑电源干扰分析

在我们的日常生活用电中,其实额定频率为50HZ的市电并不是“纯净”。由于电网中存在着各种各样的感性和容性负载,加上各类干扰脉冲,使得市电中夹杂着许多杂讯和杂波,特别是突发脉冲和高频干扰。这就使得电源的工作环境十分恶劣,而众所周知的是,计算机的抗干扰能力很差,特别是抗脉冲干扰的能力更差。如果没有一个“纯净”的电源环境,那么电脑频频出错和死机就是很常见的现象。此外电脑本身也是一个强大的干扰源,因为在电脑处理系统中,数模电路的混合使用,在工作时会产生各种频率的电磁信号,形成一个较为恶劣的内部工作环境。

而且随着我国电磁兼容要求的范围进一步扩大,电脑的EMC要求已明确提出。本文正是针对以上情况,介绍了制作一种新型的电脑电源无源滤波器。其目的是为了不让外界的干扰信号入侵干扰电脑的工作,也为了不让工作时产生的电磁信号外泄污染电网。

1.1 电源电路分析

从市面上看,国内目前的计算机电脑电源有串联调整式稳压电源,脉冲调宽式开关稳压电源(简称PWM)和不间断电源(简称UPS)。而现在我们家用电脑所用的电脑电源几乎都是脉冲调宽式开关电源。PWM电源的基本工作原理[1]如下:电网电压经整流滤波后得到约300V左右的直流电压,经晶体管调制后成为幅度为300V的高频脉冲。经高频变压器变压得到所需的电压,然后再经整流滤波得到需要的直流电压。输出电压的稳定则是依赖对脉冲宽度的改变来实现,这就叫做脉宽调制PWM。

全文阅读

电源滤波电容器的选择

摘 要: 电解电容器是电源滤波电路的关键元件,除了容量和耐压外尚有介质损耗、漏电流等重要参数。在串联稳压电路和开关稳压电路中,大容量电容能提供更平滑的输出电流。

关键词: 电解电容 滤波电路 开关电源

在电子设备中,电容器被广泛运用:诸如滤波、退耦、高频补偿、提供交流反馈、隔阻直流、抑制密勒效应,等等。交流电经过二极管整流后,为了获得较低的波纹电压、还需经电容器滤波后才能使用。一般地说,大容量的滤波电容器可以提供更平滑的输出电流。但理论和实践可以证明,当电容量达到一定值后,即使再加大电容量对优化滤波效果也无明显作用,应当根据负载电阻和输出电流的大小来选择最佳的电容量。滤波回路应用最多的是铝电解电容器。现在电子设备中常用有两类稳压电源,串联稳压电路和开关稳压电路。这两种电源电路对输出滤波电容器有不同的要求。

一、电解电容器的基本性能

电解电容器有多种性能参数。在它封装外壳上一般有容量标示,指静电容量及耐压标示,指工作电压或额定电压。

工作电压为绝对安全值;如果工作时的峰值电压超过这个电压值就可能使此电容器损坏。根据国际IEC384-4规定,低于315V时,Vs=1.15×Vr;高于315V时,Vs=1.1Vr。Vs为峰值电压,Vr为额定电压。

除了静电容量及工作耐压两个参数外,有关电源滤波电容器的参数还有:容量误差、工作温度,等等。反映电容器物理性能的特性参数有以下几个。

1.介质损耗

全文阅读

论有源电力滤波器

摘要:介绍了有源电力滤波器基本工作原理及其容量定义,并对并联型有源电力滤波器和串联型有源电力滤波器优缺点进行比较,为合理选择有源电力滤波器提供了依据。

关键词:谐波;PWM变流器;有源电力滤波器APF

中图分类号:TB

文献标识码:A

文章编号:1672-3198(2012)04-0281-03

1概述

随着电力电子的发展,具有非线性特性的变流装置和大容量动态负载被广泛使用,电网中的谐波污染问题变得日益严重。目前,谐波抑制的一个重要趋势是采用有源电力滤波器(APF)。有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能对大小和频率都变化的谐波以及变化的无功进行补偿,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点。

2有源电力滤波器的基本工作原理

全文阅读

浅谈有源电力滤波器

【摘要】随着现代工业技术的发展,工业电网谐波污染严重,这会对电气设备造成危害,从而影响设备的安全运行。同时,人们对环境保护意识的逐渐提高,则要求净化电网,形成一个“绿色”电网。有源电力滤波器具有良好的谐波抑制效果,系统控制灵活,具有很大的发展潜力。

【关键词】有源电力滤波器;发展现状;发展趋势

中图分类号:TM20 文献标识码:A 文章编号:1006-0278(2013)01-122-01

一、有源电力滤波器的发展历程

有源滤波器的思想,最早出现于1969年B.M.Bird和J.EMarsh的论文中。文中描述了通过向交流电源注入三次谐波电流以减少电源中的谐波,改善电源电流波形的新方法。文中虽未出现有源滤波器一词,但其所描述的方法被认为是有源滤波器基本思想的萌芽。

有源电力滤波器的基本原理的完整描述,首次出现于1971年日本的H.Sasaki和T.Machida发表的论文中。但由于当时是采用线性放大的方法产生补偿电流,其损耗大,成本高,因而仅在实验室中研究,未能在工业中使用。接着,1976年美国西屋电气公司的L.Gyugyi和E.C.Strycula提出了采用脉冲宽度调制控制的有源电力滤波器。80年代后,由于电力电子器件和控制技术的发展,有源电力滤波器技术逐步走向成熟。大功率晶体管(Gwg)、大功率门极可关断晶闸管(GTO)、静电感应晶体管(SIT)、静电感应晶闸管(SIWU)、绝缘栅双极晶体管(IGBT)和场控晶闸管(MCT)等新型半导体器件的出现,PWM技术的发展,尤其是1983年日本的H.Akagi等人提出了“三相电路瞬时无功功率理论”,以该理论为基础的谐波和无功电流检测方法在三相有源电力滤波器中得到了成功的应用,极大促进了有源电力滤波器的发展。20世纪90年代以后,有源电力滤波器技术进入实际应用,并以更快的速度在世界范围内发展。

二、有源电力滤波器的国内外研究现状

目前世界上有源电力滤波器的主要生产厂家有日本三菱电机公司、美国西屋电气公司、德国西门子公司、瑞士的ABB公司和法国施耐德电气公司等。近年来,国外已开始在工业和民用设备上广泛使用有源电力滤波器,并且单机装置的容量逐步提高,其应用领域从补偿用户自身的谐波到改善整个电力系统供电质量的方向发展。以日本为例,自1982年世界上第一台GTO有源滤波装置问世以来,日本己有50多台有源电力滤波器投入运行,其功率范围从50kVA到60MVA越来越宽,功能从谐波补偿到抑制闪变和电压调节等越来越丰富,广泛应用于工业、商业和机关团体的配电网中。作为世界上电力电子技术最发达的国家,在日本有源电力滤波器己经到了普及应用阶段。

全文阅读

有源电力滤波器的设计

【摘要】有源电力滤波器(Active Power Filter)是目前研究比较深入的一种装置,它是一种用于动态补偿,既可抑制谐波,又可以补偿无功的新型电力电子装置,它能对大小和频率都变化的谐波以及变化的无功进行补偿,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点。

【关键词】有源电力滤波器;谐波;补偿;PWM变流器

随着科学技术的发展,大量的电力电子装置广泛的应用于工业的各个领域,给工业带来了翻天覆地的变化,但大量电力电子装置的广泛应用,同时也给电力系统这个环境带来了严重的“污染”,其根本原因就是电力电子装置是非线性负荷,在系统中运行会产生谐波,造成十分严重的危害。治理谐波污染已成为当今电工科学技术界所必须解决的问题,开发和研制高性能的谐波抑制装置迫在眉睫。

有源电力滤波器(Active Power Filter)是目前研究比较深入的一种装置,它是一种用于动态补偿,既可抑制谐波,又可以补偿无功的新型电力电子装置,它能对大小和频率都变化的谐波以及变化的无功进行补偿,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点。

1.有源电力滤波器的基本原理

1)机理:通过一定的控制算法使有源电力滤波器发出与谐波源所产生的谐波的幅值相等,相位恰好相反的量,抵消谐波源中的谐波成分,使其剩下基波成分,其本质就是一个谐波源。

2)基本原理:最基本的有源电力滤波器系统构成图如图1[4]:

图1中表示交流电源,负载为谐波源,它产生谐波并消耗无功。有源电力滤波器系统大体上由两大部分组成,即指令电流运算电路和补偿电流发生电路。其中指令运算电路的核心部分就是谐波和无功电流检测电路,其主要作用就是检测出需要补偿对象电流中的谐波和无功等电流分量;补偿电流发生电路由电流跟踪控制电路、驱动电路和主电路三部分组成。其作用是根据指令电流运算电路得出的补偿电流的指令信号,产生实际的补偿电流,主电路多为桥式PWM变流器[1]。

全文阅读

并联型有源电力滤波器输出LCL滤波器的设计

摘要:LCL滤波器是一种滤除逆变器开关谐波的有效手段,具有比L滤波器更优异的性能。为了避免LCL滤波器发生电流谐振,通常需要加入阻尼电阻。本文基于电流最大允许脉动、逆变器开关频率和阻尼特性要求,提出了应用在三相并联有源电力滤波器中的LCL滤波器的设计方法,并在详细介绍设计过程的基础上,给出了一个设计实例。实验结果证明了所设计的LCL滤波器和采用的控制策略的可行性和性能优越性。

关键词:LCL滤波器;电流谐振;阻尼电阻;有源电力滤波器

中图分类号:G712文献标识码:A文章编号:1005-1422(2014)10-0132-03 一、引言

随着电力电子技术的快速发展,各种非线性功率器件的广泛应用,大量谐波和无功功率注入电网,造成系统效率降低,功率因素变差,严重影响电网和用电设备的安全运行[1]。有源电力滤波器(Active Power Filter,APF)通过向电网注入与原有谐波和无功电流大小相等方向相反的补偿电流,可以补偿电网的谐波和无功功率、提高电能质量、增强电网的可靠性和稳定性,其良好的滤波性能在国内外引起了广泛关注。[2]

为了滤除开关谐波,通常将L或LC滤波器引入APF中[3]。由于电网阻抗的不确定,L或LC滤波器有时难以获得理想的滤波效果。使用LCL滤波器能够克服由于电网阻抗的不确定性而影响滤波效果这一缺点,可以在较低的开关频率下,获得比L和LC滤波器更优异的性能。同LC滤波器一样,由于LCL滤波器是谐振电路,对系统的稳定性有很大影响,通常需要引入阻尼作用[4]。本文基于电流最大允许脉动、逆变器开关频率和阻尼特性要求,提出了应用在三相并联有源电力滤波器中的LCL滤波器的设计方法,并在详细介绍设计过程的基础上,给出了一个设计实例。通过实验,证明了所设计的LCL滤波器和采用的控制策略的可行性和性能优越性。

二、LCL滤波器设计

(一)并联型APF系统

三相三线制并联型 APF 主电路如图 1 所示。图中,Us为三相电源电压,Ui为逆变器输出电压,is为三相电源电流,iL是由非线性负载引起的负载电流,i2为补偿电流,Cdc和Udc分别表示逆变器直流侧电容的容值与电压值。非线性负载为三相不控整流桥带纯电阻RL负载。L1为逆变桥侧滤波电感,L2是电网侧滤波电感,Cf为滤波电容。

全文阅读

有源电力滤波器的选择

摘要:由于中国的工业起步较晚,产生高次谐波的电力设备不多,电力设备对电能质量的要求也不高,故在十几年前的电气设计当中,很少设计到谐波问题,更不用说要做谐波处理了。但是随着我国工业的发展,不管是工业还是民用上,各种各样的电力设备出现,如工业中的整流器、家庭中的空调、微波炉等等,而且现在的电力设备对电能质量要求越来越高,那么谐波的处理在今天就显得尤为重要。

关键词:电子技术;电能质量;谐波

Abstract: as China's industry starts later, high-order harmonic generation of power equipment, electrical equipment on power quality requirements are not high, so in more than a decade ago, electrical design, rarely designed to harmonic problems, not to mention the harmonic treatment. But as China's industrial development, whether industrial or civil, various power equipment, such as industry, the rectifier family air conditioning, microwave ovens, and now the power equipment on electric energy quality demand is higher and higher, so the harmonic treatment is particularly important in today.

Key words: electronic technology; power quality; harmonic

中图分类号: TV212 文献标识码:A文章编号:

有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。它由指令电流运算电路和补偿电流发生电路两个主要部分组成。指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。

由于中国的工业起步较晚,产生高次谐波的电力设备不多,电力设备对电能质量的要求也不高,故在十几年前的电气设计当中,很少设计到谐波问题,更不用说要做谐波处理了。但是随着我国工业的发展,不管是工业还是民用上,各种各样的电力设备出现,如工业中的整流器、家庭中的空调、微波炉等等,而且现在的电力设备对电能质量要求越来越高,那么谐波的处理在今天就显得尤为重要。

谐波的产生:

全文阅读

有源电力滤波器(APF)在谐波治理中应用

【摘要】随着电力电子技术的飞速发展,大量非线性负载广泛应用,谐波污染问题逐渐受到了高度重视,做为治理谐波最有效的方案――有源电力滤波器(APF)成为了国内外研究热点。本文通过对谐波的产生原因与危害、波抑制与无功补偿和APF的基本工作原理及发展应用,简要阐述APF在谐波治理中的应用前景。

【关键词】谐波;有源电力滤波器;应用

一、谐波研究背景

当代世界电力工业中,几乎都采用交流供电方式。在理想情况下,电源以单一且固定频率(50HZ或60Hz)向电网提供正弦变化的电压。电网可以视为一个线性系统,系统中各个点的电压,电流会和电源有相同频率的正弦变化,这些电气量只存在幅值和相位的不同。但随着电力电子技术的发展,电力系统中非线性负荷快速增加,实际系统已经不能近似为理想系统,直接的表现形式就是电压、电流出现了波形的周期性畸变。从频域分析的角度就是说,这些电压,电流的波形之中不仅包含了与电源相同频率的基波正弦分量,还有一系列频率是基波频率整数倍的高频正弦分量。这些高频分量统称为电力系统谐波,当电力系统中谐波含量过高时,也可以说存在较重的谐波污染时,电网的安全性和可靠性将会受到威胁,而传统的理论或方法(如正弦电路向量分析法等)也无法应用。因此,电力谐波已经成为世界各国政府,科学界广泛关注的问题,谐波的研究是很有意义的。

二、谐波产生原因与危害

随着我国改革开放的不断深化,现代电力电子变换技术产品等非线性负载的普及应用,一方面是科技发展的表现,另一方面却对电网产生了诸如谐波含量和无功功率增高的不利影响,这使得电网污染成为日益突出的严重问题,因此需要“实施绿色电力电子、打造绿色电网”,就必须首先解决电网污染的这个难题。根据相关的电路知识,负载的电流与加在两端的电压不呈线性关系,从而形成了非正弦的电流,这些非正弦的电流中就包含有谐波,所以可以得出结论:非线性负载是产生谐波的根本原因。关于电网中谐波的来源,可以概括为以下三个方面:

(一)由于发电源质量问题从而产生谐波,这是因为在制作发电机内部的三相绕组时,几乎不可能做到绝对对称,同样发电机内部的铁心也不会绝对的均匀一致。

(二)输电网以及配电网中由于电力变压器的存在,会不可避免的产生谐波。

全文阅读

有源电子滤波器迭代PI控制器的设计

【摘要】电流跟踪控制器的设计是有源电子滤波器关键问题之一。电流跟踪控制器的给定为交流信号,本质属于随动系统。由于传统PI控制器在对交流信号的踪上存在静差,影响了有源电子滤波器的控制效果。本文分析研究了迭代PI控制器,证明了该控制器与重复控制的等价性。由于迭代PI控制器具有周期积分器,所以从根本上消除了传统PI的静差问题。文章最后通过Matlab仿真对比了两种控制方法的控制效果。

【关键词】有源电子滤波器;迭代PI;电流跟踪

1.引言

随着电力电子技术的发展,大量非线性器件的使用引起的电网谐波污染日益严重,有源电力滤波器(APF,Active Power Filter)作为目前抑制谐波最理想的解决手段,受到广泛的关注。图1为并联APF谐波补偿原理图。

有源电子滤波器的关键技术主要包括:谐波电流检测方法和电流跟踪控制算法。目前大量的控制算法都被应用于有源电力电子滤波器,有发展很成熟的方案:如滞环控制、传统PI控制等;有近几年兴起的新型控制方案:如滑模变控制、单周控制、重复控制等。各种控制方案各有自身的优点,如滞环控制原理简单、容易实现、鲁棒性能好,传统PI控制开关频率固定,容易滤除开关频率附近的高频谐波。滞环控制和PI控制算法是APF系统中应用最广泛的两种方法,据日本电气学会调查,它们的占有率都在45%-50%之间。

传统的PI能够对被控量为直流量和变化缓慢的量实现无静差控制,但当被控量为正弦量时(比如交流驱动),如果直接采用传统PI进行控制,就会存在静态误差。将交流信号通过同步旋转变换成直流时,PI能够对被控量为标准的正弦量实现无静差控制[1],但有源滤波系统中含有多次谐波,如果每次谐波都经过旋转变换会增加计算量,不易于工程实现。

迭代PI控制[2]是近几年才被应用于APF系统中的一种新型控制算法。本文介绍了其基本原理,分析了其与重复控制的相似点和对APF系统的适用性。

同时,我们发现与具有相同结构,都具有与周期相关的参数N,这意味着重复控制与迭代PI控制都具有周期性控制特点,分析迭代PI离散域的结构框图,如图4所示,可以发现,它具有超前预测系统误差,并与重复控制具有相同的内模结构,从这个意义上说,重复控制与迭代PI控制具有很大相似性。

全文阅读

有源电力滤波器主电路研究

【摘 要】随着大功率开关器件的广泛应用,电能质量问题日益严重。就谐波治理中的无源及有源滤波技术进行了对比,介绍了有源滤器的分类、工作原理。提出了由组合相移SPWM变流器构造的电流源型有源滤波器和能在较低开关频率下实现较高开关频率效果的级联型多电平变流器有源电力滤波器。

【关键词】有源电力滤波器;谐波补偿;级联型多电平变流器;电流型有源电力滤波器;拓扑

1 引言

随着电力电子技术的飞速发展,大功率开关器件被大量应用到各种电源装置中,为各种设备提供了一个高速、高效、节能的控制手段。但是,由于利用开关的通断对电能进行变换,必然会产生无功电流和高次谐波,引起波形失真,对电力系统各项设备及其用户和通信线路产生日趋严重的有害影响。传统的无源补偿装置是并联电容器或LC滤波器,其阻抗固定,不能跟踪负荷无功需求的变化,远远不能满足电力系统对无功功率和谐波进行快速动态补偿的要求。有源电力滤波器(简称APF)是一种用于动态抑制谐波和补偿无功的新型电力电子装置,它能对大小和频率都变化的谐波和无功分量进行实时的补偿,又被称为静止无功发生器(SVG)。作为柔流输电系统(FACTS)中的重要部分,APF的研究受到了各国学者的高度重视。

如何实现大功率有源电力滤波器已取得了不少的研究成果。对于大容量的电力电子装置,如果简单地采用普通电路的主电路拓扑,则对所使用的电力电子器件在容量方面有比较高的要求。由于电力电子器件随着容量的增大其所允许的开关频率却越来越低,而较低的开关频率又直接影响有源电力滤波器的补偿效果,所以在将有源电力滤波器用于大容量谐波补偿时就面临着器件开关频率与容量之间的矛盾。为解决这一矛盾,国内外学者提出了各种性能优越的有源滤波器主电路拓扑结构。要实现大容量的谐波补偿或实现有源补偿功能的多样性,需要APF具有较大的装置容量。但由于受目前电力电子器件功率、价格及其串并联技术等的限制,这势必使装置初始投资变大,并且大容量的有源电力补偿还将带来大的损耗、大的电磁干扰以及制约APF的动态补偿特性等问题。因此,各种性能优越的混合型补偿方案的研究应运而生。本文将几种应用比较广泛的拓扑进行归拢比较,指出它们各自的优缺点,并在此基础上提出了基于载波相移技术的电流型APF和级联型APF结构。

2 APF的工作原理及其分类

对APF可以这样来定义:将系统中所含有害电流(高次谐波电流、无功电流及零序负序电流)检出,并产生与其相反的补偿电流,以抵消输电线路中有害电流的半导体变流装置。变流装置在检测系统的控制下将直流电能转化为有害电流所需要的能量,或者说:补偿装置所产生的电流波形正好与有害电流的频率幅值完全相同,而相位正好相差180°,从而达到了补偿有害电流的效果。作为一种用于动态抑制谐波、补偿无功的新型电力电子装置,APF能对大小和频率都变化的谐波以及变化的无功进行实时补偿。它的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同.可分为电压型APF和电流型APF。。电压型APF在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型APF在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型APF的优点是损耗较少,效率高,是目前国内外绝大多数APF采用的主电路结构。虽然电压型APF在降低开关损耗、消除载波谐波方面占有一定优势,但电流型APF能够直接输出谐波电流,不仅可以补偿正常的谐波,而且可以补偿分数次谐波和超高次谐波,并且不会由于主电路开关器件的直通而发生短路故障,因而在可靠性和保护上占有较大的优势。随着超导储能磁体的研究,一旦超导储能磁体实用化,必可取代大电感器,促使电流型APF的应用增多。

2.1 新型电流型APF

全文阅读