开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘 要:电容式传感器是一种把非电物理量转换成与之有确定对应关系的电容量,再通过测量电路转换成电压(或电流)信号的一种装置。电容式传感器逐渐成为高灵敏度、高精度的传感器。
关键词:电容;极板;电介质
中图分类号:TP212.3 文献标识码:A 文章编号:1674-7712 (2014) 02-0000-01
在高度发达的现代社会中,科学技术的突飞猛进和生产过程的高度自动化已成为社会发展的必然趋势,而它们的共同要求是必须建立在强大的信息工业基础上。人们只有从外界获取大量准确、可靠的信息,再经过一系列的科学分析、处理、加工,才能认识和掌握自然界中的各种现象及其相关发展变化规律,进而促成科学技术的发展。现代信息技术的三大基础是信息采集,信息传输和信息处理,而信息采集用到的便是传感器技术。传感器是信息采集系统的首要部件,是实现现代化测量和自动控制的主要环节。
传感器,Transducer or Sensor,是一种能感受被测量并按一定的规律转换成有用(与之有对应关系的且易于处理和控制)输出信号的器件或装置,它由三部分组成:敏感元件、转换元件和测量电路。传感器的分类方式有多种,其中按照工作原理分类,可分为:电阻式传感器、电容式传感器、电感式传感器、压电式传感器、霍尔式传感器、光电式传感器、热敏式传感器。而这里要论述的是电容式传感器。
电容式传感器是一种把非电物理量转换成与之有确定对应关系的电容量,再通过测量电路转换成电压(或电流)信号的一种装置。它在非电量检测中应用十分广泛。
电容式传感器具有温度稳定性好、结构简单、动态响应好、可实现非接触测量等优点;但电容式传感器的泄漏电阻和非线性等缺点也给它的应用带来了一定的局限性。随着材料、工艺、电子集成技术的发展,使电容式传感器的优点得到了发扬,而缺点也在不断的克服中,电容式传感器逐渐成为高灵敏度、高精度的传感器。
一、电容式传感器的工作原理
摘 要:首先介绍了将电容转换为与其值成正比的直流电压信号(C/U转换)或时间信号(C/t转换)的几种方法,接着重点分析了一种利用容抗法实现的C/U转换电路,并给出了具体参数。最后简单阐述了在生产科研活动中如何利用低功耗电容式传感器的电容转换电路对一些非电量进行测量。
关键词:电容;传感器;转换;测量
在生产科研活动中,经常要对温度、压力等非电量进行测量,使得现代传感器技术有了飞速的发展。电容式传感器的检测元件可将被测非电量变换为电容量,然后通过对电容值的测量得到相应的非电量的值。由此可见对电容值进行测量是有实际意义的。在数字化测量技术中,为实现对电容所测值进行数字显示,通常是将被测电容Cx先转换成与其成正比的直流电压信号(称C/U转换)或时间信号(称C/t转换)。这里介绍一些具体的转换方法,并详细讨论一个典型的C/U转换电路。
1、测量电容的几种转换方法
⑴ 充电法测电容
图1是这种方法的原理图。集成运放反向输入端所加的基准电压Ur经电阻R对被测电容Cx进行充电,当输出电压Uo达到预先设定的额定值时就停止充电。在Ur和R为定值的情况下,显然充电时间t的长短与Cx成正比。由图1可写出其关系式:
只要测出时间t的大小,就可得知Cx的值。利用这种C/t的转换方法测电容,其可测范围为10μf-999.9μf。
⑵ 充放电法测电容
摘要:介绍了一种电容式位移传感器调理电路,分析了电容式传感器调理电路中二极管不平衡环形电路的工作原理,搭建了实验平台,对设计的电路进行了数据采集,采用端点直线法分析了电容式位移传感器的非线性误差。实验结果表明,该电容式位移传感器非线性误差很小,能够准确的测量出微小变化的位移。
关键词:电容式传感器;非线性误差;位移
引言
电容传感器是将被测量的变化转换成电容量变化的传感器,具有结构简单,动态响应好,灵敏度高,能测量微小变化等优点。广泛应用于位移、速度、加速度等机械量精密测量。在实现运料车辆寻轨运行至指定位置,进行货料称重并完成卸载储存的智能化仓储管理系统中,利用电容式位移传感器实现位移检测,保障小车能够准确停靠,其调理电路的设计至关重要,本文对此进行了研究。
1智能仓储管理系统原理
智能化仓储管理系统采用单片机控制,结合应变片传感器、电容传感器、A/D转换模块、H桥PWM输出模块、放大电路等,构成运料小车,其原理框图如图1所示。图1中,应变片传感器完成称重功能,电容传感器检测位移,确定小车停靠位置。
2电容传感器信号调理电路设计
在本电容传感器信号调理电路设计中采用差动式电容传感器,调理电路设计中采用二极管不平衡环形电路,差动输出的电容量在调理电路中分别是Cx1和Cx2,其调理电路如图2所示。电容式传感器调理电路由与非门组成的多谐振荡器、LM324构成的放大电路以及二极管不平衡环形电路构成。图2中,U1A和U1B两个与非门之间经电容C1和C2耦合形成正反馈回路。合理选择反馈电阻R2和R3,可使U1A和U1B工作在电压传输特性的转折区,这时,两个反相器都工作在放大区。由于电路完全对称,电容器的充放电时间常数相同,可产生对称的方波。改变R和C的值,可以改变输出振荡频率。方波经过LM324运放放大后,送给二极管不平衡环形电路。二极管不平衡环形电路中的Cx1和Cx2为电容传感器的两个差动输出的电容量,位移变化时,电容量发生变化。电容量的变化使得输出端电压含有直流分量,直流分量经过低通滤波后在输出端得到不同极性的直流电压。在系统中该直流电压大小对应位移的变化,从而实现位移的检测。二极管不平衡环形电路的设计如图3所示。图3中,Cx1和Cx2为差动式电容传感器的两个电容量,D4~D7为特性相同的4个二极管。与非门组成的多谐振荡器输出的方波经过放大后再经C4,L1隔离直流和低频干扰信号,在MO端的电压uMO为正、负半周对称的方波。在uMO正半周时,一路经D4对Cx1充电,另一路经D5对Cx2充电。在uMO负半周时,一路经D6对Cx2充电,另一路经D7对Cx1充电。若初始状态下Cx1=Cx2时,C5两端的电压uC5是对称的方波,因此uNO(uNO=uMO-uC5)也是对称的矩形波,没有直流分量。当Cx1≠Cx2时,C5两端的uC5为正负半周不对称的波形,使得uNO存在直流分量,直流分量经过L2和C6低通滤波后,在输出端得到不同极性的直流电压Uo。
摘要:电容式传感器是将被测量的变化转换为电容量变化的一种装置,它本身就是一种可变电容器。由于这种传感器具有结构简单,体积小,动态响应好,灵敏度高,分辨率高,能实现非接触测量等特点,因而被广泛应用于位移、加速度、振动、压力、压差、液位、等分含量等检测领域。
关键词:电容式传感器 应用 研究
1、电容式传感器的结构特点
电容式传感器的优点:电容式传感器与传统的电感式、电阻式传感器相比具有结构简单,测量范围大,灵敏度高,动态响应快、非接触测量等优点,并能在高温,辐射和强烈振动等恶劣条件下工作。首先,电容式传感器结构相对简单,因此比较容易投入生产。适应性好强,可大可小,从而可以满足不同需求的测量。用于制作电容式传感器的金属极板材料有可以有多种选择:金、银、铜、黄铜、青铜、铅等,选择范围广,可见适应性比较强。其次,电容式传感器具有动态响应好,分辨率高的特点。由于在极板间的静电引力小,作用能量值也相应降低,能活动的地方可以做的很小很薄,重量轻,因此电容式传感器的固有频率会随之升高,动态响应时间变短,在几兆赫的频率下即可工作,因此,此电容器特别适用于动态测量。又由于需要的输入的能量低,所以即便只是测量极小的压力、力和加速度,也可以做到很灵敏,很精确。电容式传感器在一般情况下可视为纯电容,其容抗值为XC=1/jwC,当W为常数时,容抗随电容的减小而增大。一般电容式传感器受几何尺寸的限制,其电容量是很小的,有的甚至只有几个皮法,所以,电容式传感器具有高阻抗的特点,又由于电容器本身的C很小,所以电容式传感器呈现小功率的特性。功率小,发热自然低,因此温度的变化对测量的误差很小。对于非接触测量时,电容式传感器具有平均效应,可以减小工件表面粗糙度等对测量的影响。
电容式传感器的不足之处及解决办法:电容式传感器是以静电场有关理论为基础制成的,从静电场角度考虑,影响其工作性能的因素是存在的,因此在设计和应用时,应给予考虑。首先,电容式传感器输出与输人之间的关系出现较大的非线性,这时可以采用差动式结构解决非线性大的局限性,但只能缓解,不能完全消除,这也是电容式传感器使用的局限性。因其电容小,所以负载能力较差,为了提高工作电容值,可以在极板间加入介电常数高的绝缘材料,并减少极板间的间距来间接提高提高电容数值;因其电容值的偏低,所以对后续放大器要求很高,这时可以采用提高电源频率的方法降低容抗值,采用高输入阻抗运放作放大器,以减小在放大环节的信号衰减。采用带通或选频放大技术,对信号频率进行放大而滤去低频信号,采用屏蔽,将传感器和测量电路装在屏蔽壳体中,减少寄生电容和外界干扰的影响,减小极板厚度,增加极板宽度,以削弱极板的边缘效应和非线性误差。
2、电容式传感器的工作原理
电容式传感器实际的基本包括了一个接收器Tx与一个发射器Rx,其分别都具有在印刷电路板(PCB)层上成形的金属走线。在接收器与发射器走线之间会形成一个电场。电容传感器却可以探测与传感器电极特性不同的导体和尽缘体。当有物体靠近时,电极的电场就会发生改变。从而感应出物体的位移变化量。 在石油、钢铁、电力、化学等生产工艺过程中压为是非常重要的参数。此外,在机械制造技术方面,从小批量生产到连续程序控制.从小规模的设备到大规模的成套设备和不断发展的多功能的成套设备.都需要大量的压力传感器。为厂使这些复杂化、大规模化的成套设备能安全运转,对压力传感器的可靠性和稳定性的要求也越来越高.测量压力有表压力及绝对压力测量二种方式。表压测量采用以大气压为基准测容器内压力的方法。绝对压力的测量是采用以绝对真空为基准而测容器内压力的方法。二者的基本原理相同,所不同的是表压传感器将低压例制成对照大气开口的结构;而绝对压力测量则把低压设在真空室的结构.对高压和低压两例的接触溶液膜加压后,通过密封液加到感压膜上,感压膜(可变电极)接着高压侧和低压侧的压力差成正比地改变位置,感压膜的位移,使膜与两侧固定电极之间形成路电容运差,这个静电容放差位经电路转换、放大后就变成4-20mADc的输出信号。以加速度传感器是根据压电效应[1]。
3、电容式压力传感器的应用举例
【摘 要】电容式压力传感器是一种利用电容敏感元件将被测压力转换成与之成一定关系的电量输出的压力传感器。直接接触或接近被测对象而获取信息,与被测对象同时都处于扰的环境中,不可避免地受到外界的干扰。本文从电容式传感器的结构、工作原理、性能分析影响电容式压力传感器精度的因素。
【关键词】电容式压力传感器;误差;干扰
0.概述
我们所处的时代是信息时代,信息的获取、检测要靠传感器和传感技术来实现。传感器越来越广泛地应用于航空、常规武器、船舶、交通运输、冶金、机械制造、化工等技术领域。电容式压力传感器是一种利用电容敏感元件将被测压力转换成与之成一定关系的电量输出的压力传感器。压力传感器是目前所有传感器种类来说,是使用最多的传感器,它的市场占有量也不不可估量的,那么它的各项技术也得根据市场需要,进行不断的改进和完善,以适应各个领域越来越苛刻的环境。
1.电容式压力传感器工作原理及其数学模型
1.1结构介绍
电容式压力传感器主要由一个膜式动电极和两个在凹形玻璃上电镀成的固定电极组成差动电容器即敏感元件。敏感元件是由隔离膜片、电容固定极板、测量膜片、灌充液组成,以测量膜片为中心线轴对称,测量膜片与两侧的金属模构成一对相等的平行板电容。如图1所示。
图1 敏感元件结构图
摘 要:分析差动变面积式电容传感器实验教学中出现的问题,提出改进措施,实现由验证性实验到设计性实验的过渡,激发了学生做实验的兴趣,提高了做实验的积极性和主动性。
关键词:电容传感器;变面积;实验教学;兴趣
Experimental improvement of differential capacitance sensor based on variable area
Liu Yuyan
North China Electric Power University, Beijing, 102206, China
Abstract: The experiment of differential capacitance sensor based on variable area is compulsory in the sensor principle teaching. The current problems are analysed in the experimental teaching. The improvement measures are put forward. The transition is implemented from verification to design. The students’ interest of experiment is stimulated. The learning enthusiasm and initiative of the students to do experiments are improved.
Key words: capacitance sensor; variable area; experiment teaching; interest
传感器原理及应用是高等院校测控专业重要的必修专业课。该课程实用性强,对应的实验课程较多,有平时课内实验和期末的传感器综合实验。差动变面积式电容传感器特性实验是其中一个2学时的必修实验。目前,学生做此实验的兴趣不大,积极性不高。其原因主要是此实验为验证性实验,学生按照实验指导书的步骤进行,实验过程枯燥乏味。美国著名心理学家布鲁纳曾说过:“学习的最好刺激,乃是对所学教材的兴趣。”教育心理学认为,教师的首要任务是调动学生对所学课程的兴趣,进而让学生获得强烈的求知欲,从中获得一种收获的喜悦和。为此,笔者对实验内容做了改进。本文详细介绍差动变面积式电容传感器的原理、实验过程以及实验的改进措施。
好像在突然之间,电容式传感器就无处不在了。它被安装在汽车座位里以控制气囊配置和安全带预紧装置,在洗碗机和干燥机中以校正旋转桶的状态,甚至冰箱也使用其来控制自动去冰过程。但是直到现在,它最大的潜在应用领域还是触摸开关,触摸开关已越来越多地出现在消费电子产品中。
因为混合信号ICT艺得到广泛的采用,这种技术允许芯片设计师优化芯片的模拟和数字子系统,以构建具有前所未有的灵敏度和耐用性的电容式传感器,而且成本是机械式开关所不能比拟的。
如何工作
电容式传感器基本上可以分成三类:电场传感器、基于弛张振荡器的传感器以及电荷转移(QT)器件。电场传感器通常会产生数百kHz的正弦波,然后将这个信号加在电容一个极板的导电盘上,并检测另外一个导电盘上的信号电平。当用户的手机或另外的导体对象接触到两个盘的时候,接收器上的信号电平将改变。通过解调和滤波极板上的信号,可能获得一个直流电压,这个电压随电容的改变而变化;将这个电压施加在阈值检测器上,即可以产生触摸/无触摸的信号。
弛张振荡器使用了一个电极盘,其上的电极电容构成了锯齿波振荡器中的可变定时单元。通过将恒定电流馈入到电极线,电极上的电压随时间线性增加。该电压提供给比较器一个输入,而比较器的输出连接到一个与电极电容并行连接的接地开关上。当电极电容充电到一个预先确定的阈值电压时,比较器改变状态,实现开关动作一对定时电容放电,打开开关,这个动作将周期性的重复下去。其结果是,比较器的输出是脉冲串,其频率取决于总的定时电容的值。传感器根据不同的频率改变来报告触摸/无触摸状态。
QT器件利用了一种称为电荷保持的物理原理。举例来说,开关在一个短时间内施加一个电压到感应电极上对其充电,之后开关断开,第二个开关再将电极上的电荷释放到更大的一个采样电容中。人手指的触摸增大了电极的电容,导致传输到采样电容上的电荷增加,采样电容因此改变,据此就能得出检测结果。
QT器件在突发模式采样之后即进行数字信号处理,这种方法能提供比竞争方案更高的动态范围和更低的功耗,而自动校准例程可以补偿因为环境条件改变带来的漂移。更重要的是,这种方法足够灵敏,在电流透过厚的面板时不需要一个参考地连接,因此适合电池供电的设备。Quantum(量研公司)的QT芯片就是采用这种方法。
应用实例
在汽车产业当个电子工程师是非常不简单的!汽车电子产业大多由机械工程师所主导,并着重于凸轮(cam)、压缩(compression)、马力(horsepower)等长期以来汽车产业所重视的技术层面。也因此电子工程师往往只是负责配线设计方面的工作。但有一点相当重要,就是多数人对于汽车产业各项设计与装配的要求会比其它产业来得高。举一个例子来说,我邻居的计算机键盘用了两年就不能用了,因此上周末我陪他一起到计算机商场买键盘。上车后,他就开始愤怒地抱怨他那台已经开了12年的车子的收音机某个按钮故障了!从这例子就可以轻易发现我的邻居跟大部分的人一样,对于汽车元件总是会有比较高的要求。
其它领域的工程师很难想象得到应用于汽车领域的转换器与按钮在设计上的限制。因为这些元件必须要能承受:
更大的温度范围;
更大的湿度范围;
驾驶与乘客因长期接触转换器与按钮所造成的脏污。
图1:基本的电容式传感器
今日车用的按钮与转换器不仅比过去多了许多,还要能具备轻易建置的特性,以符合日趋人性化控制接口的需求,另外,还必须具备成本效益,避免采用密封封闭式的机械开关。因此,电容式触控接口(capacitive touch switches,或称为cap sense)是一个非常具有潜力的取代方案。电容式触控接口技术不仅无须采用机械式控制元器件,还具备整合人性化接口的功能,十分符合汽车工业对于可靠性与成本效应的需求。
如图1所示,电容式接口主要是由两片相邻电路极板(traces)所构成的电容器:而依据物理法,电容效应是存在于两片电邻线路极板之间的。如果有任何导电性的物体(例如:手指尖)靠近这两片极板时,平行式电容(parallel capacitance)就会与传感器产生耦合(couple)效应。因此,整体电容会随着手指尖触碰电容传感器而增加;当移开手指时,电容则会随之减少。所以只要利用一套电路系统来测量电容的变化,就可以判断手指尖是否有碰触到两片相邻的电路极板。
摘要:本文阐述了电容式传感器有温度稳定性好、结构简单、动态响应好、可以实现非接触测量,具有平均效应的优点,输出阻抗高,负载能力差、寄生电容影的及其缺点,以及在应用中存在的问题。
关键词:电容、传感器、负载
Abstract: This paper describes the capacitive sensor has good temperature stability, simple structure, good dynamic response, non-contact measurement can be achieved, with the average effect of the advantages of high output impedance, load capacity is poor, and shortcomings of the parasitic capacitance of the film, and Problems in the application.
Keywords: capacitors, sensors, load
1.电容式传感器的特点
1)优点
(1)温度稳定性好。电容式传感器的电容值一般与电极材料无关,有利于选择温度系统低的材料,又因本身发热极小,影响稳定性甚微。而电阻传感器有电阻,供电后产生热量:电感式传感器有铜损、磁游和涡流损耗等,易发热产生零漂。
(2)结构简单。电容式传感器结构简单,易于制造,易于保证高的精度,可以做得非常小巧,以实现某些特殊的测量;能工作在高温,强车船及强磁场等恶劣的环境中,可以承受很大的温度变化,承受高压力、高冲击、过载等;能测量超高温和低压差,也能对带磁工作进行测量。
摘 要:针对传统车辆载荷检测系统存在的不足,提出了一种电容式车辆载荷检测系统,该系统的载荷检测传感器采用差动式结构,大大提高了测量的灵敏度和非线性,电容测量线路采用差动脉冲宽度调制集成测量电路,数据的采集和处理采用自带A/D转换器的STC89LE516AD单片机芯片,数据通信采用无线通信模式。这种载荷检测系统结构简单、成本低廉、安装方便、性能可靠、测量电路简单、抗干扰性好,可用于交通数据的采集和便携式测量,具有良好的使用前景。
关键词:车辆载荷检测; 差动式电容传感器; STC89LE516AD芯片; 无线通信
中图分类号:TN712-34
文献标识码:A
文章编号:1004-373X(2011)09-0190-03
Vehicle Load Detection System Based on Differential Capacitance Sensor
CHEN Mei
(Department of Physics and Information Engineering,Shangqiu Normal University,Shangqiu 476000,China)