首页 > 文章中心 > 电力电子技术论文

电力电子技术论文范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

电力系统中电力电子技术的应用论文

论文关键词:直流输电;电力电子;发电机

论文摘要:电力电子技术正在不断发展,新材料、新结构器件的陆续诞生,计算机技术的进步为现代控制技术的实际应用提供了有力的支持,在各行各业中的应用越来越广泛。电力电子技术在电力系统中的应用研究与实际工程也取得了可喜成绩。

1前言

电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。经过50年的发展历程,它在传统产业设备发行、电能质量控制、新能源开发和民用产品等方面得到了越来越广泛的应用。最成功地应用于电力系统的大功率电力电子技术是直流输电(HVDC)。自20世纪80年代,柔流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。本文介绍了电力电子技术在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用。

2电力电子技术的应用

自20世纪80年代,柔流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。已有不少文献介绍和总结了相关设备的基本原理和应用现状。以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用研究和现状。

2.1在发电环节中的应用

电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。

全文阅读

电力电子技术教学电气专业论文

一、“电力电子技术”课程教学改革具体内容

1修改人才培养方案人才培养方案制定得是否合理,关系到本专业的生存和发展。随着现代科学技术的迅猛发展,电类的各专业的界线越来越模糊,各学科相互交叉、相互渗透,电气专业传统的“发电、输电、用电”知识结构已经不能满足当今人才培养要求。因此,对人才培养方案和教学计划要进行适当的修改和调整。由于电气工程及其自动化专业是一个强电和弱电相结合的宽口径专业,而电力电子技术是诸多学科相互交集的学科,是由基础课到专业课过渡的桥梁和纽带,是强电和弱电的有机结合。因此,在修改和调整人才培养方案和教学计划时,要体现出电气专业的“以强电为主、弱电为辅、强弱协调”的主导思想,加大教学力度,要意识到“电力电子技术”课程在电气工程及其自动化专业教学中重要性和必要性,以拓宽学生的知识面,提高学生的工程实践能力和创新能力以及扩大学生毕业后的就业面。

2教材内容的合理取舍任课教师要选择一本合适的电力电子技术课程教材作为主教材,再参考其他的辅助教材,取长补短,主讲教师应具有宽阔的知识面及丰富的电力电子工程实践经验,注重应用型人才培养目标。教材的内容既有丰富的理论知识,还要注重工程实际的应用,要体现电力电子技术发展的新技术,也要体现出“电力电子技术”课程是基础课到专业课平稳过渡的桥梁,使教材内容更符合二本院校电气工程及其自动化专业的人才培养的要求。主教材中除重点讲授交流变直流、直流变交流、直流变直流、交流变交流四大类基本变流电路及它们的组合之外,还要联系当今电力电子技术的发展趋势及应用情况,注重电力电子技术在电力系统及其他工程领域中的应用,注重主电路设计、驱动电路设计、保护电路设计、参数计算及元器件选择,还应该适当介绍SVC、SVG、高压直流输电、开关电源、UPS电源、感应加热电源、光伏逆变器等装置的工作原理和实际应用情况,以适应电气工程及其自动化专业宽口径就业要求。

3课堂教学方式改革教学过程中应以学生为主,教师为辅,避免一人堂和填鸭式教学方法,针对教学内容和学生的具体情况组织安排教学内容。由于“电力电子技术”课程的教学内容繁多,课堂教学中需要绘制大量的电路图和波形图,以及诸多公式推导及各种参数计算等。由于课程学时少而教学内容又多,仅仅依靠传统的黑板加粉笔的教学方式显然是达不到教学效果的,所以多媒体技术逐渐走进了“电力电子技术”的课堂教学,大大地提高了课堂教学效果。这里需要强调的是,多媒体教学的引进并非完全取消黑板加粉笔的课堂教学方式,二者应该相互协调、相辅相成,各有各的长处。对于复杂的电路及波形的绘制和分析,可以充分利用多媒体的音容并茂的特点,使学生更容易理解和掌握电路的基本原理和工作过程,如以flas的方式显示电力电子器件的开通和关断过程、过电流和过电压的产生过程、电路的输入输出电压和电流波形等,使学生感到生动而有趣,使学生的课堂学习不再枯燥无味;而对于简单电路的分析以及例题习题的讲解,还是黑板加粉笔的方式显得更简单便捷,更具亲和力,加强了教师与学生间的互动和情感交流。总之,课堂教学十分重要,教师要根据自身的特点、教学内容、学生的素质,充分利用现代化教学手段及互联网资源,在有限的课堂教学时间内,最大程度地使学生理解和吸收所学的知识。

4改革实验教学环节为了提高学生的工程实践能力,对原有的电力电子实验室设备进行了更新和改造,引进近几年内较为先进的电力电子实验设备,对原有的验内容和实验计划进行了修改和调整,尽量减少简单的验证性实验,增大设计性和综合性实验的比例,根据专业的特点和理论教学情况组织实验教学。我院现有的电力电子综合实验室可开出多种实验,囊括了AC/DC、DC/AC/、AC/AC、DC/DC四大电力变换所需的实验,如整流及有源逆变实验、交流调压及交流调功实验、直流斩波实验、无源逆变变实验等。为了培养学生的科技创新意识,还增设了开放性实验和创新性实验,加强了教师与学生间的知识交流,也使电力电子课程的实验教学延伸到课外,对教学时间的不足起了一定程度的弥补作用;同时,在我院的大学生电子挑战杯大赛中,部分学生的竞赛题目与电力电子技术有关,提高了学生的电力电子技能。另外,我院每个学期举行教师实践技能大赛,有相当一部分竞赛题目与电力电子技术有关,大大提高了教师的电力电子技术实践能力和实验教学水平。

5将Matlab仿真软件引进课堂教学和实验教学Matlab仿真软件是各院校普遍开出的课程,将Matlab仿真软件与电力电子技术课程相结合,在课堂上,利用Matlab仿真软丰富友好的图形界面,使学生更直观地掌握所学的知识,也避免了教师画电路图、波形图的繁琐及时间的浪费;将Matlab仿真软件与电力电子技术课程实验相结合,是原有的实验操作的有益补充,同时又具备原有实验装置不具备的优点,如解决设备费用高、实验所花时间长、危险性大的缺点。而利用仿真教学工具代替实际元件在计算机上进行仿真,既不担心元器件损坏,也没有任何危险,学生完全可以在无人指导的情况下,在任何地点的计算机上自行完成电力电子电路的仿真实验,在此基础上再进行适当的真实性实验,这样不仅激发了学生的学习兴趣,更重要的是提高了学生发现问题、解决问题和实际动手的能力,会收到事半功倍的实训效果。

6课程设计环节的改革“电力电子技术”课程教学改革后,在课程教学的后期,增加了课程设计环节,由主讲教师布置该课程的设计任务,为避免雷同,每人一题,主要以电力电子技术的四大电力变换为核心,结合工程实际,根据给出的技术参数和技术指标,要求学生综合运用所学的相关知识,设计出总体方案、主电路图、驱动电路、保护电路等,并进行相关参数计算及元器件选择。较简单的题目,要求制作电路板和元器件焊接,并使用实验室的仪器和工具进行调试;较复杂的题目要求用实验室的实验设备验证或进行matlab仿真,最终以论文的形式完成课程设计,并进行课程设计答辩。课程设计环节的增加,拓宽了学生的知识面,提高了学生独立分析问题、解决问题的能力,是理论与实践相结合的有益补充,同时为后期的毕业设计、就业及将来打下基础。

7毕业设计环节的改革为了提高电气专业学生的电力电子技术理论知识和工程实践能力,近几年来,在电气工程及其自动化专业毕业实习过程中,除了到发电厂、变电所参观实习外,有相当一部分学生到电力电子装置的厂家实习;有时也请电力电子产品的专家学者做专题报告。在毕业设计选题方面,除了发电厂、变电所、继电保护、电气照明等传统设计题目外,许多教师在本科毕业设计中也增加了许多有关电力电子技术方面的设计课目,如感应加热电源、大功率开关电源、UPS电源、光伏逆变并网系统、SVC、SVG、高压直流输电等方面的题目。有些设计题目还获得了省级或校级优秀学士学位论文。

全文阅读

电力电子及电源技术论文

关键词电力电子技术开关电源

现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

全文阅读

智能电网电力电子技术论文

1.电力电子技术在智能电网中的应用

1.1电力电子器件

电力电子器件主要是由一些半导体半控器件和全控器件组,主要有IGBT、BJT、MOSMOSFET、GTR等组成。成为了满足广大需求、适应复杂多变的恶劣自然天气、自然灾害,生产出质量高、性能好的电压和电流,要求电力电子器件具有可靠性高,抗干扰能力强,温度稳定性高并且有一定的电气隔离能力,能承受短暂的高电压强电流。电子器件所控制得智能电网应该有自愈性、安全性、交互性、经济性、优质高效、清洁环保市场化程度高。

1.2在风力发电与太阳能发电中的应用

太阳能发电系统由太阳能电池阵列、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端,在太阳能的利用上同样面临这类似的问题,光伏发电系统主要以电源方式并入电网,其输出系统的电力跟踪电网电压电流相位变化,同时调整输出电流幅值的大小,使光伏系统注入电网中的功率最大,为了弥补光伏发电系统在功率上的波动,还需要通过控制器对蓄电池的双向充放电,以保证向电网输送平稳的电压电流,和规定的相位,使电网得到纯净的高质量电力。

1.3超高压直流输电技术在智能电网的应用

超高压直流输电技术在远距离大容量输电、异步联网、海底电缆送电等方面具有优势,因而得到了广泛应用。而特高压直流输电更可以有效节省输电走廊,降低系统损耗,提高送电经济性,它为我国解决能源分布不均、优化资源配置提供了有效途径。截至2009年,我国已建成7个超高压直流输电工程和2个直流背靠背工程,直流输电线路总长度达7085km,输送容量近20GW,线路总长度和输送容量均居世界第一。预计到2020年,我国将建成“强交强直”的特高压混合电网和坚强的送、受端电网,预计直流工程达50项,其中规划建设30多个特高压工程,包括5个±1000kV的直流工程。

1.4SVC在智能电网的应用

全文阅读

电力电子电源技术分析论文

现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

全文阅读

电力电子及电源技术发展论文

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

全文阅读

现代电力电子及电源技术发展论文

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

全文阅读

电力电子电源技术管理论文

现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

全文阅读

电力电子技术教学方法论文

一、积极探索逆向思维教学法及工学结合的教学模式的研究

《电力电子技术》是机电类专业的专业基础课。课程涉及到大量的电路分析,是一门与实践联系比较紧密的课程。逆向思维教学法是从果导因的逆向分析法。在逆向思维教学的基础上,为加强学生实际能力的培养,探索工学结合的教学模式,课程组结合课程教学特点,创建了“理论——实践——工程设计”一体化的教学模式。我们将教学过程分解为三个互相联系的模块,整个过程将理论教学、实训与实践、工程设计三大部分进行了一体化的组织设计,各个模块的有机衔接,教学组织过程依次展开。同时,根据教学内容,选择了灵活的教学方法,如现场教学、案例教学、项目驱动、真题实做等,构成一个学校——企业——社会贯通的现代教学链,加强了学生实际动手能力和创新能力的培养。从真正意义上实现了理论与实践互交互融和开放性教学,体现了工学结合特色。

二、加强课程建设,精心、合理选择教学内容

1.了解相关课程之间的分工。知识是相互联系、相互渗透的。在开课前,熟悉本课程与相关学科的联系,了解先修课“电路”和“电子技术基础”两门课程的教学情况和后续课“变频调速技术”的安排,处理好他们之间的关系,保持整个专业课程体系前后衔接,避免内容的重复和疏漏。例如“自关断器件”一章节,电子技术基础中已讲过小功率晶体管、场效应管的结构、原理、特性及应用。在本门课程中,对功率晶体管、功率场效应管应重点讲述其与小功率管的不同之处。对于晶闸管直流电动系统部分,重点应在整流、有源逆变两种状态下,电流连续、断续时的电动机特性,而直流可逆调速系统的内容则需放到后续课程“变频调速技术”中。

2.以器件、电路、应用为主线,加强基础知识的学习。以开关方式工作的电力半导体器件是现代电力电子技术的基础核心。电力电子器件的基础之一是能以小信号输入控制很大的输出,这就使电力电子设备成为强弱电之间的接口的基础。讲解器件原理及特性,目的是为了应用器件组成电路,故应掌握器件外部特性、极限参数和使用注意事项。三方面的内容应以电路为主,学习各类电力半导体器件所构造各种功率变换电路时,学生应掌握功率变换主电路的构成、工作原理和工作波形,不同负载对电路工作特性的影响以及主电路的元件参数计算和选择。

3.介绍学科前沿发展的动向,反映本学科和相邻学科的新成果、新进展。无电网污染、无电磁干扰、节能省电等绿色指标是全球范围内的热门话题。由于很多电力电子装置结构相当复杂,为简化设计而出现的集功率开关、变换控制电路、传感控制电路为一体的智能功率集成模块受到欢迎,厚膜集成模块、积木式的功能模块,灵活机动既能单独使用,也能相互组合成较大的系统,成为电力电子技术的发展方向。教学内容应主动吸收最新信息,同时引导学生了解电力电子技术的发展动态,扩大知识面,这可通过指导学生阅读与电力电子技术有关的学术期刊,登陆相关的专业网站,使学生了解自己目前所学知识在本领域所处的位置,从而站在较高的起点上,去适应学科未来发展的需要。

三、改革教学方法,形成以能力培养为主线的课程特色

《电力电子技术》是一门理论包含实践的课程,根据其自身的特点,课程的内容设计应注重“讲”“练”。多年来,电力电子技术课程的教学方法是以教师为中心的,逐章逐节不厌烦地讲授,讲得过多、过细,以求“当堂弄懂”“课上解决”。这样只是传授,学生总是处于被动接受的地位,极大地妨碍了学生学习的主动性和积极性的发挥,不利于学生的素质和能力的培养。而实现教学现代化是加大授课信息量,节约课时,增强教学效果的重要措施。为改变这种情况,首先,教师在课前注意调查学生的学习基础,合理安排教学内容。而在教学中力求突出内容的重点和难点,但又要保证内容的系统性、完整性,并精选一部分内容留给学生去自学,写报告,然后开展课堂讨论,同时,结合学生看到的一些与电力电子技术有关的现象,让学生设计主电路,画出波形图。四、加强实践环节,注重综合能力培养

全文阅读

实验教学电力电子技术论文

1增加综合性与设计性实验

我校把部分理论教学课程搬到实验室,在教师理论分析的学生利用实验仪器进行验证,通过理性认识与感性认识的结合,加强了学生对理论知识的理解.在教师讲解完理论知识,学生可以进行验证性实验,以巩固刚学的理论知识.对于不同的学生结合在操作过程中所遇到的具体问题,给予学生必要的讲解,实现电力电子技术实验教学中的因材施教.同时在电力电子技术实验教学过程中,教师整理常见的错误,并组织学生讨论解决,达到学生强化电力电子技术学习的目的.现在实验室的仪器基本可以满足基础性实验的需要,但综合设计性实验需要逐渐增加.在电力电子技术实验中为了改革以基础性实验为主的教学模式,实验教学可由基础实验、课程设计、创新型研究课题组成.我校可在实验教学的选择上,按照验证性、设计性与综合性实验相结合的原则编写教学大纲,大纲中每个实验后都有思考题,让学生独立完成思考题,提高学生分析问题的能力,进而扩宽知识面.我校依据各工科专业的需要和理论教学的进度,电力电子技术实验教学由三个层次组成.基础实验:根据电力电子技术理论课的进度,以单元实验为主,通过验证基础性实验,使学生熟悉典型电路的基本原理.在有关章节的理论教学结束后,学生就可以进行验证性实验,进而使学生掌握所学的理论知识.在实验中保留整流电路和逆变电路的验证性实验,可以使学生对电力电子技术的实际应用有清楚的认识.设计性实验:在完成基础实验的前提下,教师提出设计性实验,充分发挥学生的主动性,仅给出基本的设计方法与设计思想,不给出学生具体的电路图,通过学生自己查看相关资料后,自定设计方案和设计电路.通过完成设计性实验,可以提高学生独立解决实际问题和知识的应用能力.对于直流斩波、交-交变频及PWM控制技术相关的实验,教师可以提出设计性实验.在教师提供电路参数后,学生可设计主电路、驱动电路及保护电路等,最终设计出合适的电路.综合性实验:是基于上述实验完成后开展的,目的在于使学生熟悉所学的知识,并提高学生利用所掌握的知识解决难题的能力.设计的内容是自选题目,培养学生在实验中提高自己的创造力.实验中学生需要运用所学的知识独立设计和调试,分析实验结果,并撰写实验报告.目的在于培养学生实验设计与调试的能力,还可以培养学生的科学研究能力与综合能力.综合设计性实验有较大的难度,但是具有一定的吸引力.对于学生,不但可以提高学生的操作技能,也发挥了学生的主动性.增加综合性实验内容:基于单片机的三相桥式整流电路的设计,就是利用单片机硬件与软件,设计一种触发脉冲产生的方法,以满足三相桥式整流电路的需要,教师提出实验要求,学生自主设计并调试电路.此实验内容把《单片机》与《电力电子技术》相结合,能够使学生理解它们之间的联系及单片机的实际应用.另外,《电力电子技术》也可以和《工厂供电》相结合,比如提出“高压直流输电系统设计”的实验.以往的实验教学,学生对教师具有依赖性,实验过程中出现了问题即找教师解决.为了使学生认识到实验的重要性,在实验教学改革过程中教师采用启发式进行指导,并提出如何分析问题和指出解决问题的方法,通过学生独立思考并寻找解决问题的途径,通过在实验中检验,进而提高学生自行解决实际问题的能力.

2增加课程设计环节

学生在完成基本实验后可参加课程设计,并在课程设计过程中发现问题,学生需要通过自学相关内容才可以设计出方案,课程设计是在整个学习过程中的综合实践,是实验教学的重要环节.以往电力电子技术教学过程中没有课程设计,部分学生学完课程后,仅仅知道书本上的一些原理知识,对于电力电子技术的实际应用并不了解.课程设计可以是3~4名学生做一个专题,学生相互合作完成设计题目.由于时间的限制,课程设计要求用仿真软件仿真出结果.通过课程设计促使学生把电力电子技术及其它课程的理论知识相融合,使学生认识到课程之间的知识点是相互联系的,进而培养学生分析实际问题的综合能力.

3利用仿真软件增加虚拟实验

电力电子技术实验教学用到的是各功率器件,三相交流电源与示波器等,其成本高昂且具有危险性.可以在电力电子技术实验中引入计算机仿真,把电子仿真软件PSPICE和MATLAB引入到电力电子技术实验中,不仅可弥补实验设备数量不足的缺点,还不用担心实验设备损坏和人身安全问题.仿真实验没有时间与地点的限制,学生也可在课外用计算机仿真,从而克服了实验课时有限的不足.计算机仿真是使用仿真软件对被控对象的数学模型进行仿真,直观地显示电路的工作状态与系统波形,可以起到虚拟实验的教学目标,计算机仿真的优点是精度高和重复性好.让学生按照课题设计的重点和需要对实际模型进行建模,这样有利于学生加深所学的理论知识,而且为学生将来从事工程设计打下基础.

4结束语

本文通过对电力电子技术实验教学一系列改革,可以提高学生的动手能力与解决实际问题的能力,并培养学生的综合应用能力与科学研究的能力.通过综合使用多种实验教学方法,使电力电子技术实验变得有趣且有创造力,有利于提高学生做实验的积极性,并加深学生对电力电子技术理论知识的理解.

全文阅读