首页 > 文章中心 > 玻璃安全总结

玻璃安全总结范文精选

开篇:润墨网以专业的文秘视角,为您筛选了十篇范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

安全玻璃监督经验谈

【摘 要】工程建设中使用到的安全玻璃比比皆是,本文对安全玻璃的监督程序和方法进行了探讨。

【关键词】安全玻璃;监督程序和方法

一、前言

安全玻璃,是指符合现行国家标准的钢化玻璃、夹层玻璃及由钢化玻璃或夹层玻璃组合加工而成的其他玻璃制品。

由于安全玻璃在建筑工程中使用广泛,为加强建筑安全玻璃的生产、流通、使用和安装管理,提高建筑工程质量,建设部连同发改委等几个部门于2003年了《建筑安全玻璃管理规定》,该《规定》的第六条中明确了建筑物中的十一类部位必须使用安全玻璃,其中我们比较熟悉的有“7层及7层以上建筑物外开窗”、“面积大于1.5㎡的窗玻璃”等要使用安全玻璃。

在监督实践中,我们经常接触到的安全玻璃有钢化玻璃和夹层玻璃。夹层玻璃是指在两片或多片玻璃间夹以透明的聚乙烯醇缩丁醛胶片或其他胶合材料,经加热、加压胶合而成的复合玻璃制品,顾名思义,此种玻璃,在外观上即可进行判断,监督人员要做的也就是对照合格证及复验报告,并抽查玻璃及夹层胶合物厚度是否符合设计图纸要求等等,相较而言,此种玻璃的监督难度并不大,在此不再详细论述。相反,钢化玻璃监督难度则复杂得多。钢化玻璃又称淬火增强玻璃,它是将玻璃均匀加热达软化温度时,用高速空气等冷却介质骤冷而制成的玻璃。这种玻璃表面存在有均匀的压应力,从而可提高玻璃的机械强度和抗热震性能,它是工程建设中最常见的安全玻璃。然而,由钢化玻璃的加工过程可知,淬火只是加强了玻璃的物理性能,但并未对外观造成大影响,于是监督工作中遇到这样一个难题,如何判断工程中使用的玻璃是普通浮法玻璃还是钢化玻璃?有人提出,将玻璃直接摔碎后看玻璃碎片即可,此种方法确实直观准确,但如果各相关单位人员验收都要通过此方法判断,哪要摔多少玻璃才够?所以此种方法明显不现实。以往在掌握钢化玻璃的判断方法前,不排除部分无良施工单位“以次充好”,使用同厚度的普通浮法玻璃冒充钢化玻璃,在减少建筑成本的同时降低了工程质量,为日后的使用带来一定的安全隐患。本人在多年的监督工作中,通过学习有关规范标准、查阅技术资料以及不断的工作总结,得出了一些监督经验,借此机会供同行参考。

二、监督检查程序和方法

1、查看经审查合格的设计图纸,了解钢化玻璃在该工程中的使用概况;

全文阅读

汽车挡风玻璃涂胶系统配置研究与优化

摘要:在汽车挡风玻璃的涂胶过程中,涂胶系统需要完成玻璃运输、定位、玻璃辨识、涂胶及仿形作业。因此,在涂胶系统中必须包涵玻璃运输设备、定位装置、玻璃辨识装置、机器人仿形设备、供胶系统设备、胶料保压系统等。本文根据现场使用经验,对涂胶系统中的设备配置以及PLC对设备间的连锁控制进行研究总结,并提出优化配置及控制方案,以满足汽车挡风玻璃涂胶装配的质量要求。

关键词:机器人仿形;涂胶系统;挡风玻璃;PLC;连锁控制;配置优化;

在上汽通用五菱总装车间中,累积使用五套涂胶系统设备,然而,涂胶系统的结构原理大致相同。涂胶机主要包括玻璃上料与下料的运输系统、玻璃定位于玻璃类型辨识系统、机器人仿形与涂胶系统、胶泵供胶系统、胶料保压系统、电控连锁系统、安全保护系统等。

1 涂胶系统配置现状及研究

1.1 涂胶系统组成概念

1.2 玻璃运输系统

在上汽通用五菱总装车间的5条生产线中,玻璃运输系统主要有以下几个方式:一是链条输送玻璃配合真空拾取的玻璃下料装置;二是双面转台配合机器人运输玻璃的形式组合。在链条运输系统中,包括上料工位、移动工位、涂胶及仿形工位、下料工位,使玻璃在不断的改变工位状态,进而实现玻璃间续不断的进行涂胶仿形作业,实现连续生产的循环。而在转台输送系统中,转台两面相互180度的角度切换,对转台两面命名为上料位与工作位,转台转动过程中,不断的切换上料位与工作位,实现连续作业的循环。但是,当使用转台运输玻璃时,需要机器人配合搬运挡风玻璃,具体需要在涂胶仿形作业中阐述。

1.3 玻璃定位装置

全文阅读

浅析隐框玻璃幕墙的施工中的质量控制要点

摘 要:虽然我国幕墙工程的发展速度快,但是我们对幕墙技术资料的掌握仍比较少,尤其是面对突然的快速发展,管理工作相对滞后,同时,不能及时制定出相应工程的设计、制造、安装、验收等标准和规范,幕墙工程在我国曾一度出现混乱状况。本文详细阐述了隐框玻璃幕墙的施工工艺和质量控制要点。

关键词:隐框玻璃;施工质量控制;

0.引言

隐框玻璃幕墙将大面积玻璃应用于建筑物的外墙面,以其富有建筑表现力的效果深得建筑师、业主的青睐,在现代城市建筑中得到了广泛的应用。隐框玻璃幕墙没有一般幕墙用来夹持玻璃并承重的铝合金外框,而是完全依靠玻璃背面的结构胶,把玻璃黏在铝型材框架上,玻璃所承受的水平方向风荷载,垂直方向自重荷裁,因温度改变的热胀冷缩以及震动作用的荷载,均依靠结构胶的黏接力传给铝合金框架上,组合成大面积连续玻璃幕墙。

1.幕墙所用的材料

建筑幕墙常采用的材料有:建筑密封胶、结构密封胶以及各种玻璃板材。其中,建筑密封胶又叫耐候胶,结构密封胶又叫结构胶。

耐候胶和结构胶要求提前做与之接触料的相容性试验报告,如玻璃、铝型材、铝板、泡沫棒等,只有在胶与接触材料相容的情况下才能使用。此外,耐候胶与结构胶还有许多性能要求是相似的,但耐候胶主要用于外部建筑的密封,因此对耐候性有更高的要求,更强调大气变化、耐紫外线和耐老化的性能。而结构胶更多的是强调其强度、延性和粘结性等力学性能要求。

幕墙所采用的玻璃通常有:钢化玻璃、热反射镀膜玻璃、夹丝玻璃、浮法玻璃、夹层玻璃、中空玻璃、吸热玻璃等,其中,钢化玻璃和热反射镀膜玻璃的应用较广。钢化玻璃抗弯曲和抗冲击的强度是同厚度玻璃的3~5倍,其对于温度迅速变化的耐力可达其他玻璃的3倍,此外,钢化玻璃破碎后呈无尖端的颗粒状,能够避免伤人,具有较高的安全性。而热反射镀膜玻璃能够将大部分的太阳能进行吸收和反射,从而降低室内空调费用,达到节能的目的,同时,该产品还能减轻眩光的作用,营造舒适的工作及居住环境。此外,镀膜玻璃还可以获得多种反射色,并能将四周建筑及自然景物映射在彩色的玻璃幕墙上,有助于美化建筑物的外观。总之,应根据建筑物的不同需要来选择玻璃的类型。

全文阅读

真空玻璃外墙上的运用

真空玻璃作为新一代节能玻璃,自北京新立基真空玻璃技术有限公司首次将其投放到国内市场以来得到了快速发展。目前已经有北京天恒大厦、清华大学超低能耗示范楼、乐澜宝邸俱乐部等十多个建成项目使用了公司生产的真空玻璃。其中北京天恒大厦为高档写字楼工程。该楼地上22层,总建筑面积5万7千多平方米,真空玻璃幕墙7000多平方米,真空玻璃窗2500平方米,所用真空玻璃传热系数小于1.2Wm-2k-1,计权隔声量高于36dB。它是世界首座全真空玻璃大厦,也是世界首座采用大面积真空玻璃幕墙的大厦。

玻璃幕墙与其它幕墙相比具有很多优点,同时在发展初期产生了保温隔热性能差和光污染等问题。随着科学技术的发展,尤其是玻璃深加工行业的快速崛起,这些问题正在被逐步解决,其中,北京新立基真空玻璃技术有限公司致力发展的真空玻璃系列产品为玻璃幕墙提供了一种优质材料,为建筑设计师提供了一种新选择。

一.真空玻璃运用在幕墙上的性能优势

真空玻璃最基本的品种是标准真空玻璃,即一块普通浮法玻璃加上一块低辐射镀膜玻璃(Low-E玻璃)。目前国内市场上有三种Low-E玻璃可用于标准真空玻璃的生产。表1是用三种Low-E玻璃生产的标准真空玻璃的K值。

表1

序号类别Low-E膜发射率K值(Wm-2k-1)

14L+0.15V+40.201.12

24L+0.15V+40.171.03

全文阅读

探讨玻璃幕墙存在的主要安全问题与对策

摘要: 随着城市化的不断推进,建筑玻璃幕墙作为现代建筑的主要表现形式,由于其玻璃具有的通透性、良好的工艺感及艺术感,能充分体现城市现代气息和特质,因而玻璃幕墙被广泛采用。由于大量采用,尤其在高层建筑的应用中出现不少问题,特别安全问题尤为突出。本文从技术层面上分析涉及公共的主要安全问题进行分析,并提出一些对策,供业内参考。

关键词:玻璃幕墙安全自爆坠落

一、中空玻璃脱胶坠落

近年来渐有玻璃脱胶坠落事故的发生,且在新建幕墙中也有所闻,尤以开启窗中空玻璃外层坠落事故较为突出,其危险性远远大于玻璃自爆所造成危害,有如高空“定时炸弹”。

1、安全事故及原因

1)幕墙固定玻璃板块或开启窗扇隐框安装中空玻璃的外片坠落,发现中空玻璃之间采用了丁基胶或聚硫橡胶型密封胶,而非硅酮结构密封胶。采购合同和加工图也未有明确注明密封胶类型,生产厂家按非隐框板块做法使用了丁基胶或聚硫橡胶型密封胶进行生产,埋下了重大隐患。

2)固定单元玻璃板块和开启扇处未按规范设置托板,结构密封胶长期处于受剪开裂。部分设计不重视该规定,设计图纸大样无标示设置托板,设计说明没有提示,一句话“按规范施工”笔者认为属不负责任的态度。

2、相应对策

全文阅读

浅谈玻璃钢夹砂管的结构和特性

摘 要:本文开篇介绍玻璃钢夹砂管的基本定义和构成,然后通过和钢管对比,玻璃钢夹砂管具有耐腐蚀、比重小等优点,尤其玻璃钢夹砂管具有很好的强度和优良的水力特性,管道摩擦损失小,因此玻璃钢夹砂管在船舶管路系统中,能有效减轻船舶系统的总重量,降低建造成本,具有广泛的经济实用性

关键词:玻璃钢夹砂管 强度 水力特性

中图分类号:TU99 文献标识码:A 文章编号:1672-3791(2013)02(b)-0097-01

随着船舶工业的发展,玻璃钢管在船舶上的应用越来越广泛,已经应用于各船舶系统,并取得了良好的使用效果。本文主要从它的构成及其各方面特性,辅以相关数据和计算,作相关的分析,为了更了解和更好的使用玻璃钢管作依据。下面就玻璃钢管的结构及一些特性作介绍。

1 玻璃钢管的定义

玻璃钢管简称GRP OR FRP(Fiberglass Reinforced Plastic),俗称玻璃纤维增强塑料管,是一种新型的复合材料管,主要由玻璃纤维纱作为增强材料和树脂作为基体构成,玻璃钢夹砂管的结构见图1。

2 玻璃钢夹砂管的力学性能

(1)玻璃钢夹砂管密度远小于钢管,装卸方便,易于安装。

全文阅读

光伏玻璃性能指标检验方式

能源是人们赖以生存发展的重要物质基础,关系着世界经济和人类社会的发展。随着世界经济的高速发展,能源消耗也急剧增加,传统的石油、煤炭等不可再生能源日渐紧缺。能源危机与由此引发的社会环境问题使世界各国开始大力开发包括太阳能在内的可再生能源,并积极提高其在能源结构中的比重,以期实现社会经济的可持续发展。太阳能是目前已知的可再生能源中最巨大最重要的基本能源,而太阳能光伏发电技术作为最具意义的太阳能利用技术,成为各国研究应用的热点。建筑能耗在能源消耗中占很大比重,建筑节能是各国节能工作的重点之一。在尽可能降低建筑能耗的大环境下,建筑界提出由建筑物本身产生能源的节能新概念,即“21世纪建筑”,光伏建筑一体化(BuildingInte盯atedphotovoltaie,BlpV)也于1991年应运而生。光伏建筑一体化技术是将太阳能光伏发电产品集成到建筑上的技术,使其不但具有护的功能,保证建筑安全防护要求,同时又能产生电能供建筑中电器使用ll]。它具有不污染环境、不占用土地、节省能源的优点。建筑能耗也是我国三大“耗能大户”之一,我国现有建筑的99%以上属高能耗建筑,单位建筑面积采暖能耗为发达国家的3倍以上[2]。我国近年来积极发展光伏产业,加速光伏建筑一体化应用,以促进我国太阳能利用与建筑节能技术的发展。国务院在2006年的《国家中长期科学和技术发展规划纲要(2006一2020年)》中也将“太阳光伏电池及利用技术”、“太阳能建筑一体化技术”列为能源领域优先发展的主题。 光伏玻璃是光伏组件不可或缺的组成材料之一。随着光伏产业及光伏建筑一体化的加速发展,光伏玻璃在光伏组件中的使用量也大幅度增长,光伏玻璃行业也逐渐发展壮大。而光伏玻璃不同于普通的平板玻璃和建筑玻璃,除了要满足一般玻璃的物理性能和安全性能外,还必须具备高透性、耐久性、电气安全性等特殊的要求。在对国内外有关建筑用光伏玻璃标准研究的基础上,结合我国光伏玻璃的发展及检测现状,探讨我国建筑用光伏玻璃检测技术和质量控制要求。 1光伏玻璃的种类 狭义上的光伏玻璃是指应用于光伏组件的玻璃,通常以单片形式作为晶体硅组件的盖板或薄膜电池组件的基板,如超白压花玻璃、透明导电氧化物镀膜玻璃等;从广义上讲,应用于光伏建筑一体化的BIPV光伏夹层玻璃组件与光伏中空玻璃组件也可定义为光伏玻璃,因为它们同时是建筑上的安全玻璃构件。 1.1单片光伏玻璃 单片光伏玻璃按照光伏组件中对玻璃的不同性能要求和所起的作用,可分为两类。一类为封装盖板玻璃,在光伏组件中起到封装保护、固定支撑和透光散射作用的玻璃,主要包括超白压花玻璃和超白浮法玻璃。另一类为透明导电氧化物镀膜玻璃(TCO玻璃),除了有第一类玻璃的作用外,同时还具有传输电流的作用。此类玻璃是在平板玻璃表面通过物理或者化学镀膜的方法均匀镀上一层透明的导电氧化物薄膜,主要包括In、Sn、Zn和Cd的氧化物及其复合多元氧化物薄膜材料。 1.2BIPv光伏玻璃组件 典型的BIPV光伏玻璃组件结构有夹层结构和中空结构两种,简称为光伏夹层玻璃和光伏中空玻璃。夹层结构即将晶体硅电池片置于两块玻璃中间,用胶片将三者粘结为一整体;或将非晶体硅电池片(如薄膜电池片)与玻璃用胶片粘结为一整体,电池片置于结构外侧,如图1、2所示。中空结构分为外置式和内置式两种。外置式是指将上述夹层结构作为中空结构的一块玻璃,与另一块玻璃合成中空结构;内置式是指将晶体硅或非晶体硅电池片置于中空玻璃中间空气层内,如图3、4所示。 2光伏玻璃检测技术和标准现状 2.1单片光伏玻璃 在单片光伏玻璃中,封装盖板玻璃的性能要求与检测方法没有相应的国际标准可参照,国内仅有行业标准JC理200卜2009《太阳电池用玻璃》对其作出了质量要求和检测方法的规定。针对透明导电氧化物镀膜玻璃(TCO玻璃),国内外均无相应的产品标准。行业内对单片光伏玻璃的安全性能及光学性能较为关注。光伏玻璃对组件起封装保护、固定支撑的作用,且光伏建筑一体化的快速发展,需要光伏玻璃具备安全玻璃的性能。目前对单片光伏玻璃安全性能的检测方法通常参考建筑用钢化玻璃。单片光伏玻璃的光学性能主要是指透射比,是行业内最关注的性能。由于透射比的优劣直接影响光伏组件的光电转换效率,故行业内也将其作为光伏玻璃产品质量最重要的表征。目前,通常用建筑玻璃行业内的可见光透射比来定义光伏玻璃的透射比。但这种检测方法存在缺陷,会出现检测结果一致的光伏玻璃使用在相同配置的光伏组件上,光电转换率结果不同的情况。原因是光伏电池的光谱响应波长范围为4O0nm一1200nm,而可见光透射比的波长范围为380nm一78Onm,若直接以可见光透射比的值来代替光伏玻璃的透射比,忽略响应波长范围中近红外波段的透射比,则会引起透射比与实际光电转换率对应关系出错。虽然《太阳电池用玻璃》行业标准中除了可见光透射比外,还引进了太阳光直接透射比来表征玻璃的高透性,但波长范围的不一致降低了透射比表征产品质量优劣的准确性,这是目前对光伏玻璃透射比检测技术的不足之处。另外,对于透明导电氧化物镀膜玻璃(TCO玻璃),除了安全性能和光学性能外,还需考虑其导电性能以及镀膜层的耐久性。此两项性能中,行业内较为关注导电性能,目前通常用方块电阻来表示,但尚无统一的技术指标;而对于镀膜层的耐久性则较为忽略,对其性能指标及检测方法均未有针对性的考虑。 2.2BIPV光伏玻璃组件 在光伏建筑一体化的应用中,BIPV光伏玻璃组件可用于建筑物幕墙、门窗、屋顶及遮阳系统等多个部位。目前,国内对BIPV光伏玻璃组件的检测侧重于建筑物完成后的整体性能的检测,如光伏玻璃幕墙与门窗的发电效率、气密性、水密性、抗风压性能,光伏遮阳系统的遮阳性能、隔热性能等。而对于BIPV光伏玻璃组件作为光伏发电组件的耐久性及作为建筑玻璃构件的安全性的技术指标及检测方法均未有针对性的考虑与设计。目前,行业内对BIPV光伏玻璃组件的耐久性能与安全性能的评价及检测,直接参考建筑用夹层玻璃和中空玻璃的国家标准。例如,对光伏中空玻璃组件的耐紫外线辐照、高温高湿、气候循环等耐久性能进行检测时,按照建筑用中空玻璃标准使试样暴露在的规定的环境条件内,而后以测试露点的方式判断中空玻璃是否失效,若未失效则表示检测通过;对光伏夹层玻璃的安全性能(如抗冲击性能、霞弹袋冲击性能等)进行检测时,若试样产生破坏,但胶层未被穿透或撕裂的程度在允许范围内,则安全性能检测通过。这种参考的检测方法和评价标准只能考察BIPV光伏玻璃组件作为建筑玻璃构件的性能,而忽略了BIPV光伏玻璃组件在经受环境暴露和冲击测试后,电池片是否还能正常工作、组件会否产生漏电等电气安全性能。目前的检测方法完全未考虑到BIPV光伏玻璃组件作为光伏发电组件的使用性能,存在较多缺陷。#p#分页标题#e# 3光伏玻璃主要性能及检测方法 鉴于光伏玻璃的使用越来越多,而其评价指标和检测技术尚存在不足,无法保证产品质量评价的全面性,制约了光伏玻璃生产与应用技术的发展。因此,光伏玻璃的性能评价技术指标及检测技术的研究显得极为迫切和重要。通过多年检测和研究工作经验,总结了国外检测技术之后,针对各类光伏玻璃组件的特性及使用情况,提出以下产品的技术要求和检测建议,以期对今后标准体系的完善提供帮助与参考。 3.1单片光伏玻璃主要性能及检测方法 单片光伏玻璃的主要性能包括光学性能、安全性能、耐久性能等,详见表1。其中,安全性能只用于评价钢化光伏玻璃。 3.1.1光学性能 单片形式光伏玻璃的光学性能应考虑有效波长透射比、雾度及铁含量二项指标。有效波长透射比不同于建筑玻璃的可见光透射比或太阳光直接透射比,是指光伏玻璃在光伏电池光谱响应波长范围(4O0nm一1200nm)的透射比,透射比的波长范围与响应波长范围一致才能正确表征光伏组件的光电转换率。对此性能进行检测时,可用分光光度计测得光伏玻璃的光谱透过率,而后参照国际标准1509050一2003《建筑玻璃可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线透射比及有关窗玻璃参数的测定》中的太阳光辐射相对光谱分布,对40Onm一1200nm波长范围的透过率进行计算,从而得到光伏玻璃的有效波长透射比。雾度与铁含量是从散射光与元素分析的角度表征光伏玻璃的光学性能。雾度是指透明或半透明材料的内部或表面由于光漫射造成的云雾状或混浊的外观,以漫射的光通量与透过材料的光通量之比的百分率表示。雾度表征光伏玻璃对透射光散射能力的性能参数,雾度值增大,可增加光伏电池吸收光的能力,从而提高光伏电池的光电转换效率。其检测方法可参考GB理2410一2008《透明塑料透光率和雾度的测定》。玻璃中的铁元素主要以Fe20:的形式存在,在玻璃生产过程中可通过玻璃原材料或生产设备中引人。FeZO:的存在能使玻璃着色,加大吸热率,从而降低玻璃的透射比。因此,光伏玻璃都为超白低铁玻璃,其铁含量一般在0.008%一0.02%之间,检测方法可依据GB厅1347一2008《钠钙硅玻璃化学分析方法》的规定进行。 3.1.2材料安全性能 参考我国建筑钢化玻璃国家标准GB157632一2005健筑用安全玻璃第2部分:钢化玻璃》,分别从光伏玻璃在平面使用、立面使用、玻璃破碎以及遇高温的情况下,对光伏玻璃的安全性能进行考察。抗冲击性能是在光伏组件平面使用时,模拟高空坠物冲击,考察光伏玻璃是否能抵抗高空坠物冲击力,起到保护电池组件的作用。霞弹袋冲击性能是考察光伏组件以立面状态使用时,光伏玻璃抵抗撞击的能力。此项性能是摆锤式的撞击,模拟人体的肘关节或膝关节对玻璃产生突然撞击时的状态。碎片状态是光伏玻璃安全性能的另一项重要指标,用于评价光伏玻璃在破坏时的状态是否安全。光伏玻璃在破坏时碎片应成均匀的钝角小颗粒,不易对人体造成伤害。碎片状态性能的好坏可用破碎后任何50mmx50mm面积内的最小碎片数以及是否有长条形碎片存在来表征。耐热冲击性能是表征光伏玻璃热稳定性的参数,经过钢化后的光伏玻璃应可承受200摄氏度的温差,可用玻璃经200度温差变化后是否发生破裂来判断热稳定性的优劣。建筑用钢化玻璃的安全性能技术指标及检测技术已十分成熟,以上四项单片钢化光伏玻璃的安全性能可参考建筑用钢化玻璃的相关内容。由于光伏玻璃的厚度较建筑用玻璃的厚度薄,若相应的光伏组件不用于建筑物,则可依据光伏玻璃的特性降低其两项冲击性能的冲击力要求。 3.1.3导电性能及耐久性 TCO作为导电镀膜玻璃,其导电性能和耐久性是表征TCO玻璃质量的指标。导电性能是TCO玻璃的特性,是TCO玻璃作为薄膜电池基板应具备的最基本性能,而镀膜层的耐久性直接关系到薄膜电池组件的寿命。导电性能可用方块电阻值表征,电阻值越低,导电性能越好。耐久性主要包括耐磨性、耐酸性、耐碱性三项,检验方法可部分参照建筑行业镀膜玻璃的国家标准GB理18915.1一189152一2002《镀膜玻璃》。TCO玻璃表面是导电镀膜层,经过人工磨损、浸酸、浸碱等耐久考验后,应最后考察其导电性能有否受损。而建筑镀膜玻璃表面是光学镀膜层,耐久考验后考察的是其光学性能的降低率。 3.2BIPV光伏玻璃组件主要性能及检测方法 BIPV光伏玻璃组件的主要性能应包括安全性能、耐久性能、电气安全性能及防火性能,详见表2。 3.2.1材料安全性能 BIPV光伏玻璃组件首先应满足作为建筑安全玻璃构件的安全性能要求,建议通过抗冲击性能、霞弹袋冲击性能以及耐静荷载性能进行表征。抗冲击性能和霞弹袋冲击性能主要考察光伏夹层玻璃,两项性能的冲击力及冲击程序可直接参照GB15763.3一2009《建筑用安全玻璃第3部分:夹层玻璃》标准进行。但是由于光伏夹层玻璃中间层有用于发电的光伏电池,检测方法及评价标准若只满足建筑玻璃要求,不考虑电池片受冲击后使用性能有否破坏,则在实际使用中也会引起严重的电气安全问题。因此,建议在冲击性能检测前先对BIPv光伏玻璃组件进行最大输出功率及绝缘性的测试。在每个冲击高度冲击完毕后再对此两项性能进行测试,以BIPv光伏玻璃组件不发生破坏、外观质量保持良好,且最大输出功率及绝缘性的衰减在要求范围内的最大冲击高度,对试件抗冲击性能和霞弹袋冲击性能进行性能分级。最大输出功率及绝缘性的相关内容详见本文3.2.3。耐静载荷性能是用于确定BIPV光伏玻璃组件经受雪、覆冰等静态载荷的能力,可采用在组件的前表面和背表面均匀施加静态荷载的方式模拟实际使用情况,组件在加压的全过程及加压后不产生外观缺陷、漏电、最大输出功率及绝缘性严重衰减等现象。 3.2.2耐久性能 太阳能光伏模块的使用寿命一般至少是20年至30年,因此耐久性能是表征BIPV光伏玻璃组件质量优劣的重要指标,且应从建筑玻璃构件及光伏组件两方面进行综合考虑。耐热性和耐湿性是考察光伏夹层玻璃在高温高湿工作环境下是否能满足使用要求,高温高湿耐久性和气候循环耐久性是考察光伏中空玻璃在高温高湿环境下是否能满足使用要求及长时间室外工作的寿命,而耐紫外辐照性试验是为了确定BIPv光伏玻璃组件承受太阳光中紫外线辐照的能力。对此五项性能的检测均为实验室检测技术,其检测技术及评价标准可参考GB15763.3一2009《建筑用安全玻璃第3部分:夹层玻璃》及GB厅11944一2002《中空玻璃》标准。但在测试前后需增加对BIPv光伏玻璃组件最大输出功率及绝缘性的测试及比较,以防在实际高温高湿工作环境中BIPV光伏玻璃组件产生漏电等电气安全隐患。室外曝露试验可初步评价光伏玻璃经受室外条件曝晒的能力,揭示实验室试验中可能测不出来的综合衰减效应,是对实验室耐久性检测的补充。建议此项性能的检测可在GB厅4797.1一2005《电工电子产品自然环境条件温度和湿度》标准所规定的一般室外气候条件下,将BIPV光伏玻璃组件曝露在室外,使之受到一定的总辐射量,通过曝露试验后有否产生严重的外观缺陷、其绝缘电阻及最大输出功率的衰减是否满足相应要求来表征性能的优劣。#p#分页标题#e# 3.2.3电气安全性能 电气安全性能是BIPv光伏玻璃组件作为光伏发电组件的必备性能,建议通过最大输出功率、绝缘性、湿漏电流性能及引出端受力性能来表征。最大输出功率是光伏组件在标准试验条件下的电流—电压特性,此项性能的测定是为了确定BIPV光伏玻璃组件在各种安全性及耐久性试验前后的电性能变化。绝缘性的检测是为了确定光伏玻璃中的载流部分与玻璃边框或外部之间的绝缘是否良好,确保组件使用过程中不产生漏电现象。湿漏电流性能用于评估光伏玻璃在潮湿的工作条件下的绝缘性能,验证雨、雾、露水或融雪的湿气不能进人光伏玻璃内部电路的工作部分,如果湿气进人可能会引起腐蚀、漏电等安全事故。引出端受力性能用于确定引出端及其与BIPV光伏玻璃组件的附着是否能承受正常安装和操作过程中所受的力。电气安全性能评价指标及检测技术可直接参考现有地面用晶体硅光伏组件或地面用薄膜光伏组件标准: 3.2.4防火性能 预防火灾是安全工作的重中之重。对BIPv光伏玻璃组件进行防火性能测试,除了直接对光伏玻璃的耐火性能进行评估外,还应对旁路二极管耐热性能及热斑耐久性能进行评价,以降低BIPV光伏玻璃组件在使用过程中因过热而引起火灾发生的机率。耐火性能测试是为了对BIPV光伏玻璃组件的点燃性、火焰传播性及燃烧穿透性进行评估,其检测方法建议参考UL1703一31<Firetest>标准。旁路二极管耐热性能是评价旁路二极管的热设计及防止对光伏玻璃有害的热斑效应性能相对长期的可靠性。热斑耐久性的测试是为了确定光伏玻璃承受热斑加热效应的能力。热斑效应是指:当光伏玻璃中的一个电池或一组电池被遮光或损坏时,工作电流超过了该电池或电池组降低了的短路电流,在光伏玻璃中会发生热斑加热,此时受影响的电池或电池组被置于反向偏置状态,消耗功率,从而引起过热。旁路二极管耐热性能及热斑耐久性的评价指标及检测技术可参考现有地面用晶体硅光伏组件或地面用薄膜光伏组件标准。 4总结与思考 即将出台的《“十二五”太阳能光伏产业发展规划》中提出我国太阳能发电装机目标为到20巧年达10GW,折算到每年为ZGW,且政府将集中支持骨干光伏企业,提供资金、贷款等方面的扶持。相信未来几年我国光伏行业市场将大规模启动,光伏行业将迎来广阔的发展前景。《规划》也将光伏建筑一体化BIPV组件的生产技术列为十二五产业发展的重点,大力推广扩大光伏建筑一体化的应用。这也将带来光伏玻璃行业新的发展机遇。 目前,无论是各类光伏玻璃的产品标准,还是光伏玻璃主要性能的检测方法标准,都存在缺失。光伏玻璃的性能要求与检测方法也没有相应专业的国际标准可作参考。光伏玻璃行业尚缺乏完整的检测规范和质量检测体系,无法保证太阳能光伏产业的技术水平和产品质量,从而使产品的规范化和系列化的发展受到很大影响,这制约了太阳能光伏技术成果转化和工程化的进展ls]o针对目前光伏玻璃标准体系现状,应正确认识并合理把握对光伏玻璃主要性能,如光学性能、材料安全性能、耐久性能、电气安全性能及防火性能等的评价及检测技术,根据光伏玻璃产品的生产技术发展及实际使用性能要求,研究光伏玻璃特别是BIPv光伏玻璃组件,其符合光伏发电组件及建筑玻璃构件双重身份的技术要求、试验方法、检测规则及包装、运输、安装等一系列内容,编制符合我国国情的技术标准规范,并在此基础上争取上升为国际标准以填辛卜该领域的空白。

全文阅读

全玻幕墙节点连接方式的应用研究

摘要: 本文通过试验的方法论证了摩擦型高强螺栓在玻璃结构连接应用的可行性,并根据试验数据归纳得出了玻璃与钢板的静摩擦系数,为以后的工程实践提供了设计依据。

关键词: 摩擦型高强螺栓 摩擦系数 玻璃结构 玻璃肋 全玻幕墙

中图分类号:J527文献标识码: A

一、引言

全玻幕墙由于其通透性的特点得到了建筑师的喜爱,应用较为广泛,特别是在一些公共建筑的大堂、主出入口等位置,大多达到了预期的建筑效果;但不少全玻幕墙,特别是一些较高的全玻幕墙,在施工过程中或投入使用之后,部分玻璃面板、玻璃肋爆裂率明显过多,有的甚至大部分需要更换,既存在安全隐患,也影响业主使用,还导致维修成本的增加,产生了较大的负面社会效益。

经过笔者多年的工程实践和事故分析处理经验,发现大多发生质量事故的全玻幕墙,既存在没有有效释放主移的原因,也有不少是因为连接节点不可靠而破坏。全玻幕墙设计及施工时玻璃面板及玻璃肋应能够适应主体结构的相对位移,不承担主体结构传来的荷载,这点通过改进设计和提高施工管理水平是能够做到的。但是,全玻幕墙的连接,特别是玻璃肋的连接,由于没有成熟的设计标准和施工工艺,存在或多或少的缺陷,产生了很多质量问题和安全隐患。

二、目前玻璃结构的连接方式

目前玻璃结构的连接,主要有三种方式,一是采用螺栓与玻璃孔壁直接接触受力,或者在玻璃孔壁与螺栓之间加尼龙套、铝合金套之类的;玻璃是脆性材料,孔边受力会引起应力集中,即使加一些介质材料,也无法从根本上避免孔边应力集中的问题,笔者曾经做过玻璃孔壁承载能力的试验,通过多组数据对比分析,离散型较大,不能很好的应用于工程实践。图一是玻璃孔边承载能力试验照片:

全文阅读

点支式玻璃幕墙施工技术探讨

摘要:本文详尽地结合建筑工程的实际情况,论述了点支式玻璃幕墙施工工艺,特别注意对施工中的注意事项及特殊事件进行研讨,以期对点支式玻璃幕墙的实际建筑施工有一定程度的参考意义。

关键字:点支式玻璃幕墙;施工工艺;技术探讨

中图分类号: TU382 文献标识码: A 文章编号:

一.前言

众所周知,房屋的建造不仅是为了挡风遮雨,也要考虑其舒适度、安全性及修饰美化等作用,点支式连接玻璃幕墙就在这样的理念下应运而生。究其发展史应追溯于上世纪七十年代,于1986年完工的法国拉· 维莱特科学城首次成功运用了半球状铰接螺栓驳接件,标志着点支式玻璃幕墙的成熟。中国把点支式幕墙运用于建筑始于九十年代末期,典型代表建筑就是著名的上海大剧院。如今,点支式幕墙更加广泛地运用于大中型建筑,成为城市建筑中一道独具魅力的风景。

点支式玻璃幕墙的构件制造和施工技术方面, 特别需要关注两方面:一是玻璃及钢的结构组成;二是玻璃的制造和施工中的技术规则。这就要求对玻璃进行磨边和开孔,并且开孔直径必须超过玻璃板的厚度。

二、施工技术准备工作

1、工程概况

全文阅读

夹层玻璃生产工艺论文

1生产流程

干法夹层玻璃的生产流程为:玻璃清洗合片预压高压斧热压检验装箱,见图1。每一处理环节对产品的质量都会有一定的影响。预压的目的是对松散放置的玻璃/PVB/玻璃等加工材料,通过加热压合的压热工艺进行初步的压合,使PVB与胶片之间的残留空气排尽,并使膜粘附于玻璃上。由于预压的质量对夹层玻璃后期的成品质量起至关重要的作用,根据玻璃形状的不同,而出现了平面辊压排气和真空预压排气两种生产工艺。

2平面辊压工艺

建筑用平面夹层玻璃最常用的预压工艺方式为平面辊压工艺,其优点:可连续生产,加工速度快,加工工艺较为简单,尤其是对于原板玻璃的夹层玻璃加工。常规工艺设备配置,使用具备2个加热区的加热炉,利用2组对辊,对玻璃进行加热及辊压处理。加热炉由红外辐射器或电热管进行加热,压辊通常由一对实心圆筒橡胶组成。实施预压的目的是:①将PVB膜与玻璃表面之间的残留空气排尽并将PVB膜与玻璃粘合一起;②避免在高压釜工艺之前过早分离使夹压玻璃边缘持续密封;③使玻璃在高温高压过程中无空气再次进入胶片。事实证明,分两步使用辊压工艺进行预压十分有益。对于松散重叠的平面玻璃和PVB膜,在一段较短的加热通道中通过,利用中波红外辐射加热至约35℃(玻璃表面测量温度)。然后将加热的夹层结构通过一对橡胶辊加压,从而将大多数缝隙内的空气压出,然后将这个夹层结构通过第2条稍长一点的红外加热通道,在通道中加热至60~75℃(玻璃表面测量)。通过第2对压辊将残留空气全部压出,并使边缘密封避免回流气泡,预压的质量可通过压合后的夹层表面状况显示。预压后玻璃应有半透明条状纹路均匀分布于整个板面,边缘周围呈现一圈透明的带状(边缘密封)。工艺控制调节:第1对辊子的辊距应比玻璃和PVB膜的总厚度小1~2mm,第2对辊子的辊距应比玻璃和膜的总厚度小2~3mm。当使用多层复合膜结构时或较厚的玻璃及PVB膜夹层结构时,必须进一步减小此间距(对于原板夹层即间距≯2mm)。进行平面预压压辊的气缸的工作压力为0.5~0.7MPa。由于玻璃表面的热量传至PVB膜主要由辐射及传导两种方式,对于多层预压加工时,必需要一定时间才可均匀加热夹层玻璃。因此,通过调节传送速度和所提供的热能来满足达到最佳预压效果的条件。所有显示温度仅为指示值,最终效果主要取决于层压玻璃的类型和预压加热管道中的加热方式。除上述工艺中的变量之外,还有其它影响因素,如PVB膜的流动特性(流变能力),PVB膜的表面粗糙度、钢化玻璃的波纹形状以及玻璃类型或颜色。后者将改变炉内的热量的吸收能力,从而改变预压时玻璃的表面温度。在玻璃边缘完全粘合之前应进行充分排气。一旦边缘密封,所有残留空气都无法排出,致使成品出现气泡。因此,必须在低于密封温度时进行排气。另一方面,必须达到足够高的温度才能确保PVB膜与玻璃表面紧贴,否则,预压可能过早分离,然后多余的空气就重新进入压层,导致后期成品的气泡情况。

3真空工艺

随着曲面夹层玻璃在新型建筑得到广泛的应用,目前平面滚压的方式无法满足曲面夹层玻璃及多层夹层玻璃的要求,通过技术研究开拓,行业内已研究出适于曲面夹层玻璃与多层夹层玻璃的生产工艺——真空负压预压工艺。现时使用的真空预压法有2种:真空袋与真空环,见图2和图3。相对平面辊压预压法,真空预压法操作起来比较复杂。但是,真空工艺对于特殊的层压以及除玻璃与PVB之外的其它材料的层压很有优势。对于所有真空预压工艺,必需确保在加热开始之前,进行冷抽真空处理约15min,时间越长越好,这是防止边缘密封过早从而造成空气无法完全排空的唯一方法。在整个加热过程中(30~60min)必须保持真空状态,真空压力应≥10kPa。在加热舱中,周围温度为100~120℃时,玻璃表面的温度必需达到95~105℃。利用真空工艺进行预压通常比用辊压机进行的预压玻璃表面清洁,根据所用设备的加热方式,通过加工试验来确定加热舱内部温度和加热过程的最佳加工条件。成功进行真空预压工艺的关键因素为:①排气前夹层结构的初始表面温度≤30℃;②加热前“冷抽真空”的持续时间≥15min;③真空能级(例如10~20kPa);④真空袋、橡胶环的密封度;⑤工艺开始前橡胶袋或橡胶环的温度(≤25℃);⑥玻璃的总厚度和预压形状。随着工艺的改进,目前真空预压工艺与高压釜热压工艺同步进行,从而缩短了生产的周期。

4高压釜热压工艺

高压釜热压工艺是夹层玻璃生产过程的最后一步,也是最关键的一点,产品质量的好坏由热压工艺所设定的温度、压力和时间决定。实践证明,正确选择工艺参数可使产品达到较为理想的成品率。对于较厚、大尺寸的夹层玻璃,需要不同的热压工艺,故建议分开进行热压处理,热压玻璃的加热和冷却必须以较低速度进行,这样才能生产无外张力的夹层玻璃。生产总周期时间取决于设备和玻璃的数量,根据压力及温度曲线程序可在3~6h之间变化。对于目前通用的钢化夹层玻璃,通过相应的优化工艺参数,可提高产品的成品率,由于全钢化/半钢化玻璃的平整度较浮法玻璃低,在预压钢化玻璃与前述过程有所不一样。实践证明,下述规则对于生产优质夹层钢化玻璃十分重要:(1)利用钢化玻璃生产夹层安全玻璃最重要的因素是玻璃预压过程的质量,建议谨慎选择钢化玻璃,必须能够确保钢化玻璃制品的平整度,以提高两片玻璃之间的吻合度,减少产生气泡而出现的废品。在使用PVB膜总厚度的约10%可补偿两块钢化玻璃平面度之间的平度差异。若平整度差异大于10%,增厚PVB膜几乎不可能生产完美的夹层安全玻璃。两块重叠在一起的钢化玻璃之间的平面差(无PVB膜夹层)可用刀口尺或直尺测定。(2)要进行预压的钢化玻璃与钢化辊面的运动方向必须一致,以确保两块玻璃有较好的吻合度。(3)假如所测得的玻璃层的差异大于规定值,波形变形大于1‰,则应使用稍厚一点的PVB膜。(4)预压规则:与相同成分的浮法玻璃相比,放慢压延速度,采用稍低的空气温度,避免边缘提前密封。降低第1对辊子的压力,避免压力过大边缘密封过早;与浮法原片玻璃相比,增加第2对辊子的压力,可改善预压边缘密封效果。

全文阅读