首页 > 范文大全 > 正文

碳化硅电力电子器件的应用及其研究发展

开篇:润墨网以专业的文秘视角,为您筛选了一篇碳化硅电力电子器件的应用及其研究发展范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘 要:文章首先对碳化硅电力电子器的大体情况概述及应用进行了介绍,进而对碳化硅器件在电力电子中的发展进行了分析。

关键词:碳化硅材料;电力电子器件应用;发展

1、碳化硅电力电子器件概述

大功率半导体器件在近年来得到了快速的发展,促使现代电力系统中高性能电力电子装置得到广泛的应用。其主要有变流、变频的特点,响应性能较为快速,能够利用小功率来控制大功率。碳化硅由于其优良的物理特性和电特性,在电力系统中得到了广泛的应用。碳化硅属于新研发的宽禁带的半导体材料,这种器件的优势在于它的高压高温的特性。碳化硅电力电子器件能够突破硅基半导体器件由于电压和温度的限制会造成电力系统有一定的局限性。当前碳化硅材料研发不断发展,新型碳化硅电力电子器件不断涌现,低压领域和高压领域的碳化硅功率器件不断产业化,在电力系统中不断替代原有器件。碳化硅电力电子器件的研发成功以及未来可能的产业化,将在电力系统高压领域中得到更多的应用,其发展能够对电力系统变革产生较为深远的影响。相信在不久的将来,在电力电子器件的制造中碳化硅的使用将会更加广泛,电力电子器件也将会具有更高的使用性能。

2、电力系统中碳化硅电力电子器件的应用

在电力系统中碳化硅电力电子器件在以下几个方面得到了广泛的应用:

2.1固态变压器。

近年来分布式发电系统和智能电网技术不断发展,碳化硅基于其很好的性能在当前的固态变压器中具有广泛的应用。其利用宽禁带材料能够有效提高器件工作适应温度。6H-SiC、4H-SiC禁带宽度分别为3.0eV、3.25eV,这两种材料对应的本征温度为8000摄氏度以上,也就是意味着即使禁带最窄的3C-SiC,它的禁带宽度也能够在2.3eV左右。利用碳化硅材料制造的电力系统器件,它的工作温度最高能够超过6000℃。电力系统中功率开关器件反向的电压承受力和它的漂移区以及基区长度、电阻率具有密切的关系,单极性功率的开关器件通态比电阻将直接受漂移区长度、电阻率的影响。由以上可知与其制造材料击穿电场强度的立方成反比。在电力系统中技术人员利用击穿电场强度较高的碳化硅材料制作的高压功率开关控制器,它的电阻率不用选择过高,碳化硅电力电子器件漂移区或基区也不需要太长。通过这种工艺不但器件通态与电阻相比会有较明显的降低,其工作频率将有大幅度的提高。固态变压器是电力电子变流器和高压变压器中能量转换的关键装置。固态变压器相较于传统变压器具有体积较小、供电质量较高、供电效率比较高、工作性能稳定的特点。固态变压器在电力系统中应用将有效解决当前传统变压器所存在的问题。碳化硅电力电子器件在固态变压器中的应用将能够简化其结构和提高其工作性能。

2.2柔流输电系统。

柔流输电系统是当前交流电网比较先进的技术之一。碳化硅电力电子器件在其中应用将能够科学、高效的实现系统电压、功率和输电品质的控制,并能够有效降低输电的损耗。碳化硅器件的击穿电场强度为普通硅材料的8倍,这种器件的电子饱和漂移速度是普通硅材料的2倍,这种特性更有利于提高碳化硅器件的工作频率,故碳化硅单极性功率开关不仅通态比普通电阻低,一般它的工作频率也会比普通硅材料器件高到10倍以上。碳化硅电力电子器件由于其热导率较高,故能够在高温下长时间、稳定性的工作。另外碳化硅材料为当前唯一能够采用热氧化法来生成高性能的本体氧化物化合物的半导体材料。这种特性使其可以和普通硅材料一样去制造MOSFBT、IGBT这种含有MOS结构的电力系统电力电子器件。碳化硅材料在常压下生成熔体较为困难,当其加热到2400℃时就会升华,故其像普通晶体通过籽晶在熔体中缓慢生长制备单晶是十分困难甚至是不可能的。这种工艺难度要比锗、硅、砷化镓等常见常用的半导体材料制备更为困难和复杂。碳化硅材料功率器件自身具有优良的耐压特性,随着碳化硅器件研发和制造技术的提高,其在FACTS技术中将会受到越来越多的重视。

2.3静止无功补偿器件。

在电力系统中静止无功补偿器主要用于潮流控制和无功补偿,碳化硅电力电子器件应该有效提高其系统的稳定性和响应速度,掺杂是当前半导体器件制备最基本的工艺。由于杂质在碳化硅器件中扩散系数与在SiO2中一样较低,在适于碳化硅有效杂质扩散温度条件下,SiO2将失去对杂质掩蔽的作用,并且碳化硅材料自身在同样高温条件下性能不稳定,故其不宜采用扩散掺杂,需利用离子注入以及材料制备过程中进行伴随掺杂来达到制备碳化硅器件的条件。碳化硅晶片制备技术可以分为物理法和化学合成方法。物理法主要包括机械粉碎法和结晶法;化学合成法主要包括化学气相沉积法以及碳热还原法。化学气相沉积法和碳化硅晶须的制备工艺较为相同,但其工艺复杂,价格昂贵,目前研究和应用较少;碳热还原法是利用碳和SiO2为原材料,利用催化剂将原材料加热至合适的温度进而合成,这种方法是碳化硅晶体制造的主要方法。碳化硅电力电子器件在STATCOM的应用结构能够得到有效简化。由于碳化硅电力电子器件开关频率得到有效的提高,电力系统中电能质量也能够得到有效的提升。在风能、太阳能等洁净、可再生能源方面,无变压器STATCOM结构将会得到大力推广和应用。

2.4电力系统的直流输电技术。

碳化硅电力电子器件能够促进高压直流的输电技术快速的发展。碳化硅电力电子器件耐压性能良好,这种特性能够有效减少电力系统中需要的器件数量,大大简化直流输电电力系统的结构,并能够有效降低电能传输中的能耗,不断促进高压直流输电技术的发展和进步。

3、碳化硅器件在电力电子中研发工作的进展

随着碳化硅器件在电力电子中的应用越来越广泛,使得关于碳化硅的研发工作进展也不断加快。

3.1碳化硅肖特基势垒二极管(SBD)

当前碳化硅肖特基势垒二极管的阻断电压已经达到10000V以上,大电流器件的通态电流为130A,其阻断电压达到5000V。这种碳化硅肖特基势垒二极管主要采用了n型高阻厚外延片,同时在肖特基势垒接触和欧姆接触中使用了镍,该器件的尺寸也较小,肖特基势垒接触的直径只有300um,且采用了大面积的芯片。在碳化硅肖特基势垒二极管中,若肖特基上的金属是铂,同时为降低阳极电流的扩散电阻而在铂金属上再蒸镀2um的金膜,在背电极经过退化处理的这种器件不具备较好的反向特性,其漏电流随着电压的增加而增加。器件的反向特性与芯片的面积有关,芯片面积越低器件的反向特性越高。同时根据研究者的研究表明,JBS结构在降低碳化硅肖特基势垒二极管的反向漏电流以及改善其正向特性中都具有很好的效果,同时兼顾正反向特性的优化设计已经将碳化硅肖特基势垒二极管的JBS结构的通态比电阻相较于硅器件理论值的1:400。

3.2碳化硅场效应器件

碳化硅功率金属-氧化物-半导体场效晶体管的开发优势就是能够兼顾阻断电压和通态比电阻,随着1994年首次报道的碳化硅功率金氧半场效晶体管耐压只有250V,短短四年时间其阻断电压就提高到了1400V,同时采用栅增强功率结构设计,可以进一步提高阻断电压,降低通态比电阻。近年来人们充分挖掘了碳化硅材料在场效应器件方面的应用潜力,对结型场效应晶体管的结构也做了很多改良,从而减少了结型场效应晶体管常规工艺流程中的碳化硅外延生长这道高难度工序,同时还在器件结构中取消了横向结型场效应晶体管栅,从而使器件的通态比电阻有所下降,使得场效应器件品质因子也获得了提高。

3.3碳化硅双极型器件

随着碳化硅器件的使用性能越来越广泛,研发碳化硅双极晶体管成为了当前的发展方向,开发碳化硅双极晶体管的关键问题就是提高电流增益,采用外延层作基区,用离子注入形成发射极的方法可以提高电流的增益,同时采用达林顿结构也会获得更高的电流增益。

晶闸管最能体现碳化硅材料特长是在兼顾开关频率、功率处置能力和高温特性方面,在阻断电压超过3000V的时候,碳化硅晶体管的通态电流密度则会更高,因此更适合于交流开关方面的应用。随着对碳化硅晶闸管研究的深入,使得普通的晶闸管逐渐淡化,而是向GTO方向集中对碳化硅晶体管的研究。

结语:在电力电子器件应用的众多领域,比如输电系统、配电系统、电力机车、混合动力汽车、各种工业电机、光伏逆变器、风电并网逆变器、空调等白色家电、服务器及个人电脑等,碳化硅器件将逐步地展现出其性能和降低系统成本方面的优势。作为下一代电力电子器件的主要方向,碳化硅电力电子器件将为电力电子带来重要的技术革新,并推动电力电子领域在今后二、三十年的发展。