开篇:润墨网以专业的文秘视角,为您筛选了一篇现代机床精度之我论范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
【摘要】随着现代机械制造技术的飞速发展,精密和超精密加工技术已经成为现代机械制造的重要组成部分。数控机床作为机械制造中的重要工具,它的精度指标是影响工件加工精度的重要因素。因此,提高数控机床精度的有着重要的意义。
【关键词】机械加工;机床;精度
数控机床精密度高,生产速度快等众多优点,受到机械生产行业的青睐,数控机床也在不断的完善和改革中,其中包括对机床零件和组成部分的改进,数控中心软件编程的设计等,但是随着人们对构建精度要求越来越高,数控机床的精度必须不断的提高,文章就如何提高数控机床精度措施作出分析和探究。
一、数控机床的组成及工作原理
数控机床一般由控制介质、数控系统、伺服系统和机床本体共四部分组成
(一)控制介质。就是人与数控机床之间联系的中间媒介物质,反映了数控加工时的全部信息,以前是用纸条来输入各种信息的,不过随着计算机技术的发展,现在的输入一般可以由各种终端来完成。
(二)数控系统。数控系统是整个数控机床的核心部分,是机床实现自动加工的中心,也是整个数控机床的灵魂所在。主要有输入装置、监视器、主控制系统、可编程控制器、各类输入、输出接口等组成。主控制系统主要由CPU、存储器、控制器等组成。数控系统的主要控制对象是位置、角度、速度等机械量,以及温度、压力、流量等物理量,其控制方式又可分为数据运算处理控制和时序逻辑控制两大类。
(三)伺服系统。伺服系统是数控系统和机床本体之间的电传动联系环节,主要由伺服电动机、驱动控制系统和位置检测与反馈等组成。伺服电动机是系统的执行文件,驱动控制系统则是伺服电动机的动力源。
(四)机床本体。数控机床的本体指其机械结构本体,它与传统的普通机床相比较,同样由机械传动机构、工作台、床身以及立柱等部分组成,但数控机床的整体布局、外观造型、传动机械、工具系统及操作机构等方面都发生了很大变化。
二、机床加工的影响因素及控制措施
实际加工中影响数控加工精度的因素很多,如编程工艺、设备条件、操作者技术水平等。下面从几个方面进行介绍:
(一)数控编程对加工精度的影响
数控编程对加工精度的影响主要来自编程原点的确定、数据处理、轨迹拟合、加工路线选择等方面
1、编程原点选择对加工精度的影响。数控编程首先遇到的问题就是确定编程原点,编程坐标系一般是编程人员根据零件加工特点和零件图纸确定的。编程原点的选择直接影响零件的加工精度,确定编程坐标系最根本的原则是编程基准、设计基准、工艺基准统一,这样可最大限度地减少尺寸公差换算所引起的误差,
下面是确定编程坐标系的一些具体建议:①编程原点尽可能与图纸上尺寸基准重合、工件设计时有设计基准,加工时有工艺基准,编程原点应尽可能与上述基准重合。②使数值计算尽可能简单,尽量避免尺寸链换算。③尽量选在精度较高的工件表面上便于加工过程中尺寸测量。
2、编程时数据处理对加工精度的影响
数控编程时的数据处理对轮廓轨迹的加工精度有直接影响,其中比较重要的因素是未知编程节点的计算以及编程尺寸公差带的换算。
有的数控系统可根据已知轮廓几何条件自动计算节点坐标,但有的数控系统必须手工计算。手工计算未知节点坐标值时遇到的最大问题是计算精度,经过大量验证发现,有时手工计算结果与计算机辅助查询结果会相差0.03mm为提高手工计算精度,这里建议:手工计算的中间数据(包括角度值)应保留4位以上小数;若使用计算器计算,应尽量保留全部小数。编程尺寸圆整要依据数控机床的脉冲当量。脉冲当量是指数控系统发出一个指令脉冲所对应的机床移动部件的移动量,它是数控机床的最小设定单位,也是数控机床的最小控制单位。例如数控机床的脉冲当量为0.001mm,则最终的计算结果应保留3位小数。
(二)加工路线对加工精度的影响
加工路线是编程的重要内容之一,加工路线对加工精度及加工效率影响很大。确定加工路线时主要应考虑以下几方面:
进、退刀方式对轮廓加工质量影响较大。若刀具在内、外轮廓的连续表面直接下刀或抬刀,会因刀具直径、机床运动误差、进给速度突变等原因在加工表面形成小凹痕,所以精加工时下刀或抬刀最好离开加工表面。若必须从加工表面进刀或退刀,则尽可能采用圆弧切入或切出,切入或切出圆弧半径应大于刀具半径。另外,对位置精度要求不高的孔系加工可遵循加工路线最短原则。
三、改善数控机床精度措施
数控机床在设计时要充分考虑到其工作性质、运行震动和摩擦状况和实用寿命等这些基础因素之外,还要格外的针对数控机床精度问题进行探讨,通过改造某些部位或者排除一些影响机床精度的因素等提高其精度。
(一)提高高速主轴的稳定性,减小其震动,使数控机床精度更高
在数控机床工作过程中震动不可避免,但是震动对于其自身的精度来说是有很大影响的,尤其是其内部主要构件运行时震动对精度的影响,高速主轴就是一个非常重要的方面,因为高速主轴是机床运作的主要构件,通常能够通过提高高速主轴稳定性和平衡性来减小其运行过程中产生的震动,进而减少机床运行的震动。高速主轴的组成部分为轴壳、轴承、转轴、定子和转子。轴壳的设计要求有很高的精密度,它的尺寸和大小直接影响着其他几部分的工作,而且在主轴高速旋转的过程中会产生一定量的位移,所以轴壳的仿真平衡测试要做到精益求精的地步,通常对高速主轴的改进体现在其设计前期仿真技术的应用,运用模型来模仿真实的过程,以达到对模仿对象现实工作状态和性质的认识,在模仿过程中能够对模型的参数和性能进行修改,使模型的性能达到最好,工作效果达到最佳状态,仿真过程中,理想的模型设计和修正完毕后,再进行真实的构件生产。通常这个仿真过程是在ADAMS仿真软件(机械系统仿真软件)基础之上完成的,在计算机中建立一个相当高固有频率的柔性杆。然后再添加仿真的环境和条件,在ADAMS中进行真实模拟,通过这个过程对高速主轴的不断调整和改进,能够有效提高其工作稳定性和精确度,震动最小,提高数控机床的精确度。
(二)加强数控机床精确度检测,定期检修
通常数控机床的精度改进过程中需要对机床进行检测,通过精密仪器和一些测量系统对数控机床的精度进行检测,对其垂直度、周期误差和设备磨损等检测结果进行分析,然后对数控机床出现的问题及时进行处理,使其能够正常运行,人工保障数控机床精确度。而且可以通过检测结果,对数控机床的一些参数进行修改,对一些设备进行更新,这就可以使数控机床加工精度有很大的提高。
数控机床的自动化程度高,而且生产灵活性强,加工精密性高,虽然成本较高,但是能够创造出更高的价值,为生产的顺利进行作出很大贡献,只有不断的提高数控机床的精度,才能创造更多优质的产品。