首页 > 范文大全 > 正文

谈城市轨道交通CBTC系统故障归类及其设计应对策略

开篇:润墨网以专业的文秘视角,为您筛选了一篇谈城市轨道交通CBTC系统故障归类及其设计应对策略范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:随着地铁的普及,地铁移动闭塞列车控制系统的故障问题也受到越来越多的关注。本文首先简单介绍了移动闭塞列车控制系统(CBTC),进而提出了移动闭塞列车控制系统故障应对策略和运营中的信号故障处理措施,通过分析研究从而为以后相关方面的研究提供了理论依据。

关键字:CBTC系统;故障;应对策略

中图分类号:U226.8+1 文献标识码:A 文章编号:

0引言

由西门子公司研制的移动闭塞列车控制系统(CBTC),是以无线传输为基础,主要包括ATO(自动列车驾驶)、ATP(自动列车防护)、ATS(自动列车监督)以及CI(正线计算机联锁)等子系统。CBTC系统目前在伦敦、温哥华、香港、深圳、南京等多个城市的轨道交通线路上得到应用,本文对城市轨道交通cbtc系统故障归类及其设计应对策略做了简要的介绍。

1. 移动闭塞列车控制系统(CBTC)简介

1.1移动闭塞列车控制系统的结构和功能

CBTC系统包括地面子系统、ATS子系统、数据通信子系统以及车载子系统。CBTC地面/轨旁设备是由一个设置在控制中心或轨旁的基于处理器的系统;ATS子系统用于实现列车运行调整,ATS的自动/人工设置进路,列车的显示、跟踪和识别等;设置在中心、轨旁及车上的数据通信子系统能够实现地面与列车、地面与地面以及车载设备内部的数据通信;车载子系统包括测速和定位传感器以及智能控制器。移动闭塞列车控制系统是新一代的ATC系统,它的功能与系统配置有关,其基本功能如下:计算功能、定位功能、构成闭塞功能、车地双向通信功能、提供线路参数和运行状态功能、远程诊断和监测功能以及记录功能。

1.2移动闭塞列车控制系统工作原理

移动闭塞列车控制系统(CBTC) 的线路取消了物理层次上的分区划分,而是由一定数量的单元组成移动闭塞的分区。CBTC系统通过车载设备和轨旁设备不间断的双向通信,轨旁控制器接收到列车传来的标识、位置、方向和速度的信息,并计算、确定出列车的安全行车间隔,再将先行列车位置、移动授权等相关信息传递给列车,使列车能以较小的间隔和较高的速度行驶,保证了列车前后的安全距离,从而达到控制列车运行的目的。

2. 移动闭塞列车控制系统故障应对策略

2.1应对ATS设备故障

ATS子系统的功能主要有以下几种:OCC (控制中心) HMI(人机界面)、ARS(自动排列进路)、TMT(列车跟踪监督)、TTS(时刻表)和ATR(列车自动调整)等。

ATS子系统主要故障有:(1)通信中断故障,TRC(列车排路计算机)和安装在某联锁站的TTP(时刻表处理器)组成ATS系统,如果控制中心和系统的双通信通道同时发生故障,ATS将会失去作用,运营控制由本地ATS系统接管。(2)控制中心服务器故障,控制中心服务器主要包括:HMI(人机界面)、前端处理器FEP(与外部子系统的通信接口)、ADM(中心数据存储机)以及COM服务器(主要作用是汇集及处理系统的动态数据)。主用和备用热备冗余是由COM服务器提供的,在主用COM服务器发生故障的情况下,备用COM服务器自动启动,同时主用和备用ADM服务器都有报表数据存储。前端处理器FEP按冗余方式配置,在每个联锁站和控制中心实现系统及控制中心的通信功能,如图1所示。

图1 ADM、COM服务器提供主\备热备冗余、FEP采用双通道通信

2.2应对轨旁设备故障

轨旁设备由ATP(自动列车防护系统)和SICAS(联锁系统设备)组成。WCU (轨旁控制计算机)是ATP的主要设备,SICAS的主要设备是PC、ECC、SOM、POM、INOM和室外信号机、转辙机、计轴设备。

轨旁设备的主要设备故障有:(1)WCU (轨旁控制计算机)故障,由于三取二冗余设计应用在WCU和通信通道上,单个通道故障对列车运行没有影响,但是如果两个通道都出现故障,可以将列车切换到人工驾驶RM模式,运行到下一个车站之后,采用站间闭塞模式运行。(2)SICAS系统故障,SICAS系统故障分为室内和室外设备故障。室内设备的硬件故障解决,是由采用三取二冗余配置的PC、ECC和通信通道来实现的,如果单个接口模块出现问题,系统在通过板件重启、维修替换之后可以正常运行。室外设备故障,室外信号机在CBTC正常模式下是灭灯的,所以系统在信号机出现故障时,只发出报警信号,不影响列车的正常运行。通过抢修和加道岔钩锁器等措施可以解决转辙机故障。通过计轴预复位等操作可以解决计轴设备的故障。

2.3应对车-地通信设备故障

车-地通信设备包括车载通信设备和轨旁通信设备。TU(无线单元)和车载天线组成车载通信设备,CSR、NMS、AP和应答器单元共同组成轨旁通信设备。

车-地通信设备故障主要有:(1)车载通信设备故障,出现车载通信设备硬件故障时,可以通过车载天线采用双侧车头布置,单侧车头收发数据用2根天线来解决。(2)轨旁通信设备故障,单一服务器故障不会影响采用双机配置的轨旁通信设备,列车能够正常运行。但是列车会在单一应答器出现故障时出现定位不准确的问题。

2.4应对车载设备故障

HMI(人机界面)、ATO(列车自动驾驶)和ATP(列车自动防护)共同组成了车载设备,列车自动驾驶的模式有:列车自动驾驶AM、ATP监督人工驾驶SM和限制人工驾驶RM模式;列车自动控制级别是联锁控制级、点式列车控制ITC级和连续列车控制CTC级三种。车载设备的冗余配置可以解决单个单元的车载故障,如果人机界面出现问题,在ATO模式下列车仍能自动运行;如果列车自动驾驶系统出现问题,在SM模式下列车仍能自动运行;如果列车自动防护系统出现问题,在人工驾驶RM模式下切除车载ATP,司机在调度员指挥下驾驶列车。

3. 移动闭塞列车控制系统运营中的信号故障处理

在对CBTC系统故障应对策略充分理解的基础上,本文对南京地铁2号线在运营中出现的信号系统故障以及采取的故障处理进行简要的介绍。(1)ATP故障。3132车在2010年11月7日金马路站出现ATP故障,信号人员接到通知后,第一时间到达故障车,司机在ATP出现故障后,切除ATP系统采用人工驾驶RM模式运行列车,但列车速度在人工驾驶RM模式被限制,容易造成晚点。采取合理高效的ATP系统重启,故障影响时间大大缩短,使列车的运营效率得到提高。(2)无线故障。4546车在11月20日孝陵卫至钟灵街区间出现无线丢失的故障,但是在列车出站后,设备重新恢复正常,车载无线单元的检测芯片是无线丢失的主要原因,重启无线单元或无线单元重新检测到无线信号后,系统重新恢复正常。(3)G0901、G1001受干扰。G0901、G1001两区段在6月11日受不明脉冲信号干扰,分析得出受干扰的原因是工务专业在G0901、G1001区段线路检查作业时,小推车经过了计轴磁头CH0901/1001,在对这两个区域进行了复位操作后,设备恢复正常。

4.结语

基于通信的移动闭塞列车控制系统(CBTC)是列车控制系统技术的发展方向。本文通过讨论城市轨道交通CBTC系统故障归类及其设计应对策略,发现目前故障主要集中于车载通信设备,认清楚问题的所在之后,通过维护人员跟踪检查、分析,在排除无线信号受干扰的基础上,更换部分列车车载通信单元,从而解决这一问题。

参考文献

[1] 肖彦博. 谈城轨交通CBTC系统故障归类及其设计应对策略[J]. 现代城市轨道交通, 2011(3) : 12-14.

[2] 凌祝军. CBTC系统中的联锁技术研究[J]. 铁道通信信号. 2009,45( 9) 12-14.

[3] 刘会明. CBTC系统工程设计中需注意的几个问题[J]. 铁路通信信号工程技术. 2006,3( 3) 33-35.

[4] 李红侠. 城市轨道交通移动闭塞系统ATC系统的运用分析[J]. 城市轨道交通研究, 2004(3) : 51-53.

[5] 刘晓娟. 城市轨道交通CBTC系统关键技术研究[M]. 博士学位论文. 兰州:兰州交通大学,2009.

[6] 邓卫升. ETCS及其在高速铁路中的应用[J]. 铁道通信信号, 2006,42(6):31-33