首页 > 范文大全 > 正文

基于Abaqus的过盈装配有限元分析

开篇:润墨网以专业的文秘视角,为您筛选了一篇基于Abaqus的过盈装配有限元分析范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要: 针对某结构固定孔与套筒的过盈装配问题,利用abaqus/Explicit建立该结构过盈装配的显式积分有限元分析模型.将固定孔视为可变形材料,采用八节点三维实体单元划分网格;将套筒定义为不变形的刚体结构,采用四节点离散刚体壳单元划分网格.通过对孔边应力分布情况的分析,说明计算结果与实际装配问题的一致性.最后对过盈装配中出现的偏心问题和采用壳单元建立有限元模型出现的问题进行讨论.

关键词: 过盈装配工艺; 有限元分析; Abaqus

中图分类号: TH123; TB115.1文献标志码: B

引言

在工程实际生产问题中,过盈装配是常用的一种装配工艺,也是工程技术人员关注的问题之一.在某企业电子产品的生产过程中,通常采用过盈装配技术将螺钉套管安装到电子产品封装盒固定孔里,但在生产过程中时常出现装配孔开裂现象.因此,了解螺钉孔在安装过程中的应力分布情况是合理设计该产品过盈装配工艺的重要问题.

本文采用Abaqus/Explicit建立一个固定孔与螺钉套筒的显式积分有限元模型,模拟该产品过盈装配工艺的过程.

1结构过盈装配的有限元模型

根据某电子产品封装盒的螺钉孔结构,考虑到螺钉套孔为金属材料,其刚度远大于制成封装盒所采用的工程塑料材料,可忽略其装配时的变形.套筒直径比固定孔直径大,超过固定孔直径0.2 mm,定义套筒为Abaqus/Explicit中的离散刚体,采用离散刚体中四节点壳单元R3D4;装配孔结构定义为可变形结构,采用八节点六面体三维实体单元C3D8R.材料的弹性模量为3 GPa,泊松比为0.4,质量密度为1 500 kg/m3.

为获得质量较高的有限元网格[13],本文首先采用建立多个形状简单的“Part”;然后通过“Assembly”组合成装配孔结构的形状;再用命令“Merge/Cut InstancesGeometry Intersecting BoundariesRetain”将各个简单结构连接成一个整体;最后采用“ToolsPatitionCreate Partition”命令,将结构切割成一个可以划分较高质量网格的装配孔有限元模型,见图1.八节点三维块体单元C3D8R数量为2 862个,四节点离散刚体壳单元R3D4数量为1 087个,整个结构共有5 046个节点.

图 1套孔过盈装配的有限元模型

在模拟装配过程中,将加载曲线定义为“AmplitudeTabular”,采用位移控制方式加载方式.

2过盈装配的有限元结果验证

对建立的过盈装配有限元模型进行求解,得到在装配过程有限元分析中的von Mises等效应力分布云图(见图2)、装配孔边缘路径的等效应力曲线(见图3)和装配孔边缘路径的压力曲线(见图4).从有限元计算结果可知,在过盈装配过程中,电子封装盒螺钉孔周围的应力分布不均:在孔边缘靠近固定的根部区域应力最大,在远离根部的孔边缘等效应力也比较大.由图3和4可知,压力值在靠近边缘和根部区域最大.注意到在该项工程中,封装盒螺钉孔最外侧部位被设计成结构注塑成型的熔接线位置,而熔接线处是该工程塑料结构成型后最容易出现空洞和缺陷的部位,显然,从有限元分析结果可知,此为结构过盈装配易产生裂纹的部位.[4]

图 2套孔过盈装配结构的等效应力云图

图 3孔边缘路径的等效应力曲线

图 4孔边缘路径的压力曲线

根据该产品的实际装配工艺情况,可以验证上述情况确实是在过盈装配出现裂纹等问题的部位,由此证明有限元模型和计算结果的合理性.

3分析和讨论

在上述过盈装配模型的基础上,考虑偏心装配情况.将模拟螺钉套的离散刚体结构偏离圆孔中线,假设装配过程时,套管与孔对中的偏离误差量为套孔过盈量的10%,然后模拟装配过程.

计算结果表明:当装配过程中套筒与固定孔对中出现误差,且偏差偏向于固定孔的外侧方向时,将会使装配孔根部的应力降低.这是由于在存在较小的偏心量情况下,偏心会导致在孔结构上产生附加拉应力,抵消在过盈装配过程中由于根部刚性大而产生的装配压应力情况.

此外,如果将上述装配孔模型中的三维实体单元C3D8R改用四节点壳单元S4R建立模型,则可以很方便地进行网格划分,获得较高质量的网格,同时也可方便地模拟装配孔结构的加强筋.由于模拟套、空过盈装配过程时,可能会因壳单元形状畸变,导致计算失败,因此,在使用壳单元建立模型时,应使装配的过渡区域尽可能光滑过渡,避免壳单元发生畸变.

4结束语

Abaqus/Explicit模块可以有效地模拟电子封装盒螺钉孔的过盈装配过程.通过有限元分析可知,采用三维实体单元建立电子封装盒装配固定孔有限元模型是很有效的方法之一,但所建模型还需采用一些必要的辅助手段才能划分出较高质量的网格.此外,当装配孔的几何形状复杂会导致建立几何模型、划分网格的工作量大幅增加,随着模型单元数的增加,计算量和计算时间也将显著增加.如果采用壳体单元建立有限元模型,尽管划分网格容易,但必须根据装配过程的特点去掉接触部位的尖角和几何不连续处,以避免由于单元畸变导致无法计算的问题.可知,采用壳体单元建模,需要更多的技巧和有限元方面的理论知识.

根据计算结果可知,由于在装配孔最外侧的应力较大,如果该部位存有缺陷,那么过盈装配时该部位必将产生裂纹.因此,建议在电子封装盒注塑成型时,避免将熔接线位置设计布置在应力较大的部位.参考文献:

[1]庄茁, 张帆, 岑松, 等. Abaqus非线性有限元分析与实例[M]. 北京: 科学出版社, 2005: 207237.

[2]石亦平, 周玉蓉. Abaqus有限元分析实例详解[M]. 北京: 机械工业出版社, 2006: 963.

[3]赵腾伦, 姚新军. Abaqus 6.6在机械工程中的应用[M]. 北京: 中国水利水电出版社, 2007: 198430.

[4]刘鸿文. 材料力学(I)[M]. 5版. 北京: 高等教育出版社, 2015: 210252.