开篇:润墨网以专业的文秘视角,为您筛选了一篇CFD耦合化学动力学模拟EGR对柴油机燃烧的影响范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要:研究了柴油机低速部分负荷工况引入不同EGR对缸内燃烧排放特性的影响. 将CHEMKINⅡ化学反应求解器集成到KIVA 3V Release 2程序中, 用正庚烷化学反应机理替代柴油燃烧, 建立柴油机缸内燃烧数值模拟模型; 结合试验数据, 模拟分析喷油时刻保持不变, EGR率(废气再循环)从0%增加到 60%的燃烧过程、NOx和碳烟排放. 结果表明: 引入大比例EGR后点火延迟明显增长, 燃烧相位推迟, 燃烧温度降低; 较低燃烧温度避开了NOx的高浓度生成区, EGR率60%时NOx排放比无EGR时降低93.5%; 但高EGR率未使燃烧路径避开碳烟生成区, 加之较低的氧浓度不利于碳烟的氧化, 碳烟排放增高.
关键词:柴油机;废气再循环;燃烧模拟;化学动力学
中图分类号:TK421.2 文献标识码:A
各工况模拟计算的缸内压力曲线和放热率曲线如图9所示.由图可知,随着EGR率的增加,滞燃期增长,使得燃烧相位移向膨胀行程.引入的EGR改变了进气的组分,使得缸内压缩压力略有降低且随着EGR率的增大降低幅度增大.在着火延迟增加和压缩压力下降的共同影响下,大EGR率的缸内燃烧压力相对较低.
4结论
1)编写的接口程序成功地将cfd程序KIVA和气相化学反应求解器CHEMKIN耦合起来,实现了缸内流场求解与化学反应的联合模拟,形成了基于化学动力学机理的柴油机模拟燃烧模拟平台.
4)在喷油参数不变的条件下,大比例egr虽然控制缸内温度,但是燃烧过程中局部过浓的现象仍然存在,燃烧路径无法完全避开高浓度碳烟生成区.因此,要实现低碳烟排放,必须优化喷油策略,增加油气混合的均匀度.
参考文献
[1]GAN S Y, NG H K, PANG K M. Homogeneous charge compression ignition (HCCI) combustion: implementation and effects on pollutants in direct injection diesel enginesJ]. Applied Energy, 2011, 88(3):559-567.
2]DEC J E. Advanced compressionignition engines understanding the incylinder processesJ]. Proceedings of the Combustion Institute, 2009, 32(2):2727-2742.
3]HANSON R M, KOKJOHN S L, SPLITTER D A, et al. An experimental investigation of fuel reactivity controlled PCCI combustion in a heavyduty engineJ]. SAE International Journal of Engines, 2010, 3(1):700-716.
4]KONG S C, MARRIOTT C, REITZ R D, et al. Modeling and experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFDR]//USA:SAE Technical Paper Detroit, Michigan, 2001-01-1026.
5]AMSDEN A A. KIVA3V, RELEASE 2, improvements to KIVA3VR].USA: Los Alamos National Laboratory, LAVR99915,1999.
6]KEE R J, RUPLEY F M, MILLER J A. ChemkinⅡ:a fortran chemical kinetics package for the analysis of gasphase chemical kineticsR]. USA: Sandia National Laboratories, SAND898009,1989.
7]HAN Z Y, ULUDOGAN A, HAMPSON G J, et al. Mech anism of soot and NOx emission reduction using multipleinjection in a diesel engineC]// SAE Technical Paper,960633, Detroit, Michigan, USA:1996:960633.
8]HIROYASU H, KADOTA T, ARAI M. Development and use of a spray combustion modeling to prediction dieselengine efficiency and pollutant emissions ( Part 1 combustion modeling)J]. Bulletin of the JSME, 1983, 26(214):569- 575.
9]NANLE J, STRICKLANDCONSTABLE R F. Oxidation of carbon between 1000~2000°CC]//Proceeding of the Fifth Carbon Conference.Oxford,UK: Pergamon Press, 1962:154.
10]RA Y, REITZ R D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuelsJ]. Combustion and Flame, 2008, 155(4):713-738.
11]SUN Y. Diesel combustion optimization and emissions reduction using adaptive injection strategies (AIS) with improved numerical models D]. Madision: DERC University of WisconsinMadision, 2007.
12]FIEWEGER K, BLUMENTHAL R, ADOMEIT G. Selfignition of SI engine model fuels: a shock tube investigation at high pressureJ]. Combustion and Flame, 1997, 109(4):599-619.
13]ZHOU T, HAN Z, CHEN Z, et al. A study on a passenger car diesel engine fueled with butanoldiesel blend under typical operating conditionJ]. Applied Mechanics and Materials, 2012, 190/191: 1345-1350.
14]王 浒, 尧命发, 郑尊请, 等. 多次喷射与EGR耦合控制对柴油机性能和排放影响的实验研究J].内燃机学报, 2010, 28(1): 26-32.
WANG Hu, YAO Mingfa, ZHENG Zunqing, et al. Experimental study of the influence of multiinjection coupled with EGR on diesel performance and emissions J]. Transactions of CSICE, 2010, 28(1): 26-32. (In Chinese)
15]KITAMURA T, ITO T, SENDA J, et al. Mechanism of smokeless diesel combustion with oxygenated fuels based on the dependence of the equivalence ration and temperature on soot particle formationJ]. International Journal of Engine Research, 2002, 3(4):223-248.