首页 > 范文大全 > 正文

基于IEC61850数字化变电站分阶段改造新方法的研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇基于IEC61850数字化变电站分阶段改造新方法的研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:21世纪初,智能电网(Smart Grid)概念的提出为全世界电力工业开辟了新的发展空间。数字化变电站作为智能电网的物理基础,将贯穿智能电网建设的整个过程。本文对数字化变电站的技术进行了分析与研究,主要包括:IEC61850,非常规互感器,智能断路器等本文的创新之处在于提出新的分阶段改造方案,并与一般方案进行了比较,提出了改进方案。最后对建设数字化变电站带来的经济效益进行了探讨。

关键字:IEC61850;关键技术;改造;改进方案

Study on a new method of Staged Digital Retrofit of Substation based on IEC61850

Abstract: In the early 21st century,the proposition of Smart Grid broke new ground for the power industry around the world.Intelligent Substation,as the physical basis of Smart Grid, would go through the entire process of smart grid construction. The main content of this thesis which has been focused on analyzing and researching the technology of the digitized subsutation, mainly includes: IEC61850, non Conventional Instrument Transformer, the intelligent circuit breaker and so on. innovations of this article are to propose a new structured rehabilitation programs, and programs are compared with the general, and paoposes the improvement paogram .In the end the economic benefit of the digital substation is introduced.

Key words: IEC61850; key technology ;transform; improved plan

0 引言

目前,国内数字化变电站系统的应用和实施尚处于探索、起步阶段,从数字化变电站的技术发展现状和经济效益来分析,拆除原有的常规变电站而新建数字化变电站的成本太大,尤其是对于一些刚刚进行完微机综合自动化改造的变电站,新设备还没有产生效能就更换,势必造成资金的严重浪费。因此,对传统变电站进行数字化改造将是最佳方案。既有效地利用传统变电站现有设备、最大限度地减少投资和工程量,又能充分发挥数字化变电站的优点,使当前正在运行的传统变电站过渡到数字化变电站。本文针对现阶段实际情况,提出分阶段进行传统变电站数字化改造的实施方案[1]。

1 数字化变电站关键技术

1.1 IEC61850标准

智能变电站信息共享的基础首先在于信息的规范化与标准化,进而实现互操作。IEC61850标准作为变电站通信网络与系统的惟一国际标准和电力系统无缝通信体系(变电站内、变电站与控制中心之间)的基础,是变电站信息建模与信息交互的必然选择[2]。

IEC61850标准与以往的通信规约相比,有着本质的不同。以往规约主要用于传输电力系统实时数据和一些定值及配置信息,完全基于点表方式,缺乏对变电站系统模型和功能模型的描述,也没有将系统应用与通信技术进行分层处理,同时还缺乏一致性测试,因此变电站自动化系统的应用受到通信技术的限制,传输的信息量偏少,且互操作性差,扩展性差。

IEC 61850具有3项基本目标:①真正意义上的互操作;②功能自由分布;③良好的扩展性以适应SA和通信技术的发展。为实现上述目标,与以往的变电站通信标准相比,IEC 61850体现出如下技术特征:①功能分层的变电站;②面向对象的信息模型;③面向对象的数据自描述;④变电站配置语言。

1.2 非常规互感器

非常规互感器的应用是智能变电站技术体系中重要的一个环节。智能变电站内新一代的二次装置支持电压电流值的小功率信号输入及数字信号输入,以及基于iec61850标准的过程总线通信技术的发展,使得电子式互感器在技术上有了应用的可能性,在实际工程中也具有越来越多的应用需求[3]。

国际上将有别于传统的电磁型电压/电流互感器的新一代互感器统称为非常规互感器(Non Conventional Instrument Transformer,简称NCIT)。非常规互感器依据其变换原理可以分为有源和无源两大系列,有源非常规互感器又称为电子式电压/电流互感器(EVT/ECT),无源非常规互感器主要指采用法拉第效应光学测量原理的互感器,又称为光电式电压/电流互感器(OVT/OCT),见图1-1:

图1-1 非常规互感器

Fig. 1 Non Conventional Instrument Transformer

有源式电子互感器主要指罗柯夫斯基(Rogowski)线圈互感器,简称罗氏线圈,又称为电子式电压/电流互感器(EVT/ECT),其特点是需要向传感头提供电源,目前成熟产品均采用光纤功能方式。

无源式电子互感器主要指采用光学测量原理的电流互感器,又称为光电式电压/电流互感器(OVT/OCT),其特点是无须向传感头提供电源。

1.3 智能开关设备

与常规变电站开关设备相比,智能变电站在应用方面进一步加大了开关设备信息化。智能化的开关设备将监测更多设备自身状态信息,全面实现对开关设备的物理状况、动作情况、运行工况等方面的信息化实现[4];在自动化功能方面,进一步实现智能化,在控制功能、状态自检测、状态检修等方面实现智能化控制操作;设备信息及智能功能,可通过网络实现与上级系统及其它设备的运行配合,自动化程度更高,具有比常规自动化设备更多、更复杂的自动化功能;具备互动化能力,与上级监控设备、系统及相关设备、调度及用户等及时交换信息,分布协同操作。