首页 > 范文大全 > 正文

浅议高层建筑转换层结构的设计

开篇:润墨网以专业的文秘视角,为您筛选了一篇浅议高层建筑转换层结构的设计范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

【摘要】转换层结构的设计与应用是目前很多大型高层、多功能建筑施工设计中的重要项目,本文就高层建筑转换层结构形式及受力特点进行了分析,研究了转换层的结构布置,分析了转换层上下结构侧向刚度比的合理取值。

【关键词】高层 建筑 转换层 设计

中图分类号: TU97 文献标识码: A 文章编号:

一、前言

高层建筑转换层结构形式及受力特点

1、结构受力特点

工程中经常遇到的带转换层的结构形式多为底层大空间剪力墙结构,即结构的部分剪力墙落地,部分剪力墙在底部变为框架,这种结构形式的受力特点是为:

(1)底层大空间剪力墙结构以转换层为界,其上部所有剪力墙变形曲线相似,由水平外力产生的楼层剪力按各片剪力墙的等效刚度比例分配,其下部由于框支剪力墙的侧向刚度急剧变小,使底层框架承担的水平力也迅速减小,而落地剪力墙在底层承担的水平力却迅速增加。

(2)水平力在底层分配关系迅速改变,这种改变是通过转换层的刚性楼板对内力的传递作用而实现的。转换层楼板在完成上下楼层剪力重新分配的同时,自身在平面内受到很大的力,也产生了较明显的平面内变形,从而影响了关于楼板平面刚度无限大的基本假定。

(3)当底层框支柱和落地剪力墙按等效刚度分配水平力时,由于框支柱的侧向刚度通常不到剪力墙侧向刚度的1%,因此在计算中它所承担的水平力是极小的。但当转换层楼板有变形时,底层在框支柱区域内水平位移达到最大,从而使框支柱实际受到的剪力要比理论分析所得到的剪力大得多。以上受力特点表明,转换层上下附近的受力状况是比较复杂的,在工程设计时必须对落地剪力墙和框支柱留有安全储备。

2、高层建筑转换层的主要结构形式及特点

(1)粱式转换。粱式转换层是目前高层建筑中实现垂直转换最常用的结构形式,其传力途径为上部墙—转换粱—下部柱。具有传力直接、明确和清楚的优点,便于工程计算、分析和设计,且造价较为节省,据资料统计,粱式转换层数量约占转换层总量的77%。转换梁的截面高度为0.8- 6m,高层建筑带转换层结构的绝大多数为梁式转换层。

(2)箱式转换。是单向托粱和双向托粱同上、下层较厚的楼板浇筑成一整体共同工作,从而形成刚度较大的箱式转换层。

(3)板式转换。当转换层上下柱网错开较多。布置又不规则,难以用梁直接承托时,则需要做成厚板,形成板式转换层,从抗剪和抗冲切考虑,转换板厚度往往很大,实际转换板厚度可达2.0- 2.8m,板式转换层的下层柱可以灵活布置,但自重很大,材料耗用多,拖工难度大。

(4)桁架转换。桁架分为空腹桁架与实腹桁架两种。桁架转换层与梁式转换相比,受力状态更明确,可使用空间更大,自重小,抗震性能好,但其节点设计难度大,“强斜腹杆、强节点”是桁架转换层设计的基本原则,而节点的受力状态复杂,容易发生剪切脆性破坏,造成计算配筋多,施工不便,限制了桁架转换的应用。桁架转换层设计中应注意以下问题:首先是桁架转换层一般要求高度在3m以上,当层高较小时斜压腹杆形成超短柱,在地震作用时容易产生脆性破坏;其次是要保证上弦节点与上部集中荷载的中心对齐,充分发挥桁架的受力优势;在上下弦和斜拉腹杆中施加预应力,可以显著减小构件截面,经济效果好。

(5)斜柱转换。斜柱转换式是较为特殊的一种结构型式,它可以较好地发挥混凝土的受压性能,形成更多更好利用的建筑空间。斜柱转换中会产生较大的水平荷载,在实际工程中可以结合建筑物的平面布置,通过加设圈梁或拉梁,使其以最短的路径相互平衡。转换斜柱尽可能通过较多的楼层,以减小其在上下楼层产生的水平力,使转换层设计更加方便。

二、转换层的结构布置

底部带转换层的建筑结构,转换层上部的部分竖向构件不能直接连续贯通落地,因此,必须设置安全可靠的转换构件。按现有的工程经验和研究结果,转换构件可采用转换大梁、析架、空腹析架、斜撑、箱形结构以及厚板等形式。由于转换厚板在地震区使用经验较少,可在非地震区和6 度抗震设计时采用,对于大空间地下室,因周围有约束作用,地震反应小于地面以上的框支结构,故7 度,8度抗震设计时的地下室可采用厚板转换层。落地剪力墙和框支柱的布置对于防止转换层下部结构在地震中倒塌将起十分重要的作用。高规规定了几条重要原则: 带转换层的筒体结构的内筒应全部上、下贯通落地并按刚度要求增加墙厚; 框支剪力墙结构要有足够的剪力墙上、下贯通落地并按刚度比要求增加墙厚; 长矩形平面的框支剪力墙结构,抗震设计时,其落地剪力墙的间距按原规程适当加严,比原规程增加了限制落地柱周围的楼板不应错层的规定。这几点的原则是防止转换层下部结构破坏的基本要求,特别是对于抗震设计的结构,要求更加严格。遵守这些原则就可控制刚度突变,减少内力传递的突变程度缩短转换层上、下结构内力传递途径,保证转换层楼盖有足够的刚度以传递不同抗侧力结构之间的剪力,防止框支柱因楼盖错层发生破坏。框支剪力墙转换梁上一层墙体内不宜设边门洞、中柱上方不宜设门洞。试验研究和计算分析说明,这些门洞使框支梁的剪力大幅度增加,边门洞小墙肢应力集中,很容易破坏。此外,落地剪力墙和筒体的洞口宜在墙体的中部,以便使落地剪力墙各墙肢受力( 剪力、弯矩、轴力) 比较均匀。

三、转换层上下结构侧向刚度比的合理取值

转换层上部与下部结构的等效侧向刚度比计算时宜综合考虑各构件的剪切、弯曲和轴向变形对结构侧移的影响。当转换层设置在3 层及3 层以上时,其楼层侧向刚度尚不应小于相邻上部楼层侧向刚度的60%。这一规定是为了防止出现转换层的下部楼层刚度较大,而转换层本层的侧向刚度较小,此时等效侧向刚度比虽能满足限值要求,但转换层本层的侧向刚度过于柔软。层侧向刚度比的限值取60%,与美国规范( IBC-2000)的规定相同。高规第4.4.2 条只规定了楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%,未规定下限值。对于位于3 层及3 层以上的带转换层的高层建筑结构,规定60% 作为下限值是十分必要的。当转换层设置在3 层及3 层以上时,应按高规规定分别计算等效侧向刚度比和转换层本层与转换层相邻上部楼层侧向刚度比,设计中应同时满足这两种刚度比的限制条件。高层建筑转换层结构设计中转换层上、下层主体结构的剪切刚度比γ 的合理取值:

1、扩大柱距的框筒结构或内部抽柱的框架结构

对这种情况的结构γ 应取1,即保持上、下层剪切刚度不变。在一般情况下,由于建筑功能上要求下部柱子截面小,层高要比上层高许多,因此很难满足上述要求。此时建议转换层以下采用钢骨混凝土柱或钢管混凝土柱,这样来调整柱的截面面积、刚度和延性,从而达到满足建筑功能的要求。但这时应特别注意转换层上、下的连接,当转换层上部为钢筋混凝土时,应将下部钢骨混凝土柱锚入转换层内。

2、底部大空间剪力墙结构

由于底部大空间剪力墙结构的底层高大以及部分剪力墙不落地改为框支后,底部刚度显著减小,为防止底部层刚度突变,应控制转换层上、下剪切刚度比( γ) : 当底部大空间为1 、2层时,转换层上、下结构等效剪切刚度比γ宜接近1,非抗震设计时γ≤2.5,抗震设计时γ≤2。

结论

转换层结构较为复杂且工程量又较大,因此设计人员首先应注重概念设计,这样一来可以少走弯路;其次通过上述计算和分析可以得知,此类建筑在平面布置上应尽可能的规则、对称,减少偏心,优化调整转换层上下结构的布置和刚度,使之接近是十分必要的;同时应注意框支梁、框支柱等构件的特殊性;最后也应考虑施工难度大的因素,因此在设计时,尽量考虑施工的可行性,以达到最为合理的设计。

【参考文献】

[1]唐兴荣. 高层建筑转换层结构设计与施工[M].北京:中国建筑工业出版社,2002.

[2]谢晓锋. 高层建筑转换层结构型式的应用现状及问题[J].广东土木与建筑,2004.