首页 > 范文大全 > 正文

高产γ-氨基丁酸菌株的筛选及诱变

开篇:润墨网以专业的文秘视角,为您筛选了一篇高产γ-氨基丁酸菌株的筛选及诱变范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:目的:本实验利用选择性培养基BCP从酸菜中筛选一株高产γ-氨基丁酸菌株。方法:对其形态学及生理生化实验进行鉴定,利用高效液相色谱法(HPLC)测定发酵液GABA产量,并对该菌株进行紫外及亚硝基胍(NTG)诱变,结果:确定该菌株为噬酸乳杆菌,编号为SW-135,发酵液中GABA为0.57克/升,诱变最佳条件为:紫外照射距离20厘米,时间60秒;NTG浓度为0.3克/升,处理时间20分钟,结论:诱变后得到高产突变菌株SW-135-13,连续传代5次,未见回复突变,平均GABA产量为1.31克/升。

关键词:噬酸乳杆菌;γ-氨基丁酸;诱变

中图分类号:TQ921.3文献标识码:A文章编号:1674-0432(2014)-05-28-3

0引言

γ-氨基丁酸(γ-aminobutyric acid,GABA)是天然存在的一种非蛋白质组成氨基酸,白色结晶状,易潮解,极易溶于水[1]。它具有特殊的生理活性,在动植物体内均能发现它的存在。在豆类、中草药种子中都含有较多的GABA[2]。在动物体内,它主要存在于神经组织中,科学研究表明[3],它具有较多的生理功能,它能促进脑的活化,美容润肤,改善睡眠,健脑益智,减慢脑衰老机能,高效减肥,抗惊厥,降低血压、血氨等功能,同时,还能抑制多种疾病的发生,比如脂肪肝、肾炎等[4]。

GABA的制备有生物合成法和化学合成法[5]。化学合成法要求反应条件比较苛刻,成本高,得率低。生物合成法相比较来说既安全、成本又低。目前主要采用曲霉菌、酵母、乳酸菌来发酵谷氨酸产GABA,由于菌种缺乏安全性,因此找到一株高产可食用的菌种产GABA,势在必行[6]。

本实验从酸菜、泡菜、酸奶中筛选出一株产GABA菌株,为了提高其产GABA含量,对其进行紫外及亚硝基胍诱变,进一步提高其产量,为今后的研究打下了基础。

1材料与方法

1.1材料与试剂

1.1.1材料东北地产自然发酵的酸菜、泡菜,均购自长春市农贸市场;老北京酸奶,购自长春市佳得乐超市。

1.1.2仪器与设备CL-32L型全自动高压灭菌锅,日本ALP公司;SHP-250型生化培养箱,上海精宏实验仪器有限公司;XS-402型电子显微镜,南京江南光电集团股份有限公司;SW-CJ-1FD超净工作台,苏州净化设备有限公司。

1.1.3培养基MRS液体培养基(L):蛋白胨10.0克,牛肉膏10.0克,酵母浸粉5.0克,磷酸二氢钾2.0克,柠檬酸三铵2.0克,乙酸钠5.0克,葡萄糖20.0克,吐温801.0毫升,MgSO4・7H2O 0.5克, MnSO4・4H2O 0.25克,调pH至6.2~6.4,121℃灭菌20分钟。

MRS固体培养基:MRS液体培养基基础上添加琼脂15~20克,121℃灭菌20分钟。用于保藏菌种。

乳酸菌分离培养基(BCP):酵母粉0.5克,乳糖0.5克,5%溴甲酚紫0.25毫升,水100毫升,pH自然。

BCP固体培养基:在液体培养基基础上添加琼脂20克。

1.1.4试剂γ-氨基丁酸,磷酸吡哆醛,亚硝基胍北京鼎国;其他试剂均为国产分析纯。

1.2实验方法

1.2.1目的菌株的筛选分别取酸菜汁、泡菜汁、酸奶稀释适当的倍数,取0.2毫升稀释液无菌涂布于BCP平板上,35℃静置培养48小时。

挑选周围变黄的可疑菌落,采用平板划线法,反复纯化,直到得到纯菌株。

1.2.2γ-氨基丁酸测定方法

1.2.2.1采用薄层层析法定性测定发酵液中GABA含量[7]

展开剂为正丁醇∶冰醋酸∶水=4∶2∶1,显色剂为0.6%茚三酮溶液,以5∶2比例加入层析缸内,取出(5×10)厘米硅胶板,点取3毫克/毫升GABA标准品和预处理的发酵液,完毕后置于80℃烘箱内,显色10分钟。

1.2.2.2利用高效液相色谱法定量测定发酵液中GABA含量[8]

取出发酵液,离心15分钟(8000转/分钟),弃沉淀,将上清液浓缩至10毫升,供HPLC分析。以GABA浓度为横坐标,峰面积为纵坐标绘制标准曲线。

1.2.3菌种形态学及生理生化鉴定观察平板上菌落形态,挑取单菌落进行革兰氏染色,在100倍油镜下观察单菌株形态。然后进行微生物生理生化实验,淀粉水解实验、石蕊牛乳试验、硫化氢实验、明胶液化实验、葡萄糖产酸产气实验。

1.2.4微生物生长曲线将斜面保存菌种,以5%接种量接入100毫升MRS液体培养基中,35℃培养24小时,实验中每隔2小时取一次菌液,以未接菌培养的培养基做对照,在波长600毫米处测定其吸光值。绘制菌体生长曲线图。

1.2.5菌株的诱变

1.2.5.1紫外诱变[9]取发酵菌液20毫升置于空培养皿中,放到距离25W紫外灯20厘米处,再打开磁力搅拌器,分别诱变5秒、15秒、25秒、30秒、35秒、45秒、60秒。取各个诱变菌液1毫升分别稀释10-1、10-2、10-3、10-4、10-5、10-6,然后分别吸取诱变菌液0.2毫升涂布于BCP平板上,同时,以未诱变菌种作对照。35℃培养48小时,计算诱变菌种的致死率。

1.2.5.2亚硝基胍(NTG)诱变[10]取菌悬液20毫升离心15分钟(8000r/分钟),弃上清液,用灭菌的生理盐水洗涤一次沉淀,再加入20毫升灭菌生理盐水,震荡均匀。以10毫克NTG:1毫升丙酮的体积比配制亚硝基胍诱变溶液,再以0.3克/升亚硝基胍诱变液加入到菌液中,35℃、90转/秒分别处理20分钟、30分钟、40分钟、50分钟,然后计算致死率,确定处理时间。

在确定处理时间基础上,在分别将0.1克/升、0.2克/升、0.3克/升、0.4克/升、0.5克/升的亚硝基胍诱变液加入到菌悬液中,处理一定时间,计算致死率,确定处理剂量。

1.2.5.3致死率的计算

计算公式如下:

2.3菌株的生长曲线

菌株的生长曲线图如图3,图3表明,菌株的对数生长期为2~12小时。

2.4菌株的诱变

2.4.1紫外诱变时间的确定紫外诱变时间与SW-135致死率关系如图4。根据文献报道[12],一般把致死率在80%~90%的范围作为紫外诱变最佳时间,此时容易筛选到高产正突变株。图4表明,当菌液稀释到10~3时,紫外照射60秒,致死率为85.5%。因此,本实验选取最佳诱变时间为60秒。

2.4.2亚硝基胍诱变剂量的确定如图5所示,随着亚硝基胍处理时间的增加,致死率也不断的增加,当处理时间为30分钟时,致死率为86.2%,因此,选择最佳处理时间为30分钟。但是致死率还与亚硝基胍浓度有关系,在确定了最佳处理时间的基础上,进一步考查了亚硝基胍浓度与致死率的关系。如图6所示,当其浓度为0.3克/升时,致死率为87.1%。因此本实验选择亚硝基胍浓度为0.3克/升。

2.4.3菌株的遗传稳定性将突变菌株进行传代培养,用高效液相发检测发酵液中γ-氨基丁酸含量[13],突变菌株遗传稳定,未见回复突变,菌株产γ-氨基丁酸高达1.35克/升,较诱变前菌株提高了0.78克/升。

3讨论

本实验从酸菜、泡菜、酸奶中筛选出5株产菌株,经过复筛得到一株高产的噬酸乳杆菌,命名为SW-135,其产量为0.57克/升,并以SW-135为出发菌株进行紫外和亚硝基胍诱变,研究发现紫外诱变最佳时间为60秒;亚硝基胍诱变最佳浓度0.3克/升时处理时间30分钟。经过诱变和筛选,得到高产突变菌株SW-135-13,产量为1.35克/升,是出发菌株2.37倍[14]。

参考文献

[1]赵玉红,张立钢,庞伟娜.乳酸菌和酵母菌共生发酵面包的研究[J].食品工业技术,2003,24 (3):61-62.

[2]吴祖兴.乳酸菌在发酵香肠中的应用研究[J].食品工业科技,2002,23(8):55-57.

[3]李志成,严佩峰,李红蕊,等.乳酸菌基础培养基比较研究[J].食品研究与开发,2007,23 (11):68-75.

[4]刘屹峰.乳酸菌的生理特性和生物学功能[J].丹东纺专学报,2002,16 (2):36-44.

[5]谈重芳,王雁萍,霍裕平,等.乳酸菌鉴定方法在食品工业中的应用及研究进展[J].食品工业科技,2007,(2):76-85.

[6]赵斌,何绍江.微生物实验[M].北京:科学出版社,2004.

[7]徐成勇,郭本恒,吴昊.酸奶发酵剂和乳酸菌生物技术育种[J] .中国生物工程杂志,2004,(7):55-59.

[8]栾金水.乳酸菌的研究应用进展[J].江苏调味副食品, 2004,21(1):8-10.

[9]黄君红,成洁珊,陈青荷.乳酸菌生长最佳培养基的筛选[J].中国酿造,2001,(2):9-11.

[10]徐冬云,周立平,童振宇,等.产γ-氨基丁酸乳酸菌的分离筛选[J].现代食品科技,2006,22(3):59-64.

[11] Guin TWC,Bottiglieri TSI.GABA,γ-hydroxybutyric acid, and neurological disease [J].Ann Neurol,2003,6:3-12.

[12] Xiao -feng Guo, Hitoshi. Identification of highγ-Aminobutyric Acid producing Marine Yeast Strains by Physiological and Biochemical Characteristics and Gene sequence Analyses [J]. Biosci. Biotechonol. Biochem.,2009,73(7),1527-1534.

[13]李玉萍,熊向源,叶军等.γ-氨基丁酸在开发功能性食品中的应用[J].河北农业科学,2008,12(11):52-54,69.

[14]叶砚,蒋冬花,嵇豪.响应面法优化红曲X27液态发酵产γ-氨基丁酸工艺条件[J].中国粮油学报,2010,25(9).

作者简介:黄翠萍,吉林农业大学食品科学与工程学院,硕士研究生,研究方向:微生物菌种筛选及发酵条件优化。

通讯作者:郑鸿雁,硕士,副教授,研究方向:功能食品、微生物菌种筛选及发酵工艺研究。