首页 > 范文大全 > 正文

不像钳子的“钳子”

开篇:润墨网以专业的文秘视角,为您筛选了一篇不像钳子的“钳子”范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

在日常生活中,钳子是个经常用到的工具,可是你知道什么是世界上最精细的钳子吗?那就是“膜片钳”。其实,“膜片钳”并不是我们所常见的那种钳子,而是一套生物学的科研仪器。它和我们普通的钳子在外表上就差远了,完全没有普通钳子的手柄和夹头,所以它无法用来“夹”任何日常物品。实际上,它是用来测电流的。

要说明白这把特别的“钳子”,我们还得从细胞说起。大家都知道,细胞是构成生物体的基本单位。细胞外面有细胞膜,细胞里面有细胞质和细胞核。而细胞内和细胞之间的信号传导的重要途径是通过镶嵌在细胞膜上的离子通道蛋白进行的。离子通道是细胞膜上的一类特殊亲水性蛋白质微孔道,是神经、肌肉细胞电活动的物质基础。可以说,细胞离子通道的结构和功能正常是维持生命活动的基础。

科学家们发现,离子通道的主要功能有:提高细胞内钙浓度,触发生理效应;决定细胞的兴奋性、不应性和传导性;调节血管平滑肌的舒缩活动;参与突触传递等等。离子通道的功能发生异常时,会导致机体整体生理功能紊乱,形成某些先天性或后天获得性疾病,会累及神经、肌肉、心脏、肾脏等系统和器官。许多疾病的发生和发展与离子通道的功能、结构异常有关。如人体细胞中的钾离子通道如果出了问题,可能会引起阵发性舞蹈手足徐动症。那么,科学家们怎么研究这些离子通道呢?这就要用到膜片钳技术。

膜片钳是从英文“Patch Clamp”翻译而来。这项技术是由两位德国细胞生物学家埃尔温・内尔和贝尔特・萨克曼所发明。在1976年,他们为了研究细胞膜上单一或多数离子通道的分子活动,发明了这种记录通过离子通道的离子电流的技术。这一技术大大提高了细胞电活动的研究精度,是生物学研究领域的一次革命性突破。正因为如此,他们两人获得了1991年的诺贝尔医学与生理学奖。这一技术虽然问世只有十几年,但已在相关领域显示出了非常重要的意义和广阔的前景。

膜片钳技术是生物学和物理学相结合的成果。为了揭示细胞的生理过程,科研人员经常需要测量生物电信号,所以这就要用到物理学中的相关知识方法,从而形成了一门细胞电生理学。膜片钳技术是一门研究离子通道分子活动的技术,它要记录的是通过离子通道的离子电流。具体操作过程是这样的,运用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆以上的阻抗使之对接,使与电极尖开口处相接的细胞膜小片区域(膜片)与其周围在电学上分隔,在此基础上固定电位,对此膜片上的离子通道的离子电流进行检测记录。这种离子电流是非常非常微小的,所以要用电子学中的放大器来处理,并且最关键的,要把那些“杂质信号”(噪音信号)排除掉,所以,这是一项非常精细的技术。为了记录试验结果,整个系统里面计算机是少不了的。

如今,膜片钳已经是世界重要的生物学实验室里必不可少的仪器。科学家们用它发现了很多离子通道的秘密。借助这一技术,我国上海生命科学研究院的袁小兵和王以政研究员领衔的研究组,在国际上首次发现了引导神经生长方向的新机制。他们发现,神经纤维最前端生长锥的细胞膜上有一类称为“瞬间受体电位通道”(TRPC)的阳离子通道,正是这一离子通道起着传递神经纤维生长“方向指令”的关键作用。

我们已经知道,神经纤维的生长主要是尖端生长,生长中的神经纤维最前端是一个被称为生长锥的结构。它能够活跃地探索细胞外的环境、感受外界的导向因子,引导神经纤维朝特定的方向生长,逐步形成神经网络。但是,在这个神秘的过程中,神经纤维生长方向的调控机制一直是一个谜。我国科学家首次观察到神经细胞外的导向因子,这是一种称为BDNF的蛋白质,在把信号传递到细胞膜内过程中,能打开一种称为TRPC的细胞膜阳离子通道,促使神经纤维最前段生长锥内的钙离子浓度增加,哪一侧细胞中钙离子浓度较高,神经就往哪里长。这一结果有助于揭示神经发育的奥秘,对神经损伤再生的研究提供理论借鉴,为开发和设计有利于神经再生药物提供新思路。

21世纪被称为生命科学和生物技术的时代,在医疗、卫生、工业、农业等领域,生物技术对改善人类健康状况及生存环境都在发挥着越来越重要的作用。我们相信,膜片钳技术还会帮助生物学家们发现更多的科学之谜。