首页 > 范文大全 > 正文

函数相关问题分析

开篇:润墨网以专业的文秘视角,为您筛选了一篇函数相关问题分析范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

绝对值函数是个很广的概念,可分为两大部分,一部分是绝对值施加在X上的,另一部分是绝对值号施加在Y上的,如y=|x||y|=x就记住绝对值号在谁上头就把原图像根据哪一个轴做轴对称变换,记住这一点,不管多复杂的解析式都可以照此办理.绝对值函数可以看作初等函数。3.1导数,是微积分中的重要基础概念。

首先是初等函数相关问题分析

1.绝对值函数的概念及性质

绝对值函数是个很广的概念,可分为两大部分,一部分是绝对值施加在X上的,另一部分是绝对值号施加在Y上的,如y=|x| |y|=x就记住绝对值号在谁上头就把原图像根据哪一个轴做轴对称变换,记住这一点,不管多复杂的解析式都可以照此办理.绝对值函数可以看作初等函数。

1.1绝对值函数的定义域,值域,单调性例如f(x)=a|x|+b是

定义域:即x的取值集合,为全体实数;值域: 不小于b的全体实数

单调性:当x0时,单调减函数;> > 增 ;< < 增 ;< < 减 ;

1.2绝对值函数图象规律:

|f(x)|将f(x)在y轴负半轴的图像关于x轴翻折一下即可,在y轴正半轴的图像不变。

f(|x|)将f(x)在x轴负半轴的图像关于y轴翻折一下即可,在x轴正半轴的图像不变。。

1.3带绝对值的函数求导,即将函数分段。

2.取整函数的概念与性质

2.1取整函数是:设x∈R , 用 [x]或int(x)表示不超过x 的最大整数,并用"{x}"表示x的非负纯小数,则 y= [x] 称为取整函数,也叫高斯函数。任意一个实数都能写成整数与非负纯小数之和,即:x= [x] + {x},其中{x}∈[0,+∞)称为小数部分函数。

2.2取整函数的性质:a 对任意x∈R,均有x-1

3.导数的概念与性质

3.1导数,是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。导数另一个定义:当x=x0时,f‘(x0)是一个确定的数。这样,当x变化时,f’(x)便是x的一个函数,我们称他为f(x)的导函数(简称导数)。

3.2求导数的方法

(1)求函数y=f(x)在x0处导数的步骤:① 求函数的增量Δy=f(x0+Δx)-f(x0);② 求平均变化率;③ 取极限,得导数.

(2)几种常见函数的导数公式: ① C’=0(C为常数函数);② (x^n)’= nx^(n-1) (n∈Q); ③ (sinx)’ = cosx;④ (cosx)’ = - sinx;⑤ (e^x)’ = e^x;⑥ (a^x)’ = a^xlna (ln为自然对数);⑦ (Inx)’ = 1/x(ln为自然对数;⑧ (logax)’ =(xlna)^(-1),(a>0且a不等于1).

补充:上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造成歧义,要多加注意。

(3)导数的四则运算法则: ①(u±v)’=u’±v’; ②(uv)’=u’v+uv’;③(u/v)’=(u’v-uv’)/ v^2.

(4)复合函数的导数

复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。

4.高等函数的概念以及含义问题

4.1一元微分

1)一元微分是设函数y = f(x)在x.的邻域内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) ?f(x0)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。

通常把自变量x的增量 Δ

x称为自变量的微分,记作dx,即dx = x。于是函数y = f(x)的微分又可记作dy = f’(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 当自变量X改变为X+X时,相应地函数值由f(X)改变为f(X+X),如果存在一个与X无关的常数A,使f(X+X)-f(X)和AX之差是X0关于X

的高阶无穷小量,则称A·X是f(X)在X的微分,记为dy,并称(fX)在X可微。一元微积分中,可微可导等价。记AX=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。

2)其几何意义为:设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

高等函数中还有值定理与导数应用、泰勒中值定理、曲率、方程的近似解、不定积分、定积分、平面曲线的弧长、、可降阶的高阶微分方程、二阶常系数非齐次线性微分方程、向量代数与空间解析几何、重积分及曲线积分以及无穷级数等,本文就简单的函数问题做一z总结。