首页 > 范文大全 > 正文

电力系统中继电保护的应用初探

开篇:润墨网以专业的文秘视角,为您筛选了一篇电力系统中继电保护的应用初探范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:电力系统中的继电保护作用随着我电力系统的发展应用逐渐广泛,因此对其的应用进行研究具有十分重要的现实意义。本文就电力系统中的继电保护技术的特性、任务、应用及其发展趋势展开讨论。

关键词:电力系统;继电保护;应用

中图分类号:TM7文献标识码: A

前言

随着科技的不断进步,继电保护技术得到了快速发展和完善继电保护技术经过不同的发展阶段,呈现出不同的存在形态。主要有电磁式、晶体管式、集成电路式和计算机辅助装置四种类型计算机网络技术的不断发展给社会各行各业的发展带来了蓬勃生机,有力地推动了各行业的飞速发展。在电力系统中广泛地运用计算机技术,极大地促进了电力系统的发展。

一、继电保护技术的特性及任务

(一)特性

随着国家经济的发展,电力充斥着人们生活的每个方面,甚至一些高端工业的发展也离不开电力系统的支持。而由于科技不断发展,电力系统也不断更新完善,即使这样,还是存在一些缺陷与不足,所以偶尔会发生故障,这就要用到了继电保护系统对电力自动化进行保护。继电保护技术之所以可以快速准确地发现电力系统中的问题,是因为继电保护技术中存在以下相关优秀特性。

1、选择性。与其他技术不同,继电保护系统可以选择较小范围内的故障元件,减少了无故障元件被连带误判的概率。当继电保护技术识别故障元件后,选择性特性立即发挥其优势,增强继电保护技术的科学性。

2、可靠性。可靠性是保证继电保护技术保护我国电力系统的基础。适中的可靠性可以保证故障元件不被漏检、不被误检,是继电保护系统运行的前提。

可靠性的基础是速动性,当检测到故障元件时,可靠性能使保护系统快速动作,发出警报,缩短了所需的维修时间。而可靠性的特性又类似于灵敏性,即可靠性不能过高也不能过低,过低会检测不到故障元件,使大面积的电力系统无法正常工作或者对其他元件带来损失。而可靠性过高有会发生误切事件,减少正常元件的使用寿命,对电力亦会造成损害。

3、灵敏性。灵敏性是继电保护技术合理化的基础,比其他保护装置更加适用于我国电力系统。只有继电保护灵敏的条件下,才能对故障元件进行快速判断,缩短相应发现时间,为维修人员的维修带来便利。

灵敏性有一部分是由灵敏系数体现出来的,并不是灵敏系数高的继电保护系统好,而是每套系统都对应其电力自动化系统,只有灵敏系数适中的系统才可以更好的保护相应电力系统。

4、速动性。顾名思义,速动性可以保证继电保护系统快速切除故障元件,保证无故障部分元件不受牵连,继续为居民或工业生产供电。减小停电范围,降低所需要检查故障元件的时间。

速动性与选择性二者相互独立工作,但是两者工作结合协调,使继电保护装置可以快速、准确的找到故障元件,不仅如此,更可以缩小了停电范围,保证了非故障的电力系统的继续工作,减少对正常元件的使用量,有利于工业与人民用电的正常与稳定。

(二)任务

1、当电力系统出现不正常运行状态时,根据不正常工作情况和设备运行维护条件的不同,或发出信号使值班人员能及时采取措施,或由装置自动进行调整(如减负荷),避免不必要的动作和由于干扰而引起的误动作。反应不正常工作状态的继电保护,通常都不需要立即动作,可带一定的延时。

2、当被保护的电力设备发生故障时,应该由该设备的继电保护装置自动地、迅速地、有选择地向离故障设备最近的断路器发出跳闸命令,将故障设备从电力系统中切除,保证无故障设备继续运行,并防止故障设备继续遭到破坏。

3、继电保护与自动重合闸装置配合,可在输电线路发生瞬时性故障时,迅速恢复故障线路的正常运行,从而提高供电的可靠性。

三、电力系统中继保护的具体应用

(一)利用输配电线路进行接地保护

在配电线路中可以分为大电流的接地方式和小电流的接地方式,它们的区别主要在于其配电线路中中性点的接地方式不同。大电流接地方式的保护原理是:当配电线路发生接地故障的时候,大电流接地系统会及时地进行跳闸,从而有效的切断发生故障的设备;小电流接地方式的保护原理是:当配电线路中发生故障的时候,小电流接地系统不会立即切断故障线路,而是能够再持续的工作一段时间,与此同时发出警报提示信号。下面我们主要对小电流接地系统如何进行接地保护进行阐述

在通常的情况下,小电流接地系统中在发生单相接地短路故障的时候,对于负荷供电不产生影响。小电流可以选择下面几种接地保护方式:一是通过零序电压实施保护。在供电系统正常运行的时候,没有零序电压,并且三相电压是对称的,各自的相电压分别通过电压表显示出来。当信号继电器发出警示信号的时候,就说明配电线路中发生了单相的接地短路事故,因此在系统的各处会出现零序电压。在这种情况出现时,可以通过读取电压表的数值来进行判断,这时发生故障相的电压表的数值会降低,而没有发生故障相的电压表的数值则会升高。二是通过零序电流实施保护。在系统发生单相接地故障的情况下,通过对没有发生故障的线路和发生故障的线路进行比较可以看出,没有发生故障的线路中零序电流要小。在安装了互感器的线路方面,人们大多应用这种方式进行保护。三是通过零序功率实施保护。有单相接地故障发生时,发生故障的线路与没有发生故障的线路中零序电流的差别几乎很小,很难区分,在这种情况下,就可以进行区分保护,实现其对灵敏度的要求。

(二)电力变压器的保护

在电力系统中,变压器是非常重要的。变压器的正常运行能够保证供电的可靠性,同时也能保证电力系统输送电力有一个很好的稳定性。为了能够有效地防止因线路故障而引起的经济损失,我们需要对变压器实施必要的继电保护措施。

1、对变压器进行接地保护。对变压器进行接地保护的工作原理是:当配电线路发生故障的时候,把配电线路中的中性点进行直接接地,从而起到对变压器的保护效用。对变压器进行接地保护时,主要是借助于两段式的电流来实现的。

2、对变压器进行瓦斯保护。对于大型变压器的内部故障,我们一般主要采用瓦斯气体进行保护。瓦斯保护是一项比较重要的保护措施,并且具有很独特的保护优点。瓦斯保护的基本原理是:当变压器的油箱内部发生故障的时候,变压器油箱里的绝缘性材料和变压器油就会在故障电弧的推力下,进行分解并产生出瓦斯气体,瓦斯气体能够迅速而灵敏的将变压器中的开关断开,并发出报警的信号,从而实现对于变压器的

有效保护。

三、电力系统继电保护发展趋势

在未来继电保护技术将向计算机化、网络化、智能化、保护、控制、测量和数据通信一体化方向发展。随着计算机硬件的飞速发展,电力系统对微机保护的要求也在不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其他保护,控制装置和调度联网以共享全系统数据,信息和网络资源的能力,高级语言编程等,使微机保护装置具备一台PC的功能。

在实现继电保护的计算机化和网络化的条件下,保护装置实际上是一台高性能,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆投资大,且使得二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。

结语

综上所述,继电保护是电力系统中一个重要的组成部分,继电保护系统不仅可以防止事故的发生和发展,限制事故的影响和范围,而且还可以确保电力系统安全运行,对保证整个电力系统的安全运行具有十分重要的意义。所以,随着科技的不断发展,社会的不断进步,对于电力的需求量不断的增长,现在企业中机械化程度越来越高,用电的机器设备更是不断增多,电力系统继电保护应用将会越来越广泛。

参考文献:

[1]张雪.电力系统中继电保护的整定计算与研究[J].中国电业(技术版),2012,05:18-21.

[2]李七鑫.电力系统中继电保护的配置及实际应用[J].科技创新与应用,2012,25:177.