首页 > 范文大全 > 正文

耐药结核病流行现状及抗结核药物研究进展

开篇:润墨网以专业的文秘视角,为您筛选了一篇耐药结核病流行现状及抗结核药物研究进展范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘 要 我国是全球22个结核病流行严重的国家之一,同时也是全球27个耐多药结核病流行严重的国家之一。耐多药结核病在许多国家已成为主要公共卫生问题,而研发新型抗结核药物是有效遏制结核病流行和提高结核病防治效果的重要环节之一。本文介绍结核病、尤其是耐多药结核病的流行现状以及抗结核药物研发的最新进展。

关键词 结核病 耐多药结核病 流行病学 抗结核药物

中图分类号:R978.3 文献标识码:A 文章编号:1006-1533(2013)13-0003-05

The epidemic status of drug-resistant tuberculosis

and research progress of anti-tuberculosis drugs

XU Yin1*, MENG Xianmin1,2, ZHANG Yongxin3**

(1. Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; 2. School of Pharmacy,

Fudan University, Shanghai 201203, China; 3. Huashan Hospital, Fudan University, Shanghai 200040, China)

Abstract China is one of the 22 countries with serious tuberculosis epidemic in the whole world and is also one of the 27 countries with the serious multidrug-resistant tuberculosis (MDR-TB). MDR-TB has become the tough problem of public health in many countries. It is an important link to study and develop the new anti-tuberculosis drugs to prevent and control tuberculosis and to improve their efficacy. This article introduces the tuberculosis, especially epidemic status of drug-resistant tuberculosis and research progress of anti-tuberculosis drugs.

Key words tuberculosis; multidrug-resistant tuberculosis; epidemic; anti-tuberculosis drugs

耐多药结核病(multidrug-resistant tuberculosis, MDR-TB)是指结核杆菌至少已同时对异烟肼(isoniazid, INH)和利福平(rifampicin, RFP)耐药结核病[1]。2010年,全球MDR-TB患者数估算约为65万人,占全球结核病估算患者数的5.4%。WHO以及国际结核病和肺病联合会(International Federation of Tuberculosis and Lung Disease)根据最新耐药监测数据估计,在新发结核病患者中,至少10.2%的患者对1种抗结核药物耐药,MDR-TB患者占1.1%;在复治结核病患者中,至少18.4%的患者对1种抗结核药物耐药,MDR-TB患者占7.0%。换言之,全球每年新出现的MDR-TB患者数达30万~60万人[2-3]。

我国是全球22个结核病严重流行的国家之一,也是全球27个MDR-TB严重流行的国家之一,2010年估算的MDR-TB患者数占新发结核病患者数的5.7%、占复治结核病患者数的26%,两数据在27个MDR-TB严重流行国家中均排位为第15位。“第五次全国结核病流行病学抽样调查”结果显示,我国MDR-TB危害十分严重,每年新发患者数约12万人[4],与其他国家相比已相当严重。因此,结核病、尤其是MDR-TB的防治工作仍应得到全球各国的高度重视。

1 MDR-TB的现行治疗方案

结核病的现行标准治疗方案是WHO推荐的“督导短程化疗(Directly Observed Treatment Short-course, DOTS)”策略,即联合使用INH、RFP、乙胺丁醇(ethambutol, EMB)和吡嗪酰胺(pyrazinamide, PZA)治疗6个月,可治愈85%以上的结核病患者,但对MDR-TB患者的疗效较差,治愈率低于60%,其中对初治患者为40%、对复治患者仅20%[5]。现有的大部分一线抗结核药物都上市于20世纪50-60年代,由于应用时间长、患者依从性差等原因,导致MDR-TB大量出现。在WHO出版的《结核病治疗指南(第4版)》[6]中,治疗MDR-TB的药物被分为5组,其中第1组包括了除链霉素外的所有一线抗结核药物,第2至第5组中的药物均为二线抗结核药物。2011年WHO出版的《耐药结核病规范化管理指南》[7]指出,治疗MDR-TB的化疗方案应至少包括4种二线抗结核药物,如PZA、氟喹诺酮类药物、乙硫异烟胺(或丙硫异烟胺)和环丝氨酸(或对氨基水杨酸钠)。

2 抗结核药物研发进展

2.1 bedaquiline(TMC207)

bedaquiline已获美国FDA批准,是近40年来上市的第一个有新作用机制的抗结核药物,能有效用于抗MDR-TB治疗。bedaquiline是一种二芳基喹啉化合物[8],作用机制与现有抗结核药物都不同。结核杆菌在生存过程中需要自身产生能量以维持生命,bedaquiline就是通过作用于结核杆菌的三磷酸腺苷合成酶而抑制结核杆菌产生能量的[9]。

体外实验显示,bedaquiline对药物敏感和耐药的结核杆菌、MDR-TB和非结核分枝杆菌均有良好的杀菌活性,对结核杆菌有毒株H37RV的最低抑菌浓度(minimum inhibitory concentration, MIC)为0.06 μg/ml,对泛耐药结核杆菌也有一定的疗效[8,10-11]。

Ⅱb期试验以MDR-TB患者为对象,比较了对照组(安慰剂联合5种二线抗结核药物)和试验组(bedaquiline每日1次口服400 mg联合5种二线抗结核药物治疗2周,然后改为bedaquiline每日3次、每次口服200 mg联合5种二线抗结核药物)治疗的疗效。结果显示,经过8周治疗,试验组的痰菌培养转阴率大幅提高(从9%提高至48%);24周后,试验组的痰菌培养转阴率显著高于对照组(分别为79%和58%)[12]。

bedaquiline的常见不良反应以轻、中度的恶心等胃肠道反应为主,但试验组有更多的患者出现了QT间期延长[13]。值得注意的是,bedaquiline还有潜在的致命性风险:在第120周,试验组的死亡率较安慰剂组显著增加(分别为9/79和2/81),原因还无法予于完全解释[14]。

2.2 处于Ⅲ期试验中的药物

加替沙星和莫西沙星(moxifloxacin, MXF)是于1999年上市、用于治疗呼吸道感染的两个喹诺酮类药物,近年来发现它们在治疗结核病方面也有显著疗效,目前都处于抗结核治疗的Ⅲ期试验阶段,以考察能否将抗结核治疗疗程缩短至4个月。一项MXF用于抗结核治疗的Ⅱ期试验结果显示,与抗结核标准方案即疗程6个月的INH-EMB-RFP-PZA治疗相比,加用莫西沙星治疗2个月能缩短至痰菌培养转阴的时间且提高第6周时的痰菌培养转阴率(自61%提高到82%)[15]。此外,还有试验结果表明,将该标准方案中的EMB换成MXF或加替沙星后能显著提高治疗第8周时的痰菌培养转阴率并有可能缩短疗程,但不建议将INH换掉[16-18]。

赵刚[19]将62例MDR-TB患者随机等分为两组,评价MXF治疗MDR-TB的疗效。治疗组用MXF 0.4 g/d治疗,对照组用左氧氟沙星每天3次、每次0.2 g治疗,疗程均为12个月且都还同时辅以其他抗结核药物治疗。结果显示,治疗组的有效率为90.3%,优于对照组的77.4%;治疗组的痰菌培养转阴率为87.1%,优于对照组的74.2%。两组不良反应均轻微,差异无统计学意义。

廖鹏飞[20]为考察加替沙星治疗MDR-TB的疗效,将123例MDR-TB患者随机分为两组:观察组65例,使用加替沙星治疗;对照组58例,使用氧氟沙星治疗。两组患者均还同时接受阿米卡星、利福喷丁、对氨基水杨酸钠、INH、PZA和EMB的联合治疗,疗程都为24个月,观察痰菌培养转阴率和病灶吸收情况。结果显示,观察组的痰菌培养转阴率(86.2%)显著高于对照组(58.6%)、病灶明显吸收率(52.3%)也高于对照组(34.5%),而不良反应发生率(29.3%)与对照组(36.9%)相比差异无统计学意义。不过,加替沙星可致血糖水平波动,在一些国家己停用,是否适用于抗结核治疗尚无结论。

2.3 处于Ⅱ期试验中的药物

2.3.1 PA-824

PA-824是硝基咪唑并吡喃化合物,通过抑制分枝菌酸(结核杆菌细胞壁中的主要成分)的生物合成产生抗结核杆菌作用。体外研究表明,PA-824对药物敏感、耐单药、耐多药和泛耐药的结核杆菌株的MIC相近,其中对药物敏感结核杆菌株的MIC为0.06~0.25 μg/ml(12株临床分离株),对结核杆菌标准菌株H37Rv的MIC为0.039~0.13 μg/ml,对耐单药、耐多药和泛耐药的结核杆菌株的MIC均为0.015~0.531 μg/ml(21株临床分离株)[21-24]。

给急性结核杆菌感染小鼠模型口服PA-824(25 mg/kg)或INH(25 mg/kg)治疗10 d后的疗效相当[21]。慢性结核杆菌感染小鼠模型口服PA-824后的最低有效浓度和杀菌浓度分别为12.5和100 mg/kg。在慢性结核杆菌感染模型中,PA-824 100 mg/kg治疗的疗效在最初2个月内与INH 25 mg/kg相当,但在随后4个月内的抗结核杆菌活性则远强于INH或MXF 100 mg/kg而与RFP-INH方案的疗效相当[23]。Tasneen等[25]的研究显示,在慢性结核杆菌感染模型中,PA-824(100 mg/kg)联合RFP-PZA治疗比现标准方案(RFP-INH-PZA)更有效,而且PZA能大幅提高PA-824的活性。但Nuermberger等[26]的研究却显示,与对照组(RFP-MXF-PZA治疗2个月、RFP-MXF治疗4个月)相比,试验组(PA-824-MXF-PZA治疗2个月、PA-824-MXF治疗4个月)的疗程并不能缩短。

2.3.2 delamanid(OPC-67683)

delamanid是一种硝基二氢咪唑并噁唑衍生物,能抑制分枝菌酸的合成并在体内、外均显示有抗MDR-TB活性。体外研究显示,delamanid对药物敏感和耐药的结核杆菌株的MIC均为0.006~0.013 4 μg/ml;delamanid 0.1 μg/ml的杀菌活性与RFP 3 μg/ml相当,较INH 3 μg/ml和PA-824 1 μg/ml的杀菌活性更强[27]。

在Ⅱ期临床试验中, 481例MDR-TB患者除均接受联合基础药物疗法治疗外,还分别再服用安慰剂(160例患者)或delamanid每天2次、每次100 mg(161例患者)或每次200 mg(160例患者)治疗2个月。结果发现,试验组患者在第2个月时的痰菌培养转阴率高于安慰剂组(100、200 mg治疗组和安慰剂组分别为45.4%、41.9%和29.6%)[12]。delamanid的最常见不良反应为轻至中度的恶心和呕吐。此外,delamanid组的QT间期延长现象较安慰剂组有显著增加[12]。

2.3.3 SQ109

SQ109是乙胺丁醇类似物[28],作用机制尚未明确。SQ109对药物敏感的结核杆菌株的MIC为0.63~1.56 μg/ml,对耐EMB结核杆菌的MIC为0.9 μg/ml,对耐INH结核杆菌的MIC为1.4 μg/ml,对耐RFP结核杆菌的MIC为0.7 μg/ml[28-29]。有关研究显示,SQ109与INH、RFP和bedaquiline均具有协同作用,能使bedaquiline的抗结核杆菌活性提高4~8倍[30-31]。慢性结核杆菌感染小鼠模型接受SQ109 10和25 mg/kg治疗30 d后,其肺部和脾脏的菌落形成单位分别减少1.5~2.5 log,与接受EMB 100 mg/kg的作用相似[28]。将一线抗结核方案中的EMB替换成SQ109后可提高第4或第8周时的疗效[32]。

2.3.4 利奈唑胺

利奈唑胺已被批准用于治疗革兰阳性菌所致皮肤和软组织感染以及肺炎和菌血症,疗程一般为28 d。最近研究显示,利奈唑胺也具有良好的抗结核杆菌作用,对MDR-TB显示有强力的抗菌活性。

Alcala等[33]测定了117株对药物敏感和耐药的结核杆菌株对利奈唑胺的敏感性,结果发现利奈唑胺的MIC为0.125~1 mg/L。另有研究发现,利奈唑胺对MDR-TB的MIC为0.125~8 mg/L、MIC50为4 mg/L、MIC90为8 mg/L[34-35],推荐以MIC≤8 mg/L作为其敏感性的分界点。

目前,关于利奈唑胺用于抗结核治疗的剂量和疗程尚没有统一的意见。根据文献报道,治疗剂量推荐开始时使用每日2次、每次1 200 mg,4~6周后减至每日1次、每次600 mg;总疗程暂推荐为3~6个月[36]。

2.3.5 PNU-100480(sutezolid)

PNU-100480是利奈唑胺的类似物。体外研究显示,PNU-100480对5株药物敏感和5株耐药的结核杆菌株的MIC值为0.03~0.50 μg/ml,抗菌活性是利奈唑胺的3.2倍[37-38]。

目前,PNU-100480已完成Ⅰ期试验。该试验结果表明,PNU-100480具有良好的可耐受性,受试者口服1 200 mg/d时仍能耐受,杀菌效力强于利奈唑胺而与INH相当。此外,研究还发现,PNU-100480与PZA有协同作用[39]。

2.3.6 AZD5847

AZD5847是烷唑酮类化合物,目前处于Ⅰ期试验阶段。现有研究结果表明,禁食会影响AZD5847的生物利用度:受试者禁食后口服AZD5847 50~1 200 mg,生物利用度会降低30%~100%不等[40]。

3 结语

目前,全球结核病、特别是MDR-TB的流行给其防控工作带来了严重挑战。笔者认为,要做好耐药结核病的防治工作主要要做好以下3点:首先,应减少因治疗不足或不恰当而导致的耐药结核病。治疗不足或不恰当包括因患者的依从性差而导致的剂量减少或疗程缩短或中断以及治疗方案不恰当。要避免治疗不足或不恰当,就要不断提高常规“DOTS”质量[41]。其次,应更多和更及时地发现患者、尤其是MDR-TB患者。MDR-TB的发现是耐药结核病控制工作的关键环节。更多地发现患者也是减少结核病传播的有力措施。因此,临床上应加强对可疑者的筛查、实验室的确诊以及登记报告等工作。最后,应正确、合理地使用现有的抗结核药物,以延长其有效治疗寿命。同时,应加大抗结核新药的研发投入,加快研发速度。

参考文献

[1] 世界卫生组织. 耐药及耐多药结核病(MDR-TB)——常见的问题[EB/OL]. [2013-05-20]. http://www.who.int/tb/challenges/mdr/faqs/zh/.

[2] World Health Organization. Global tuberculosis control (2011) [EB/OL]. [2013-05-20]. http://www.who.int/entity/tb/publications/global_report/2011/gtbr11_full.pdf.

[3] Prasad R. MDR-TB: current status [J]. Indian J Tuberc, 2005, 52(3): 121-131.

[4] 全国第五次结核病流行病学抽样调查技术指导组, 全国第五次结核病流行病学抽样调查办公室. 2010年全国第五次结核病流行病学抽样调查报告[J]. 中国防痨杂志, 2012, 34(8): 485-508.

[5] Espinal MA, Kim SJ, Suarez PG, et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries [J]. J Am Med Asso, 2000, 283(19): 2537-2545.

[6] World Health Organization. Treatment of Tuberculosis: Guidelines. 4th Ed. [EB/OL]. [2013-05-20]. http://whqlibdoc.who.int/publications/2010/9789241547833_eng.pdf.

[7] World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis — 2011 update [EB/OL]. [2013-05-20]. http://whqlibdoc.who.int/publications/2011/9789241501583_eng.pdf.

[8] Sacks LV, Behrman RE. Challenges, successes and hopes in the development of novel TB therapeutics [J]. Future Med Chem, 2009, 1(4): 749-756.

[9] Haagsma AC, Podasca I, Koul A, et al. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase [J]. PLoS One, 2011, 6(8): e23575.

[10] Marie CR, Nacer L, Tom G, et al. Pharmacokinetics and pharmacodynamics of TMC207 and its N-desmethyl metabolite in a murine model of tuberculosis [J]. Antimicrob Agents Chemother, 2012, 56(3): 1444-1451.

[11] Barry CE 3rd, Blanchard JS. The chemical biology of new drugs in the development for tuberculosis [J]. Curr Opin Chem Bio, 2010, 14(4): 456-466.

[12] Maria TG, Vija S, Epifanio SG, et al. Delamanid for multidrug-resistant pulmonary tuberculosis [J]. N Engl J Med, 2012, 366(23): 2151-2160.

[13] Barry CE 3rd. Unorthodox approach to the development of a new antituberculosis therapy [J]. N Engl J Med, 2009, 360(23): 2466-2467.

[14] U.S. Food and Drug Administration. SIRTUROTM (bedaquiline) Tablets [EB/OL]. [2013-05-20]. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/204384s000lbl.pdf.

[15] Wang JY, Wang JT, Tsai TH, et al. Adding moxifloxacin is associated with a shorter time to culture conversion in pulmonary tuberculosis [J]. Int J Tubercul Lung Dis, 2010, 14(1): 65-71.

[16] Dorman SE, Johnson JL, Goldberg S, et al. The tuberculosis trials, substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis [J]. Am J Respir Crit Care Med, 2009, 180(3): 273-280.

[17] Conde MB, Efron A, Loredo C, et al. Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a double-blind, randomised, controlled phase II trial [J]. Lancet, 2009, 373(9670): 1183-1189.

[18] Rustomjee R, Lienhardt C, Kanyok T, et al. A phase II study of the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis [J]. Int J Tubercul Lung Dis, 2008, 12(2): 128-138.

[19] 赵刚. 莫西沙星治疗耐多药肺结核病的临床研究[J]. 临床医学, 2007, 27(11): 45-46.

[20] 廖鹏飞. 联合加替沙星方案治疗耐多药肺结核疗效分析[J]. 中国现代医生, 2010, 48(1): 118, 127.

[21] Stover CK, Warrener P, van Devanter DR, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis [J]. Nature, 2000, 405(6789): 962-966.

[22] Lenaerts AJ, Gruppo V, Marietta KS, et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models [J]. Antimicrob Agents Chemother, 2005, 49(6): 2294-2301.

[23] Tyagi S, Nuermberger E, Yoshimatsu T, et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis [J]. Antimicrob Agents Chemother, 2005, 49(6): 2289-2293.

[24] Ahmad Z, Peloquin CA, Singh RP, et al. PA-824 exhibits time-dependent activity in a murine model of tuberculosis [J]. Antimicrob Agents Chemother, 2011, 55(1): 239-245.

[25] Tasneen R, Tyagi S, Williams K, et al. Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis [J]. Antimicrob Agents Chemother, 2008, 52(10): 3664-3668.

[26] Nuermberger E, Tyagi S, Tasneen R, et al. Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis [J]. Antimicrob Agents Chemother, 2008, 52(4): 1522-1524.

[27] Matsumoto M, Hashizume H, Tomishige T, et al. OPC-67683, a nitrodihydroimidazooxazole derivative with promising action against tuberculosis in vitro and in mice [J]. PLoS Med, 2006, 3(11):2131-2144.

[28] Protopopova M, Hanrahan C, Nikonenko B, et al. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines [J]. J Antimicrob Chemother, 2005, 56(5): 968-974.

[29] Lee RE, Protopopova M, Crooks E, et al. Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates [J]. J Comb Chem, 2003, 5(2): 172-187.

[30] Chen P, Gearhart J, Protopopova M, et al. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro [J]. J Antimicrob Chemother, 2006, 58(2): 332-337.

[31] Reddy VM, Einck L, Andries K, et al. In vitro interactions between new antitubercular drug candidates SQ109 and TMC 207 [J]. Antimicrob Agents Chemother, 2010, 54(7): 2840-2846.

[32] Nikonenko BV, Protopopova M, Samala R, et al. Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs [J]. Antimicrob Agents Chemother, 2007, 51(4): 1563-1565.

[33] Alcala L, Ruiz-Serrano MJ, Pérez-Fernandez Turégano C, et al. In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs [J]. Antimicrob Agents Chemother, 2003, 47(1): 416-417.

[34] Prammananan T, Chaiprasert A, Leechawengwongs M. In vitro activity of linezolid against multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant (XDR)-TB isolates [J]. Int J Antimicrob Agents, 2009, 33(2): 190-191.

[35] Erturan Z, Uzun M. In vitro activity of linezolid against multidrug-resistant Mycobacterium tubercrulosis [J]. Int J Antimicrob Agents, 2005, 26(1): 78-80.

[36] 唐神结, 肖和平. 利奈唑胺抗结核作用的研究及其最新进展[J]. 中华临床医师杂志, 2010, 4(1): 63-66.

[37] Alffenaar JW, van der Laan T, Simons S, et al. Susceptibility of clinical Mycobacterium tuberculosis isolates to a potentially less toxic derivate of linezolid, PNU-100480 [J]. Antimicrob Agents Chemother, 2011, 55(3): 1287-1289.

[38] Barbachyn MR, Hutchinson DK, Brickner SJ, et al. Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity [J]. J Med Chem, 1996, 39(3): 680-685.

[39] Williams KN, Stover CK, Zhu T, et al. Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model [J]. Antimicrob Agents Chemother, 2009, 53(4): 1314-1319.

[40] Balasubramanian V, Butler S. AZD5847 [EB/OL]. [2013-05-20]. http:///browse/tb-treatments/azd5847.

[41] 张永信. 结核病的诊断与治疗[J]. 上海医药, 2009, 30(1): 6-8.

(收稿日期:2013-06-08)