开篇:润墨网以专业的文秘视角,为您筛选了一篇水工钢筋混凝土结构构造设计常见问题范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要:水运工程中的钢筋混凝土结构具有大而厚的特点,部分结构设计人员只重视构件的结构计算,而忽视其构造设计,对水工钢筋混凝土结构设计规范中规定的相关构造要求理解不透,以至于最终混凝土结构尺寸不合理或者施工图配筋不合理等,造成工程量增加,造价提高,甚至可能为工程安全埋下隐患。本文主要对水运工程设计进行简单介绍,进而对水工钢筋混凝土设计进行阐述,最后对其中所出现的常见问题做出分析。
关键词:水运工程;混凝土结构;构造设计
中图分类号: TV331 文献标识码: A
一、水工设计的内容
工程设计是指在工程开始施工之前,设计者根据设计任务书,为具体实现拟建项目的技术、经济要求,拟定建筑、安装及设备制造等所需的规划、图纸、数据等技术文件的工作。由于设计方案及其所采用的材料、结构形式决定了施工方案,因此,工程设计的内容对工程造价的影响显著,成为控制项目工程造价的主要因素。
水运工程设计的内容主要包括:根据项目建设需求,论证项目建设必要性,同时结合项目建设的社会环境条件和自然环境条件,拟定项目建设技术方案,并进行项目建设的工程投资估算与经济效益分析,分别从不同的角度论述项目实施的技术可行性与经济合理性。
水运工程设计的过程是在外部环境各种前提条件约束下为达到预期目的――实现船舶顺利通航、安全靠泊作业――而在多种方案中间进行选择的过程,方案比选包括总平面布置方案、装卸工艺方案以及水工建筑物结构方案等。在进行水运工程设计时,外部环境的约束分为强制性约束和非强制性约束。强制性约束主要包括国家法律、法规及地方各级政府的规定、要求,规范中的强制性条款,工程设计范围,建筑物的具体使用功能要求等;而非强制性约束主要指陆域范围和水工建筑物及港池航道的平面布置形态、设计红线范围内建筑物具置和所采用的结构形式等。一般情况下,施工条件属于非强制性约束,但在某些特定的情况下,作为强制性约束。
二、水工钢筋混凝土结构设计
工程设计的最终目的不仅是完成文字报告和设计图纸,最主要的是通过具有技术可行、经济合理的设计方案,由施工过程将设计图纸转化成建设单位所需要的建筑实体,从而实现其使用功能价值,满足其社会效益。因此,在水运工程设计过程中,尤其是水工建筑物结构设计时,要充分考虑其结构能够满足安全性、适用性、耐久性标准,使得设计结构在外部荷载作用下能够满足承载能力极限状态和正常使用极限状态的要求。
大多数水运工程中,水工建筑物都以钢筋混凝土结构形式为主。水工钢筋混凝土建筑结构设计不但要注重结构强度设计,更要重视在结构使用年限内,正常使用极限状态下,建筑结构由于外部荷载作用、水下环境等因素引起的结构变形、混凝土开裂、材料腐蚀等影响。因此,应尽可能通过合理的结构设计,延长构件使用寿命。
水工钢筋混凝土建筑结构设计应严格按照现行的有关国家、地区及行业标准和规定进行水工钢筋混凝土建筑结构的设计,除了满足承载能力极限状态下的设计,更要充分考虑建筑结构在正常使用极限状态下的设计,因此,水工钢筋混凝土结构构造设计也十分重要。
水工钢筋混凝土建筑结构设计要兼顾结构可靠性和工程经济性,在保证达到相关规范要求的基础上,尽可能减少工程量。所以,在进行水工钢筋混凝土结构构造设计时,要考虑材料老化和受环境侵蚀等因素对结构性能产生的影响,还要确保结构和构件存有足够的整体稳定性和安全性,同时兼顾其在施工阶段为后续工作提供可实施的预留工作面。下面就几个常见的水工钢筋混凝土结构构造设计问题进行阐述和分析。
三、水工钢筋混凝土结构构造设计常见问题
(一)不重视腐蚀对裂缝的影响,尤其是纵向顺筋裂缝的问题
水工建筑物往往处于水下环境和大气环境交界处,大部分钢筋混凝土构件都会受到腐蚀。在水运工程设计中,腐蚀对构件变形性能会产生较大的影响。而实际设计过程中,部分设计人员往往不重视重视腐蚀对裂缝的影响,尤其是纵向顺筋裂缝的问题。
当水工建筑物投入使用后,构件可能在受力作用下开裂。随后,受外部环境腐蚀作用的影响,钢筋截面减小、产生滑移,钢筋混凝土构件的受力横向裂缝可能变宽,进而超过规范规定,无法满足耐久性要求。混凝土构件钢筋被腐蚀后的一个明显特征是沿被腐蚀钢筋会出现明显的顺筋裂缝,钢筋锈蚀越严重,顺筋裂缝越宽,在潮湿或有水的环境中,经常可以看到从纵向裂缝流出的锈液形成的锈斑。与受力产生的横向裂缝及其他收缩、温度裂缝不同,顺筋锈胀裂缝对钢筋混凝土构件耐久性和使用性能的影响要严重得多。首先,出现顺筋裂缝就意味着钢筋已经锈蚀到一定的程度;其次,出现顺筋锈胀后,顺筋锈胀成为外部腐蚀介质进入混凝土内部钢筋附近的直接通道,增大了腐蚀介质进入混凝土内部的含量,严重时导致混凝土保护层剥落,钢筋直接暴露在腐蚀环境中;第三,沿顺筋锈胀的钢筋容易形成一个宏观阳极,将进一步加快钢筋的锈蚀速率;第四,锈胀裂缝的形成减弱了混凝土对钢筋的握裹力,降低了钢筋与混凝土的协调工作能力,若混凝土剥落,则混凝土将完全丧失对钢筋的握裹。
由于钢筋混凝土构件力学性能明显降低是在锈胀裂缝出现之后,所以出现锈胀裂缝是钢筋混凝土构件耐久性失效的一个重要标志,锈胀裂缝对结构使用性能的影响要比对安全性的影响严重,从耐久性和使用性能考虑锈蚀对混凝土结构的影响及对设计使用年限确定的影响也更为合理。因此,在设计阶段,重视重视腐蚀对裂缝的影响,满足水工钢筋混凝土构件的各项构造设计要求。
(二)水工钢筋混凝土构件混凝土保护层的设计问题
根据前一个问题的分析可知,腐蚀会构件裂缝造成很大的影响,要尤为重视,因此,在水工钢筋混凝土构件设计时,其混凝土保护层厚度需要达到一定要求才能满足其构造设计规定。而实际工程设计中,部分设计人员将所有构件的混凝土保护层按照统一厚度设计,这是十分不合理的。
由于构件所在区域不同,受到腐蚀程度也不同,且受力钢筋与构造钢筋对混凝土保护层的要求也不同,应区分设计。根据《水运工程混凝土机构设计规范》(JTS151-2011)7.2节规定,钢筋混凝土结构受力钢筋的混凝土保护层应按海水环境、淡水环境、构件所在部位等条件分别达到相应的最小厚度,同时,宜配构造钢筋的素混凝土结构,构造筋的混凝土保护层最小厚度,海水环境不应小于40mm,且不应小于2.5倍构造筋直径,淡水环境不应小于30mm。
在设计过程中,如果按照统一值设计保护层,选用某一最大要求设计值,会使得部分构件混凝土保护层过大,构件有效受力面积减小,构件所需配筋面积增加,造成工程量增加,造价提高,影响工程经济性。因此,设计人员应对构件混凝土保护层区别设计。
(三)高强度的钢筋替换原设计计算中满足要求的低强度钢筋问题
在实际工程设计中,部分设计人员因图设计方便,在正常使用极限状态设计时,当构件裂缝宽度或挠度不能满足规范要求时,直接用高强度的钢筋替换原设计计算中满足要求的相对较低强度钢筋,认为这样做对工程安全没有问题。
显然,不能简单的用高强度的钢筋替换原设计计算满足要求的低强度钢筋来解决问题,需要特别注意以下两点:一是当构件受裂缝宽度或挠度控制时,代换前后应根据采用的新的钢筋强度重新进行裂缝宽度和挠度的验算;二是钢筋代换后要满足混凝土结构设计规范规定的间距、锚固长度、搭接长度、截面最小配筋率等要求。
实际设计中,当构件受裂缝宽度控制而不能满足规范要求时,首先应校核该构件所在区域与其最大裂缝宽度限制是否匹配,当构件在水位变动区和水下区时,其限制比大气区和浪溅区较大;其次,当需要确实所配钢筋不满足要求时,尽量通过增加钢筋数量来解决,从而避免引起设计调整后对钢筋间距、锚固长度、搭接长度和截面最小配筋率等造成影响。
(四)大直径钢筋连接采用绑扎搭接问题
由于水运工程通常所受的外部荷载较大,且要考虑波浪、强风、地震等极端自然条件的影响,因此水工钢筋混凝土构件的配筋直径较大。钢筋的连接可采用绑扎搭接、机械连接或焊接。一般钢筋不需要严格焊接,仅采用绑扎搭接来进行连接,而部分设计人员对大直径钢筋连接时也像一般直径的钢筋一样对待,造成实际构件强度无法满足要求。
根据《水运工程混凝土机构设计规范》(JTS151-2011)7.4节规定:轴心受拉及小偏心受拉杆件的纵向受力钢筋不得采用绑扎,不应采用绑扎搭接接头。受拉钢筋直径大于25 mm,不宜采用绑扎搭接接头。
因此,大直径钢筋采用绑扎搭接是不合适的,这是因为较粗的钢筋采用绑扎连接时,混凝土保护层相对变薄或钢筋间距相对变小,在搭接钢筋间容易产生较宽的劈裂裂缝或滑移。设计人员在设计过程中应严格按照规范执行,避免造成因钢筋连接方式错误而造成构件损坏,甚至引起更严重的工程事故。
结语
水运工程是我国的基础性产业,是目前正在进行大力开发建设的重点工程,而且其中大多数工程都以钢筋混凝土结构形式为主;就通常的水工建筑结构而言,建筑结构的荷载承重和防渗功能等均主要由混凝土结构承担,因此,混凝土结构的设计与施工质量的好坏直接关系到工程结构的运行安全、效益发挥和使用寿命等,其设计阶段的质量控制也就显得尤为重要。
根据本文的介绍和阐述,分析了水工钢筋混凝土结构构造设计的重要性,并强调了设计人员在设计过程中应当重视的几个问题,希望能借此提高设计质量和水运工程的经济效益。
参考文献
[1]水运工程混凝土机构设计规范(JTS151-2011)
[2]陈磊. 港口工程混凝土结构全寿命设计指标体系研究[D].大连理工大学,2013.
[3]张春宇. 港口工程结构可靠度分析[D].大连理工大学,2005.
[4]董雪焕. 港口工程混凝土结构设计使用年限的确定[D].大连理工大学,2011.
[5]贡金鑫,张春宇,钱丽. 港口工程钢筋混凝土结构可靠度分析[J]. 水利水运工程学报,2004,04:8-14.