首页 > 范文大全 > 正文

地铁盾构穿越城市地面建筑物的破坏风险预测与控制技术分析

开篇:润墨网以专业的文秘视角,为您筛选了一篇地铁盾构穿越城市地面建筑物的破坏风险预测与控制技术分析范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:结合城市地铁盾构法施工工程实例,对城市地铁穿越既有有建筑物的风险的预测和控制技术进行研究,提出科学、安全的盾构施工安全建议,进一步提高盾构施工的安全技术水平,丰富盾构施工的安全理论。

关键词:盾构施工;城市地铁;风险预测;控制技术

0引言

盾构隧道施工法是指使用盾构机,一边控制开挖面及围岩,使之不发生坍塌失稳,一边进行隧道掘进、出渣,并在机内拼装管片形成衬砌、实施壁后注浆,从而不扰动围岩而修筑隧道的方法。盾构法建造隧道,其埋设深度可以很深而不受地面建筑物和交通的限制。近年来由于盾构法在施工技术上的不断改进,机械化程度越来越强,对地层的适应性也越来越好。城市市区建筑公用设施密集,交通繁忙,明挖隧道施工对城市生活干扰严重,特别在市中心,若隧道埋深较大,地质又复杂时,用明挖法建造隧道则很难实现。然而, 地铁盾构施工穿越各种建筑物、铁路、河流、桥梁等作业日益频繁,而且由于施工节点较多,施工单位不同,管理理念、水平不一,给地铁工程的建设及将来的运营管理留下不容忽视的问题和安全隐患。本文结合城市地铁盾构法施工工程实例,对城市地铁穿越既有有建筑物的风险的预测和控制技术进行研究,提出科学、安全的盾构施工安全建议,进一步提高盾构施工的安全技术水平,丰富盾构施工的安全理论。

1地铁盾构穿越对地面建筑物的破坏风险预测理论分析

根据建筑物的刚度和长高比将建筑物分为两类,即大刚度和小刚度建筑物。大刚度建筑物采用倾斜度作为评判建筑物破坏指标,小刚度建筑物以裂缝宽度作为破坏衡量指标。建筑物破坏类型分类如下:

表1建筑物破坏类型

结构类型 长高比3.0

无桩 有桩 无桩 有桩 无桩 有桩

砖混结构 B B A B A A

框架结构 B B B B A B

高层建筑 B B B B B B

注:A:小刚度建筑物,用裂缝宽度来衡量建筑物破坏;B:大刚度建筑物,用倾斜度来衡量建筑物破坏;长高比。

(1)大刚度建筑物破坏预测评价

倾斜度的计算:

式中:――建筑物倾斜度(%);――建筑物檐口偏移量(mm);H――建筑物高度(m);――折减系数(根据建筑物刚度而定),高层及超高层0.9-1.0,多层房屋取0.7-0.9;――建筑物弯沉比;AS――建筑物由于隧道施工造成的单侧偏沉量;L――建筑物与隧道方向垂直一侧长度。

(2)小刚度建筑物破坏评价

如果建筑物的刚度不大,一旦不均匀沉降产生,就极有可能产生裂缝破坏。

极限拉应变:max=

式中:为长高比,为弯沉比。

2地铁盾构下穿建筑物的破坏风险预测实例分析

2.1工程简介

T城市M地铁线工程采用盾构法施工,盾构法区间隧道设计断面形式为圆形,外径为6.0米,内径5.4米。本区间隧道轨顶设计标高为17.75m-25.00m,隧道结构顶标高为22.75m-30.0m,隧道结构底标高为16.75m-24.00m,隧道埋深约为16.0-23.5m,覆土厚度约为10.0m-17.5m。区间在右K2+971.000处设置泵房与联络通道;在右K3+281.000处,设置风井与风道。风井采用明挖法施工,风道与联络通道采用暗挖法施工。

3.2地铁盾构下穿建筑物的破坏风险预测实例分析

M地铁线穿越了多幢建筑物,其中以市区北部的11#楼离隧道线最近,盾构构施工对其影响最大,应尽量减少隧道施工过程中的沉降,控制建筑物的倾斜度,保证建筑的安全,达到隧道顺利通过的目标。

本建筑物高14层,为框剪结构,基础埋深5.82米,基础形式为筏板基础,建筑物长约89米,宽13.5米,参考建筑荷载规范,该建筑物对地基附加荷载按矩形均布荷载200KPa进行简化计算,建筑荷载按基础平面尺寸范围施加,即垂直于隧道轴线方向宽度13.5米,平行隧道轴线方向的长度89米,荷载边线离隧道开挖面7.87米,由于隧道刚好在与建筑物相遇处开始拐弯,逐渐以一定小角度与建筑远离,在进行模拟加载时适当进行折减,考虑到地面有荷载,可以用FLAC3D建模进行预测,其数值分析的横剖面图如图1所示:

图1数值分析的横剖面图图2 隧道开挖土体沉降曲线图

在荷载影响下隧道开挖土体沉降曲线如图2所示。把沉降预测值代入公式计算可以得到:

可以得知,建筑物会产生功能破坏。因此在施工中应十分注意盾构机掘进的各种参数,密切注意沉降,避免事故发生。

4地铁盾构下穿建筑物破坏风险控制技术分析

4.1盾构穿越建筑物施工的准备工作

(1)在施工前对建筑物、管线进行充分调查。

(2)根据地质勘察情况或根据盾构推进过程中的地质变化情况,对建筑物周边地质进行补充详细勘察,明确地形情况、基础土层结构、各土层土体性质、地下水情况等。

(3)研究确定建筑物或管线的变形和应力允许值。

4.2盾构下穿建筑物时的施工参数选择与控制

为确保建筑物、管线的安全,在盾构掘进施工时应严格对盾构施工参数监测,包括盾构推力、出土量、注浆填充率、注浆压力、盾构姿态等。

(1)推进速度和推力控制。盾构掘进速度控制在30-40 mm/min,盾构推力控制在1000-1200 kN。确保盾构连续掘进,快速通过,减小对地层的扰动。推力过大易造成地面隆起,过小则地面沉降加大。盾构掘进速度亦不易太快,以免同步注浆量不足。

(2)严格控制出土量。此地铁采用的盾构机每环出渣量控制在58m3以内。环幅宽按1.5 m、含水较少时应控制在55-56 m3。

(3)保证同步注浆饱满度。同步注浆的注入率应控制在200-300%之间,注浆压力2-4 bar,最大程度利用同步注浆填充满管片背后的间隙。在同步注浆过程中应严格控制注浆压力,注浆压力过大易引起地面隆起。为保证管片背后间隙的浆液不流失并尽快凝固,根据盾构机的配置情况尽可能选择双液浆。选择单液浆应通过配比调整,尽可能缩短浆液凝固时间,提高结固体强度。

(4)二次注浆。在同步注浆的同时进行二次注浆,确保填充效果。注浆管片位置位于盾尾后3-4环。注浆点位以在拱顶点位注浆为原则。

5 地铁盾构穿越建筑破坏风险施工控制技术施工效果分析

以此区的11#楼为例,施工选取参数如表2:

表2施工参数表

施工观测到的总沉降量监控数据如表3:

表3沉降控制表

图3土体实际沉降曲线

图3为土体实际沉降曲线,可以看出,通过合理选择施工掘进参数,以及严密的沉降监测,土体的实际沉降远远小于预测的沉降。盾构顺利通过了11#楼,未发生任何事故。

6结束语

隧道与地下工程的风险分析研究历史较短,在国内还属于刚刚起步,但得到了越来越

多的关注。究其原因在于隧道与地下工程的蓬勃发展以及重大工程事故的屡屡发生,从而

产生的对工程风险进行风险管理的渴望。本项目结合工程实例,对盾构施工下穿城市建筑的主要风险进行了分析,并对风险的施工控制技术进行了分析。分析结果表明:在进行地铁盾构下穿城市建筑施工中,盾构隧道施工时要严格控制土体的沉降,以保证经过区域的地层稳定性,从而避免对周围环境的破坏,确保地铁施工期间和地铁运营期间环境的稳定和安全,使企业获得经济效益和社会效益。

参考文献:

[1]李军.强化施工风险管理确保地铁施工安全[C],北京市政第一届地铁与地下工程施工技术学术研讨会论文集.2005:3-6

[2]莫若揖,黄南辉.地铁工程施工事故与风险管理[J]都市快轨交通,2007,(6):45-51.

[3]郑永伟.地铁车站施工风险分析理论与方法研究[D]长安大学,2009

注:文章内所有公式及图表请以PDF形式查看。