开篇:润墨网以专业的文秘视角,为您筛选了一篇基于石墨烯和金纳米棒复合物的过氧化氢电化学传感器范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要:利用阴离子型聚合物聚乙烯吡咯烷酮(PVP)保护的带负电荷的还原态石墨烯(GN)与带正电荷的金纳米棒(AuNR)之间的静电吸附,通过层层自组装的方法研制出一种新型过氧化氢(H2O2)传感器。首先将PVP保护的石墨烯(PVPGNs)吸附到表面干净的裸玻碳电极(GCE)上,再将PVPGNs修饰的电极浸泡于金纳米棒溶液中,通过静电吸附将金纳米棒负载在PVPGNs膜之上。以循环伏安及计时安培电流等方法对修饰电极的性质进行了表征。结果表明,制备的PVPGNsAuNRsGCE对H2O2的催化还原显示出好的电催化活性。测定H2O2的线性范围为25~712 olL; 检出限(SN=3)为7.5 olL。此传感器制作简单,具有响应快、稳定性好、灵敏度高等特点。
关键词:石墨烯; 金纳米棒; 过氧化氢; 生物传感器
1引言
过氧化氢(H2O2,双氧水)作为氧化剂、还原剂和催化剂在工业、环境、制药、食品分析和临床诊断等领域得到广泛应用。医学上用双氧水(3%左右或更低,wV)作消毒剂;在食品行业中,双氧水作为生产加工助剂,应用于饮料、乳品、啤酒等生产过程中,但双氧水的过量使用会对人体健康产生不良影响[1]。因此,构建简单、灵敏的H2O2检测方法,对H2O2含量的精确测量具有重要意义。目前,检测低含量双氧水的主要方法有化学发光法[2]、荧光法[3]、分光光度法[4]及电化学分析法[5]等。电化学方法由于操作简单、灵敏度较高、快速而广泛受到重视。已有许多文献报道辣根过氧化物酶(HRP)修饰的电化学生物传感器对H2O2的检测[6,7]。另外也有报道一些蛋白质如过氧化物大豆酶、血色素、肌球素[8]用于H2O2的测定,而关于无酶的H2O2传感器的报道甚少。
石墨烯是单层碳原子紧密堆积形成的二维蜂窝状晶格结构的晶体,石墨晶体薄膜的厚度只有0.335 nm,其独特的二维结构使其具有优异的电学、力学、热学及化学性质[9],因其优异的电子转移性能和大的比表面积而用于电化学生物传感器[10]。但石墨烯片层间存在痧共轭和较大的范德华力,容易堆积和聚集,这给石墨烯的研究和应用带来了极大的困难。为了克服这个问题,对其进行有效的功能化修饰尤其重要。聚乙烯吡咯烷酮(PVP)是一种水溶性高分子化合物,具有胶体保护作用、成膜性、粘结性、吸湿性、增溶或凝聚作用,但其最具特色的是其优异的溶解性能及生理相容性。据文献报道PVP保护的石墨烯纳米片胶体溶液在水、乙醇和二甲基甲酰胺中展现了高的溶解性和稳定性[11]。
纳米金具有大的比表面积,优异的光学性能,良好的生物兼容性,同时具有良好的导电性,能有效提高电子传输速率[12]。金纳米棒是纳米金的一种形式,其具有比球形金纳米粒子更好的性能。球形金纳米粒子在520 nm处产生强烈的吸收带,而金纳米棒则出现两个吸收带:横向表面等离子共振吸收峰(520 nm)和纵向表面等离子共振吸收峰(>600 nm,从可见光区到近红外光区),纵向表面等离子共振吸收对周围介电性质的改变反应更加灵敏,并且灵敏度随纵横比的增大而增加[13]。目前,已经报道了多种金纳米粒子修饰的石墨烯传感器[14,15],但基于金纳米棒修饰的石墨烯传感器尚未见报道。本研究利用静电引力自组装,将带正电荷的金纳米棒(AuNRs)吸附负载在带负电荷的PVP保护的石墨烯(PVPGNs)表面上,形成PVPGNsAuNRs复合物。基于PVPGNsAuNRs复合物,发展了一种新型的无酶型电化学传感器用于H2O2的检测。此传感器制备简单,对H2O2的电催化还原性能好,检出限低,灵敏度高,抗干扰性好。2实验部分
2.1仪器与试剂
3结果与讨论
3.1PVPGNsAuNRs纳米复合材料的表征
将所制得的PVPGNs和金纳米棒(AuNRs)的形貌分别用透射电镜(TEM)表征,如图1所示。所得PVPGNs片层薄且比表面积较大,其极薄的尺寸引起形变,导致了其如皱褶一样的形貌。所合成的金纳米棒形状和尺寸都比较均匀,长径比为3.5。CTAB保护的金纳米棒在水中分散性好而且非常稳定,未发生团聚现象,金纳米棒任意地分布在铜网上。
[TS(][HT5”SS]图1金纳米棒和PVPGNs的TEM图
Fig.1TEM images of goldnanorods (AuNRs) (a) and poly graphene (PVPGNs)(b)[HT5][TS)]
由于石墨烯和金纳米棒在紫外可见光区都有特征吸收峰,因此紫外可见吸收光谱可用于监控该复合物的合成情况。将所得到的PVPGNs, AuNRs和PVPGNsAuNRs分别用紫外分光光度计表征,如图2所示。石墨烯在260 nm左右有吸收峰(如图2a所示),表明肼还原后石墨烯的电子共轭结构的恢复。金纳米棒在紫外可见光谱有两个吸收带:横向表面等离子共振吸收峰和纵向表面等离子共振吸收峰。随着纵横比的增大,纵向表面等离子共振吸收峰会加强,且吸收波长也会发生红移。如图2b所示,合成的金纳米棒在510和700 nm处有等离子体共振吸收峰,分别是金纳米棒的横向表面等离子共振吸收峰和纵向表面等离子共振吸收峰。根据文献[12]报道的方法,计算得到该金纳米棒的长径比是3.5。如图2c所示,PVPGNsAuNRs复合物在270,520和700 nm处有紫外可见吸收峰,分别对应的是GNs,AuNRs的横向表面等离子共振吸收峰和纵向表面等离子共振吸收峰,这表明带负电荷的PVP保护的石墨烯与带正电荷的金纳米棒能够通过静电作用结合。
如图4所示,比较了AuNRsGCE、PVPGNsGCE和PVPGNsAuNRsGCE不同电极对H2O2的电催化性能。在未添加H2O2的条件下,3种修饰电极在N2饱和的中性磷酸盐缓冲液中均没有电催化性能;当电解质中加入相同浓度H2O2后,AuNRsGCE、PVPGNsGCE和PVPGNsAuNRsGCE均对H2O2表现出明显的电催化还原,但PVPGNsAuNRs电极比AuNRs电极和PVPGNs电极均展现了更大的催化电流,从而证实了PVPGNsAuNRs对H2O2的催化还原效应是石墨烯和金纳米棒的协同作用所引起的,表明PVPGNsAuNRs纳米复合材料对H2O2有更好的电催化活性。负电荷的PVPGNs纳米片,使得带正电的CTAB保护的金纳米棒通过静电作用吸附负载在PVPGNs纳米片。PVPGNs大的比表面积和高的电子传递效率,可以为H2O2在电极表面的还原提供电子传递的能力。由于电子导体金纳米粒子均匀分散在传感膜中,以及石墨烯与金棒的紧密接触而形成了三维电子导电网络,从而加速了膜中的电荷传递,使得H2O2在电极表面的还原得到增强。同时这些被吸附的金纳米棒能够进一步有效提供电子传递路径,并在电极与分析物之间加速电子传递时起到纳米微电极的作用,从而使得PVPGNsAuNRs修饰的电极上时,对H2O2的电催化还原能力比石墨烯和纳米金棒本身显著增大。
3.4干扰实验和标准加入的回收率
为了证明PVPGNsAuNRs纳米复合材料修饰的电极的选择性,测试了干扰物尿酸(UA)和抗坏血酸(AA)对H2O2的干扰情况。图6为PVPGNsAuNRsGCE在N2饱和的PBS(pH 7.0)中,对H2O2、UA和AA的电流响应曲线。在施加电位为_Symbolm@@_0.40 V时,该电极对H2O2有明显的响应电流,加入UA和AA后,没有显示额外的信号或干扰电流,表明干扰物对H2O2的测定没有影响,说明此传感器具有较好的选择性和抗干扰能力。
采用标准加入法对4份H2O2的实际样品进行了加标回收测定,结果见表1。此传感器对4份H2O2实际样品的加标回收率在95.0%~111.3%之间,比钯纳米粒子碳纳米管传感器[25]测定H2O2实际样品的加标回收率高。此传感器与传统的高锰酸钾滴定法相比,检测H2O2的结果基本一致,表明传感器可用于实际样品的分析。
3.5传感器的重现性和稳定性
考察了此PVPGNsAuNRs修饰电极的重现性,相同条件下制备的6 支电极对20 mmolL H2O2进行检测,电化学信号的相对标准偏差为4.1%。还考察了该多层膜修饰电极的长期稳定性。将修饰电极贮存于4 ℃冰箱内,每天取出进行测量,结果表明, 在2 个月后,电化学信号降低5.2%。
4结论
通过自组装制得了PVPGNsAuNRs纳米复合物修饰电极,此纳米修饰电极对H2O2的还原具有良好的电催化性能,显示出了很高的灵敏度,稳定性和对H2O2的快速响应。 这种复合物结合了石墨烯和金纳米棒修饰电极的性能优越性,提高了检测灵敏度,降低检出限。PVPGNsAuNRs纳米复合物组装方法简单、易行,性能优良,稳定性好,可长期使用。由于石墨烯和金纳米棒的良好生物相容性,PVPGNsAuNRs纳米复合物修饰电有望制备出具有良好性能的酶生物传感器。