首页 > 范文大全 > 正文

锚杆格构治理措施对地质灾害防护的方法

开篇:润墨网以专业的文秘视角,为您筛选了一篇锚杆格构治理措施对地质灾害防护的方法范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

【摘 要】本文主要从以下方面针对锚杆格构治理措施对地灾害防护的方法进行简单分析与探讨。

【关键词】锚杆格构;治理措施;地质灾害防护;方法

目前地质灾害防治也列入城市总体规划中,且应在“防”灾上下功夫,同时要争取主动,减少灾害的发生。因此,对锚杆格构等治理措施对地质灾害防护的方法进行探讨有其必要性。

一、研究背景

锚杆格构结构是一种将格构结构梁护坡与锚固工程相结合的一种新型抗滑支挡结构,既可以加强深层的加固作用,又可以兼顾到浅层护坡的作用,这种治理措施具有良好的地质防护作用,在工程实际应用中,主要适用于节理发育、坡度较陡、易受自然应力影响而导致的局部小型崩塌、大面积碎落、以及落石的岩土边坡,随着现代工程技术的发展和相关技术的完善,锚杆格构等治理措施也得到了很大的改进,这使得锚杆格构梁加固技术成为一种广泛应用的地质灾害防治的有效工程措施。另外,在应用锚杆格构时,必须要以内力为主,通过倒梁法和弹性地基梁法,根据工程经验类比法,进行结构设计,确保格构梁设计的合理性与科学性,避免工程治理竣工完成后拉裂或者是损毁现象的发生,最大限度地保证边坡及保护对象的安全性。

二、锚杆格构的应用

为了确保锚杆格构在工程实际应用中的良好效果,提高地质灾害防护的有效性,在这里对锚杆格构应用进行具体的分析:

1.锚杆格构内力分析

根据工程经验,可以知道锚杆格构主要由横梁和纵梁组成,传统的工程应用中,主要通过将交叉的格构进行简化处理,按照单格梦梁进行计算,以利用弹性地基梁的研究成果进行具体的分析,最终通过锚杆的简化,将其作用于地基梁上的荷载作为已知荷载,但是缺乏统一性,因此,为了方便于格构梁的内力的进一步描述,并进行各个部位称谓的统一,需要将锚杆视为弹性支座,两锚杆之间的长度作为格构梁的一跨,锚杆作用位置作为支座,两支座之间的长度称之为跨距,这样,在实际工程中,锚杆格构梁系统中的各个跨跨距就会呈现相等性,同时,也保持了右悬臂和左悬臂段的相等性。

在工程中,结合大量研究,具体的内力计算可以采用弹性地基模型进行计算,这样,既可以保证分析结果的准确性,而且可以最大限度地满足工程的实际要求,为此,在这里可以建立一个关于格构梁的模型,并且考虑到地基与格构梁的相互作用,具体的模型参照以下表格数据,具体如下:

表1 格构梁计算模型参数

根据格构梁模型计算参数以及弯矩的具体的分布图(如图),两支座之间跨中附近存在着一个极限值,而这些极限值能够反映出格构梁的所能够承受的弯矩的大小变化,并且根据这些值的变化情况从而就可以得到相应的最大弯矩,从而使得格构更加合理,同时,也可以最大限度地保证结构设计的经济性,若是从受力角度进行分析,就可以知道这就是格构梁上的最优化悬臂段。

2.主要内容和影响因素

计算格构内力时,除了相关的参数值,还与格构梁以及地基影响因素密切相关,以下分别作具体的说明:

首先,跨距的影响。在治理工程中,对于锚杆工程中,锚杆的间距以一般的定值为准,即格构梁为等跨距,在实际工程中,格构梁的跨距以2-5米为宜,变化的规格则以具体的参数和跨距为标准,在建立相应的模型后,经过反复计算,根据不同跨距条件下,得到最优的悬臂长度,通常不同跨距下悬臂的最优长度也会有所不同,且会随着跨距的增大而不断增大,具体的线性表达关系式如下:

其次,跨数的影响。混凝土格构梁每隔15-20m设沉降,而跨距以2-5m最为常见,在建立模型后,仍旧需要通过不断反复的试算,以找出不同距跨距下的悬臂最优长度,具体如表2所示:

表2 不同跨数下最优悬臂段长度

但是在实际工程处理中,跨数与悬臂段并不是单调的关系,且数学关系不明显,同时,在实际工程中的取值也非常有限,因此,对于对于不是严格意义上的数学关系,可以在一定程度上忽略跨数对其的影响。

第三,弹性地基泊松比。在地基工程中,弹性泊松比是一个十分重要的参数,一般土体的泊松比多为0.3-0.4,岩石的泊松比为0.1-0.3,因此,明确泊松比对格构梁内力所造成的影响,同样,也需要建立相应的模型,且经过具体的试算,得到最优值,但是,在实际工程中,经过大量的计算和研究发现,弹性泊松比对地基变形量所造成的影响极小,为了减少工程计算的复杂性,可以忽略。

另外,地基变形模量。岩土体的变化量的范围相对较大,考虑到锚杆格构工程一般用于土质坡体表面风化破碎或者是土质边坡的岩质边坡较多,尤其是其表现多为残积土、坡积土、全风化碎块石,通过工程类比,其变形模量多在30-200MPa的范围内,为此,经过与其他的参数进行统一分析后,建立相关的数值计算模型,从而得到不同地基变形模量下的最优臂段长度。经过线性回归分析,可以知道,由于地基变形量的变化范围相对较大,那么其对电优悬臂的取值也会产生一定的影响,具体的公式如下:

三、强化地质灾害的处理

为了进一步确保锚杆格构在地地质灾害防治的应用,必须要对我国的地质灾害类型、分布特征、规模大小、危害性以及危险性的大小有一个全面、具体的了解,并且在此基础上,明确地质灾害具有影响因素复杂、灾害强度局部趋势高等特点,有效地应用锚杆格构等防治措施,进一步完善灾害评估系统,组织行之有效的防震减灾工作,具体可以从以下方面入手:

首先,要加强对地质灾害防治的统一规划,根据实际工作,结合工作经验,突出防治工作的重点,并且在工作中做到以预防为主,采用避让与治理相结合的办法,避免地质灾害所造成的影响。

其次,要科学对地质灾害进行科学的评价与区分,尤其是对于灾害程度为重度以上的危险区,要积极展开地质勘查评价工作,并根据勘查评价结果,确定实际监测的部位,建立相应的灾害预警系统,将学校、医院、居信区等人口相对集中的地区或者是有交通干线、水利工程等重点工程等的基础设施,做好重点防治,充分利用锚杆防护技术,增强其有效性。

另外,通过建立和实施有关法规等手段,有效地制止破坏地质自然环境的行为;对已经发生和可能发生的地质灾害,采取“以防为主,防治结合,全面规划,综合治理”的原则;加强地质灾害易发区的调查与区划工作;对区内重大地质灾害防患点进行勘查。编制年度地质灾害防治方案。

四、结语

总而言之,地质灾害防治工作任重道远,随着科技的进步和专业工程技术人员的经验积累,新技术、新方法、新材料等将在地质灾害防治工程中得到不断应用,因此,需要工作人员加强对锚杆格构技术的分析与探讨,进一步优化工程技术,从而全面提升地质防护的有效性,促进地质灾害防治工作将得到更好的创新和发展。

参考文献:

[1]王元丰,梁亚平;高性能混凝土的弹性模量与泊松比[J];北方交通大学学报;2012(01)

[2]吴礼舟,胡瑞林,黄润秋,熊野生,宋继红,李志清;护坡格构与坡面相互作用的研究[J];工程地质学报;2011(02)

[3]马迎娟,彭社琴,周斌;滑坡治理中预应力锚索格构梁内力计算方法对比分析[J];地质力学学报;2013(04)

[4]许英姿,璩继立,葛修润,唐辉明;格构锚固结构与地基相互作用分析[J];上海交通大学学报;2012(05)

[5]简文星,殷坤龙,刘礼领,,桂树强;三峡库区三期塌岸防护规划典型设计[J];岩石力学与工程学报;2011(18)