开篇:润墨网以专业的文秘视角,为您筛选了一篇从“人工生命”的概念演进看物理主义态度的转变范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘 要:如果将“人工生命”作为包含了一定生命认识的生命活动,那么人类基因组计划既是对生命规律的探索,也是对微观生命分子的操作。“人工生命”所具有的这种反身性(reflexive)表现为可以从人类基因组计划的推进过程反观“人工生命”、“人工智能”到“人造生命”的概念演进,并体现为生物学物理主义态度的转变。
关键词:人工生命;人工智能;人造生命;物理主义
中图分类号:N031 文献标识码:A 文章编号:16711165(2011)02002104
一般认为,“人工生命”、“人工智能”和“人造生命”是三个分别从计算机科学领域、智能研究和基因工程领域提出的概念。20世纪90年代未,中科院曾邦哲提出人工生物系统(artificial biosystem)的工程生物系统概念,用以整合计算机领域和遗传工程领域的两个概念。概念上的整合一方面体现了“人工生命”与“人造生命”两者之间的承接性,另一方面也预示着“人工生命”发展与生物学理论发展之间的密切关联。诚如“人工生命是具有自然生命现象的人造系统”[1],那么进入微观领域,生命规律的探索与对生命分子的操作使得“人工生命”具有了反身性。这种反身性恰恰体现了“人工生命”研究并不在于使人“非人化”[2],使生命也成为技术的对象,而是包含了一定生命认识的特殊生命活动。那么,剖析人类基因组计划的推进过程,就可能找到“人工生命”概念演进背后内在思想动因,从而为洞悉生命科学发展趋势提供一条线索。
一、“人工生命”阶段:肯定物理主义
在人体细胞核内,质量只有0.0000005毫克,宽度仅为0.02微米的DNA包含着大约30亿个碱基排列。科学家相信人类DNA序列是人类生命的决定因素,人类生命活动中发生一切事情都与这一序列息息相关。[3]除了特殊情况之外,DNA中含有的庞大信息能够被一字不差地复制,然后传给后代。要想获得这些信息,就需要测定DNA序列的碱基序列,这也是人类基因组计划的核心工作。那么,测序工作则成为“人工生命”的一个阶段,对生命信息传递过程的模拟也就构成了“人工生命”研究的起点。
基于人类全部24条染色体中3×109个碱基具有固定性的化学关系即A-T、G-C,于是DNA碱基序列的测定工作实际上可以被描述为科学家接受生命分子信号的过程。应用申农所建立的一般信息系统模型,在一定的指令下进行信号传递成为“人工生命”的最初目标。强人工生命观念将“生命系统的演化作为一个可以从任何特殊媒介物中抽象出来的过程”(John Von Neumann)。以抢占计算机存储的方式,生命演化过程被计算机程序模拟出来。人们相信,如果生命遵循既定的程序,那么只要编写好程序,生命就能进行准确的信号传递,也就实现了“人工生命”。首先试图为生命编写程序的是生物学家林登迈尔。20世纪60年代中期,林登迈尔为红海藻、青苔等植物的生长发育建立模型,提出了一种被称为“L-系统”的形态发生系统,又被称为“繁殖(发生)算法”。在编写好的程序下,生命系统转化为信号系统。生命信号模型以量化或模型化的方式来展示生命的属性。这意味着:“如果具有冯•诺伊曼式的自我复制能力或繁殖的能力,那么这个实体就是有生命的。”[4]
冯•诺伊曼所证明的自我繁殖的生命信号系统应和了人们对微观生命分子世界的物理主义观点,其实质是将诸如细胞这样一个具有新陈代谢功能的生命单元放在既定的关系下。尽管将生命活动视为一种生命信号传递颠覆了传统的生命物质实体论,却仍然将生命置于某种固定关系下,意味着其也不可能跳出物理主义的决定论框架。一方面,“人工生命”研究进行了生命信号传递模,并在计算机领域中建立虚拟生命系统;另一方面,人们在质疑申农的一般信息模型的同时也开始质疑“人工生命”。针对申农的一般信息模型,有学者认为:“申农通讯信息系统模型具有两方面的重大缺陷:一是该模型未能注意信息系统的一般反馈性机制;二是该模型描述的还仅仅是信息接收系统。”[5]可见,申农的一般信息模型不具有反馈性机制或不能够自创生。于是,这样一种生命的信息论观点,即“在生命运动之中物质实体-载体是流动的,组织形式-信息才是稳定保持的”[6],表明“人工生命”所模拟的对象是在既定关系之下的生命信号的传递过程。
面对人类基因组计划这样巨大的基因工程项目,测定了组成人类DNA的约30亿个碱基中85%的碱基序列只是完成了所谓工作草图。获得的基因草图只是为给基因命名、分析基因创造了条件,需要进一步找到能够提供信息的标记基因,进行基因追踪,但寻找基因的工作却相当复杂。一般信息模型不可能作为模拟这一活动的基础。
二、“人工智能”阶段:怀疑物理主义
一般认为,人类共有5万~10万个基因,如果某个基因发生了变异或者产生缺陷,必然会引起机能上的障碍。根据变异的DNA标记基因来确定另外一个基因的位置,这样就可以将其位置制成详细的地图,通过检查DNA序列来识别基因突变。学者们以DNA标记为基础的DNA基因图谱寻找致病基因。在一阶段,“人工生命”模拟的对象是寻找基因,而寻找基因的关键则体现为对信息的识别。人类基因组计划在此阶段的工作可以反映“人工智能”的研究。
尽管早在1956年,美国的麦卡锡就提出“人工智能”(artificial intelligence)概念,但直到20世纪80年代末,人们才将“人工智能”作为“人工生命”的一种形式。“人工智能”阶段需要计算机能够准确识别信息。对于智能的研究涉及诸如意识(consciouness)、自我(self)、心灵(mind)、无意识(unconscious mind)等问题。对此,之前将生命作为信号系统的一般信息模型显然无法发挥作用。面对信息的识别和反馈机制等一系列问题,人们试图将信息学、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学各学科整合,并在计算机领域实践,甚至在机器人、经济政治决策、控制系统、仿真系统中应用。然而,这种学科上的整合并没有使人们找到合适的模型来取代之前的信号模型用以描述识别信息过程所具有的非线性特征。
对此,一部分学者试图通过重新定义“人工智能”概念,区分出强“人工智能”和弱“人工智能”的方式来解决问题。弱“人工智能”用模拟识别信息后所表现出的行为来反推对信息的识别,也就是让机器的行为看起来就像是人所表现出的智能行为一样。而强“人工智能”则将识别信息的功能强加于计算机,如约翰•罗杰斯•希尔勒(John Rogers Searle)就计算机和其他信息处理机器的工作形式提出“计算机不仅是用来研究人的思维的一种工具;相反,只要运行适当的程序,计算机本身就是有思维的”[7]。无论是强“人工智能”还是弱“人工智能”,都将“人工智能”划分为四类:机器“像人一样思考”、 “像人一样行动”、“理性地思考”和“理性地行动”。但是,这两种观点都没有进一步对任何一种类型进行模型化。这就表明尽管在观念上人们已经不再将生命系统作为信号系统,但其仍成为“人工生命”模拟的对象。
1999年,获得了诺贝尔生理学或医学奖的布洛贝尔创立了著名的“蛋白质的命运”假说,即关于新生成的蛋白质去向的“信号假说”。他认为细胞内存在某种信号,这种信号决定了新生成的蛋白质的去向。这意味着每个蛋白质都能够获得向某个地方移动的信息,就像邮编一样,可以让蛋白质找到准确位置。也就是说,由十几个氨基酸组成的“信号肽”使得蛋白质能够识别信息,并在某种程度上具有了主动性。这种主动性与物理主义的决定论观点发生了冲突。
弄清各种基因各自会生成何种蛋白质成为需找基因的重要环节,因为如果知道了信号肽的基因,就可以知道周围的基因是决定何种蛋白质的基因。“信号肽”的发现大大推进了人类基因计划,然而,“人工智能”研究中并没有明确给出一个可以超越一般信息模型的新模型。
三、“人造生命”阶段:突破物理主义
在识别了基因信息之后,就需要对基因突变作出解释。人们已经发现,致命的基因突变由于地域特征和环境不同,其结果也会各不相同。这就意味着,人们在对待人类基因时必须考虑环境的因素:一方面,环境可能使基因突变形成恶性基因,另一方面则也能促使发生有益的突变,从而形成更为适应环境的基因整体。从后者来看,环境如何引发新基因整体的形成就成为对基因与环境之间关系所进行的解释,这也就成为人类基因组计划的后期工作,此阶段的“人工生命”研究也将面临更为深入的问题。
“对基因整体性的认识大体有两类。一类是在分子遗传学坚信基因独立性存在的前提下,根据不同功能种类的基因间的协同关系诠释基因系统的整体存在。而今,这一方向已在原核生物领域取得辉煌的成果;另一类是在关注物种(种群)的发育和进化并结合分子生物学的基础上,探究基因的整体存在,即基因集成、基因组织单元及其关系的研究。目前,这一方向已受到综合进化论者及其他一些生物学者的高度重视。”[8]后者恰恰体现了环境对基因的作用。“人造生命”的提出则将这种作用的意义凸显出来。从其他生命体中提取基因建立新染色体的操作,实际上就是将特定基因从已有的环境中分离开来,再将提取的基因染色体放入新的环境之中,即嵌入已经被剔除了遗传密码的细胞中,这样染色体在新环境中形成新的基因组织,控制这个细胞,发育变成新的生命体。2010年5月20日,美国私立科研机构克雷格•文特尔研究所宣布:世界首例人造生命――完全由人造基因控制的单细胞细菌诞生,并将“人造生命”起名为“辛西娅”。这项具有里程碑意义的实验表明:新的生命体可以在实验室里“被创造”,而不是一定要通过“进化”来完成。“辛西娅”的产生在一定意义上证明了可以通过人工环境能够实现对基因的作用。
“人造生命”为“人工生命”提出了更深层次的问题。“人工生命”概念不同于传统生命观和科学观。“传统生物学用分析方法研究生命。通过分析,解剖现有生命的物种、生物体、器官、细胞、细胞器,即通过分析现有生命的最小部件来理解生命。人工生命用综合方法研究生命,在人工系统中对简单的零件进行组合,使其产生类同生命的行为,力图在计算机或其他媒体中合成生命。”[9]“人造生命”则进一步模拟生命整体功能如何形成。这也改变了对生命的认识,从“如吾所说的生命(lifeasweknowit)”转变为“如其所能的生命(lifeasitcouldbe)”[10]。生命作为各个功能叠加的物理主义观念被打破,取而代之的是一种功能整体性观念。
“人造生命”已有的成果在一定程度上揭示了环境对基因整体功能的作用机制,如果能够找到体现这种机制的模型,就将推动生命科学的发展。事实上,人类基因组计划都是建立在DNA分子序列的符号化前提下的。没有这种符号操作,人们就不可能应用计算机来获得、识别并整合生命信息。而这一符号学思路恰恰应和了美国著名的科学家、认知心理学家、人工智能学家西蒙(Simon Blackurn)的理论。西蒙的“物理符号系统假设”进一步阐释了这一思路。“物理符号系统假设”强调“所研究的对象是一个具体的物质系统,如计算机的构造系统、人的神经系统、大脑的神经元等。所谓符号就是模式,如任何一个模式,只要它能和其他模式相区别,他就是一个符号。”[11]“物理符号系统假设”从信息论模型进入了符号学模型。“人工生命”从对“生命表现出的行为的功能模拟”转向对“生命内在创造机制的功能模拟”。
这种符号学模型提示,在经常变化的环境作用下,微观生命分子形成了不同的功能整体,具有内在的适应性意义。人们在无法支配环境的情况下支配基因,就可能造成有害的影响。从“人工生命”、“人工智能”到“人造生命”的概念演进,可以得出承认生命本身具有内在意义,具有一定的主动性将成为未来生命科学理论发展的一种趋势。
参考文献:
[1]班晓娟.人工智能与人工生命[J].计算机工程与应用,2002(15):1-7.
[2]林德宏.评人的“非人化”――一种现代技术机械论[J].自然辩证法研究,1999(3):23-27.
[3]孙啸,陆祖宏,谢建明.生物信息学基础[M].北京:清华大学出版社,2005:9.
[4]李建会.生命科学哲学[M].北京:北京师范大学出版社,2006:127.
[5]邬.信息哲学――理论、体系、方法[M].北京:商务印书馆,2005:75.
[6]沈骊天.生命信息与信息生命观[J].系统辩证学学报,1998(4):71-73.
[7]JOHN R. Minds, brains, and programs[J]. Behavioral and Brain Sciences, 1980, 3 (3): 417-457.
[8]董华,李恒灵.基因整体实在论[J].科学技术与辩证法,1997(6):31-34.
[9]林德宏.科学思想史[M].南京:江苏科学技术出版社,2004:326.
[10]李建会.人工生命对哲学的挑战[J].科学技术与辩证法,2003(4):23-26.
[11]司马贺.人类的认知[M].荆其乘,何厚粲,译.北京:科学出版社,1986:10.