首页 > 范文大全 > 正文

基于个体消费行为的家庭碳排放研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇基于个体消费行为的家庭碳排放研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要 以 “南京1 000家庭碳排放”调查的家庭活动数据为基础,运用国外新范式“消费者生活方式方法”(CLA)探讨了家庭消费活动与碳排放之间的关系,采用多元回归研究了碳排放与家庭特征之间的相关关系,并总结出了一套适合中国国情的碳排放系数。分析得出:①户均年家庭碳排放量3 705.76 kg;②人均家庭碳排放约占总碳排放量的29.27%;③家庭用电碳排放量几乎占家庭碳排放总量的一半,生活垃圾碳排放比例位居其次占了将近1/4;④户均碳排放量随月际变化波动较大,在7月份为峰值,10月份为谷值,差值为181.10 kg;⑤家庭能耗、生活垃圾、交通出行碳排放比例为64∶24∶12;⑥常住人口、交通出行、住宅面积是影响家庭碳排放中的显著性因子;⑦常住人口增加一个、住宅面积多一个平方米、交通工具每提高一个层次,户均年碳排放量分别增加397.84 kg、8.54 kg、551.21 kg。家庭碳排放定量化研究为公众提供了有效减少碳排放的途径,并为政府部门制定碳减排政策提供了决策依据。

关键词 消费者生活方式;碳排放系数;家庭碳排放;显著因子

中图分类号 X22,F062.2 文献标识码 A 文章编号 1002-2104(2010)05-0035-06 doi:10.3969/j.issn.1002-2104.2010.05.007

在全球气候变暖和对碳减排关注(低碳经济、低碳城市、低碳生活模式成为理论与实践热点)的背景下,“部门”研究(如工业、交通、商业、住宅部门)是分析能源消耗和二氧化碳排放的主要框架和路径,如1997年美国的 “部门”研究中工业部门的能源消耗最多(占总能耗的38%)、碳排放量(33%)最大[1],而住宅部门能源消耗和碳排放却分别位居第四位(11%)和第三位(19%)[2]。而在 “部门”碳排放的研究中,住宅部门碳排放研究反映的只是以住宅为载体的家庭碳排放情况,对于住宅以外的家庭相关活动的碳排放研究却相对缺失,因此“部门”碳排放研究方法并不能解释个体消费者家庭活动在能源使用时产生的环境影响。从理论上说,研究家庭碳排放亟需回答三个重要问题:①家庭活动产生的碳排放量占人均碳排放量的比重约为多少?②特定地区家庭碳排放结构是怎样的?以此作为减少家庭碳排放所应该努力的方向;③影响家庭碳排放的主要因素有哪些?显然,这些问题的回答能为减少家庭碳排放提供了方向。

1 消费者生活方式方法的理论框架

近20年以来,科学家和政府开始关注个人行为对全球碳排放的重要影响,消费者角色以及其消费模式日益受到学者的关注和讨论。20世纪80年代末期,诸多学者就消费者行为模式影响碳排放进行了深入的研究和探讨,有研究发现在1997年个人消费行为占全美能量消耗的28%,CO2排放量占全美排放量的41%[3] ,中国科学院《关于我国碳排放问题的若干政策与建议》中显示:1999-2002年间,中国CO2排放量的30%是由居民生活行为及满足这些行为需求所造成的。部分国外学者[4-8]基于消费行为碳排放研究,分析了家庭能耗模式,估算了能源消耗和温室气体排放,并量化了生活方式因素的影响;另外,诸多国外学者[9-15]基于部门数据分析了碳排放的影响因素,发现了人口、城市化水平、能源使用效率、住房面积与碳排放之间的相关关系。国内学术界对碳排放的关注主要集中在三个方面:能源消费与碳排放,包括与碳减排有关的能源消费结构的转变和低碳排放能源系统的建立;经济发展与碳排放,主要探讨经济发展模式、阶段、速度与碳排放的关系;碳减排对策研究。

从整体上看,国内已有的研究成果存在着两个明显的局限:首先,它们是从宏观的角度对碳排放量进行透视,只限于从能源结构、经济发展层面解析碳排放机理,如徐国泉等人基于碳排放量的基本等式,采用对数平均权重Disvisia分解法,建立中国人均碳排放的因素分解模型,定量分析了1995-2004年间能源结构、能源效率和经济发展等因素对中国人均碳排放的影响[16]。当然,更多的研究人员采用库茨涅茨曲线(EKC)模拟经济发展与碳排放之间的关系,认为碳排放与收入水平之间遵循倒“U”曲线关系[17],“N”型关系[18],并预测了中国碳排放在2040年达到高峰期[19]。这种宏观研究虽然揭示了经济发展对碳排放的整体影响,但它无法解释同一个社区中家庭碳排放的差异。因此,我们有必要量化家庭碳排放。其次,国内较少在不同的家庭关系中分析个体消费行为碳排放量的差异。其实,个体消费并不是完全的个人决策行为,在许多情况下,它是一种家庭的选择,在不同家庭中,文化程度、收入水平、成员个数及其年龄结构都可能成为个体消费的参考变数。因此要对家庭碳排放量差异做出恰当的解释,反映家庭背景的特征变量引入尤为重要。杨选梅等:基于个体消费行为的家庭碳排放研究中国人口•资源与环境 2010年 第5期基于以上文献综述,本文引入了国外新范式“消费者生活方式方法”(Consumer Lifestyle Approach ,CLA)[3],以解释家庭碳排放结果及其影响因素。“消费者”是指为个人或家庭消费的实体,“生活方式”是指消费行为反映出来具有影响力的生活,“消费者生活方式”研究的最基本前提就是通过了解消费者以制定出更好的公共政策。由于不同影响因素的相互交织,并且其中一些因素随着环境的变化而不断演生,因此了解“消费者”变的很复杂。为了清晰地理解多个相互影响因子,CLA试图提供一个跨学科的理论框架(见图1) 。 2 南京家庭碳排放特征研究

2.1 样本特征简介

本研究数据来源于环境保护部宣教中心与美国环保协会共同开展的“南京1 000家庭碳排放调查”项目,在南

图1 消费者生活方式方法框架图

Fig. 1 A framework for the proposed consumer lifes tyle approach注:虚线是指来自于家庭碳排放结果的反馈。

京江宁区、建邺区、雨花台区各选一个社区进行了为期一年(2008.5-2009.5)的家庭活动数据和家庭特征调查。该调查采取入户调查的形式,随机抽样选取60个重点户进行月跟踪,另外抽取1 200个普通户进行季跟踪,其中60个重点户、1 178个普通户回收问卷有效,被列为本文的研究样本。

表1 样本家庭基本情况Tab.1 Sampling households basic information

家庭特征

Feature最小值

Min最大值

Max均值

Mean标准差

Std. Deviation人口特征常住19 3.06 0.997男性051.520.692女性051.540.719年龄153.580.976消费特征住宅面积3319076.6825.279出行特征交通工具131.560.668经济特征家庭收入131.320.605文化特征文化程度152.620.840

从解释变量的测度来看,常住人口、男性人口、女性人口为连续的数量指标,其它各个变量如年龄、家庭收入、受教育程度、交通工具几个因素用虚拟变量测度,虚拟值表示如下:

年龄:小于18岁=1;大于等于18岁小于30岁=2;大于等于30岁小于40岁=3;大于等于40岁小于50岁=4;大于等于50岁=5

家庭收入:低于平均值=1,和平均值相当=2,高于平 均值=3

受教育程度:小学文化程度=1,初中文化程度=2,高中及中专文化程度=3,大专文化程度=4,本科以上文化程度=5

交通工具:步行或自行车=1,公共交通工具=2,小汽车=3。

从表1可以看出:家庭常住人口约为3,男女比例相当,交通出行以公共交通为主,低收入者家庭较多,初高中文化程度者占较大的比例。

2.2 碳排放计算模型

根据现有条件,表2的排放系数首先以中国科技部《公民节能减排手册》[20]为参考确定,减排手册中未涉及的计算内容则根据地域相近性选择我国台湾“能源局”[21]公布的排放系数,再次则引用GHG Protocol[22]的数据,考虑到保护国际[23]里飞机系数忽略短途、中途和长途航 线的差异,故飞机系数引用来源于保护国际。 碳排放总量由“南京1 000家庭碳排放”中实际的家庭能耗、交通出行、垃圾回收等活动数据和碳排放系数共同

表2 计算内容及排放系数

Tab.2 Calculation contents and coefficients

计算项

Item单位

Unit排放系数

Coefficient引用来源

Quote单位

Unit公交车km/d0.037台湾“能源局”kgCO2/ km地铁次/d1.142台湾“能源局”kgCO2/次出租车km/d0.50中国科技部kgCO2/ km私家车(汽油)L/月2.34中国科技部kgCO2/L私家车(柴油)L/月2.78台湾“能源局”kgCO2/L摩托车L/月2.24台湾“能源局”kgCO2/L火车K m/月0.062GHG ProtocolkgCO2/km飞机km/月0.18保护国际kgCO2/km用电度/月0.96中国科技部kgCO2/度用水t/月0.30中国科技部kgCO2/t天然气m3/月2.67台湾“能源局”kgCO2/m3罐装液化气kg/月3.16台湾“能源局”kgCO2/罐垃圾kg/d2.06台湾“能源局”kgCO2/kg

计算得出。本文以家庭能耗碳排放量计算为例:T-Home-CO2=∑∑(Fuelm×CO2Coefficient m)n×HH

式中,T-Home-CO2(kg)是年碳排放总量,n是一年中的季调查次数,m是家庭能耗类型(如电、天然气、液化气等),Fuelm是指每户每次季调查家庭活动数据(如用电量、用水量、用气量等),HH=1 178,是调查中的有效样本个数。 交通出行、生活垃圾碳排放量的计算类似于家庭能耗。

2.3 南京家庭碳排放量

“南京1 000家庭碳排放调查”碳排放结果如表3,三口之家(表1中平均家庭人口为3.06)户均年碳排放量为3 705.76 kg,则人均家庭碳排放量为1 211.03 kg。根据世界银行报告,中国人均碳排放量为4.1 t左右,也就是说,人均家庭碳排放约占总碳排放量的29.27%。值的注意的是,家庭用电碳排放量几乎占了家庭碳排放总量的一半,生活垃圾碳排放比例位居其次占了将近1/4。

家庭碳排放量随月际变化规律明显(见图2),总体而言,家庭碳排放有下降的趋势,这说 明经过一年的环境教育,“碳减排”意识增强,家庭碳排放量减少。家庭碳排放量高峰值在7月份(455.67 kg),次高峰在1月份,低谷处在10月份(274.57 kg),户均月差值为181.10 kg。这一方面与中国的季节变化相关,7月份、1月份分别是全年最炎热和最严寒的月份,家庭能耗、生活垃圾较多;另一方面与中国寒暑假的设置有关,学生回家导致人 口增加,家庭碳

图2 社区重点户家庭月碳排放变化趋势(2008-2009)

Fig.2 Carbon emission changing trend in priori ty households

表3 家庭碳排放量

Tab.3 Household carbon emission

家庭活动

Family activities年碳排放总量(kg)

Total annual carbon emissions户均年碳排放量(kg)

Annual carbon emissions per household比例结构(%)

Proportion家庭能耗2 805 8692 381.89 64.28 其中:家庭用电2 098 8701 781.72 48.08 家庭用水43 893.5737.26 1.01家庭天然气用量582 858494.79 13.35家庭瓶装液化气80 247.4168.12 1.84交通出行523 519.40444.41 11.99 其中:小汽车出行404 809.20343.64 9.27公交车出行53 441.2745.37 1.22摩托车出行44 639.1037.89 1.02地铁出行5 633.8434.78 0.13长途车出行3 529.8393.00 0.08火车出行5 469.4234.64 0.13飞机出行5 996.705.09 0.14生活垃圾1 036 000879.46 23.73总和4 365 3893 705.76 100.00

排放上升。

2.4 家庭碳排放结构

在家庭碳排放结构中(见表3),家庭能耗、交通出行、生活垃圾碳排放量之比约为64∶12∶24。而在家庭能耗碳排放次结构中,家庭用电和天然气用量是影响家庭能 源消耗碳排放的主要因素,两者之和比例占据了总家庭能耗碳排放量的95%。

而在交通出行碳排放次结构中,私人交通碳排放量(小汽车、摩托车)占了交通出行总碳排放量的86%,而公共交通碳排放量(公交车、地铁)约为19%,其他长途的交通出行(长途汽车、火车、飞机)碳排放量只占5%。

3 家庭碳排放量的影响因素分析

通过建立多元回归模型分析了碳排放量与家庭特征之间的关系,回归的被解释对象为碳排放量,解释变量为家庭常住人口、男性人口、女性人口、住宅面积、交通工具、家庭收入、年龄、文化程度等8个家庭特征值。本文共进行了两次回归,第一次用Backward 对全部因变量回归,第二次对常住人口、住宅面积、交通工具等显著性因子进行回归。

首先用Backward对全部因变量筛选的方法进行多元回归分析,结果见表4。

通过对家庭特征因子与家庭碳排放量的多元回归分析(见表4),得出以下3个有意义的结论 :

首先,家庭碳排放与消费特征和出行特征中的“住宅面积、交通工具”高度相关,但与“家庭收入”相关性不高,说明消费观念和出行方式会影响家庭碳排放量,值得 注意的是随着私人小汽车的普及,交通出行碳排放量有增加的趋势。

其次,人口特征对家庭碳排放量相关关系有正负两方面的影响。常住人口与家庭碳排放量呈正影响,而年龄与其成负影响,年龄越大,碳排放越少,这主要是因为年老者生活较为节俭,生活消费较少。

第三,文化特征对家庭碳排放量影响较小。按照常理,文化素质高的人,其节约意识较强,在中国,高素质的人家庭条件相对较好,家用电器多样,交通出行一般为私人小汽车,因此可以认为,文化素质高的人由于其花销大,碳排放量也较多,即使有意识的节约资源,影响也是微不足道。

从表5可以看出:首先,常住人口数量与碳排放量相关程度很强,每增加一个常住人口,年碳排放量要增加约397.84 kg,相当于燃烧掉170 L汽油的碳排放,如果进行碳补偿的话一年就要种植5棵树。因此,有效控制人口增加能降低因碳排放而造成的环境破坏。

第二,住宅面积与家庭碳排放相关性也很强。同等程度下,住宅面积多一个平方米,年碳排放量就要多8.535 kg。这说明,别墅建设和大户型住宅等粗放用地现象会造成资源的高投入,高消耗、高污染、低产出,因此,我们可以从住宅面积,住房结构、房屋材料,房屋朝向等诸多方尽可能程度的减少碳排放。

第三,碳排放量与交通工具正相关。平均每户而言,

表4 Backward 法多元回归结果

Tab.4 Regression results with Backward Method

ModelUnstandardized

CoefficientsStandardized

CoefficientstSig.BStd.ErrorBeta1常数 1 048.403460.7872.2750.023常住人口534.061305.3170.2601.7490.081男性人口-167.772314.299-0.057-0.5340.594女性人口-157.038294.219-0.055-0.5340.594住宅面积8.3252.3590.1033.5300.000交通工具551.06191.7640.1796.0050.000家庭收入187.307105.8680.0551.7690.077年龄-69.41863.112-0.033-1.1000.272文化程度5.73372.6270.0020.0790.9372常数 1 063.957416.3562.5550.011常住人口533.576305.0970.2591.7490.081男性人口-167.889314.161-0.057-0.5340.593女性人口-156.967294.092-0.055-0.5340.594住宅面积8.3312.3590.1033.5350.000交通工具551.67991.3890.1796.0370.000家庭收入189.414102.4070.0561.8500.065年龄-70.20562.292-0.033-1.1270.2602常数 1 063.769416.2272.5560.011常住人口376.98784.3550.1834.4690.000男性人口-12.649118.707-0.004-0.1070.915住宅面积8.3152.3560.1023.5290.000交通工具551.63791.3610.1796.0380.000家庭收入189.993102.3690.0561.8560.064年龄-69.75662.267-0.033-1.1200.2632常数 1 065.164415.8452.5610.011常住人口370.73660.5900.1806.1190.000住宅面积8.3042.3530.1023.5300.000交通工具551.14691.2060.1796.0430.000家庭收入190.028102.3250.0561.8570.064年龄-69.74062.240-0.033-1.1210.2632常数 718.145277.5452.5870.010常住人口390.64257.9340.1906.7430.000住宅面积8.6212.3360.1063.6910.000交通工具552.28591.2110.1806.0550.000家庭收入197.899102.0950.0581.9380.053

交通工具每提高一个层次,年碳排放量上升约551.21 kg。也就是说,搭乘公共汽车的家庭比步行或骑自行车的人年碳排放量要多551.21 kg,同理,以小汽车为出行方式的家庭比搭乘公共汽车的人碳排放量要多551.21 kg。随着小汽车普及化,家庭碳排放有增长之势,因此控制碳排放量 表5 对显著性因素的回归结果

Tab.5 The Regression result for significant factors

ModelUnstandardized

CoefficientsStandardized

CoefficientstSig.BStd.ErrorBeta常数700.753276.1362.5380.011常住人口397.84057.2490.1956.9490.000住宅面积8.5352.3290.1053.6650.000交通工具551.21090.9280.1796.0620.000家庭收入197.063101.7350.0581.9370.053

势在必行。

第四,家庭收入与碳排放量的相关性成正比,这主要是因为高收入家庭基本以小汽车出行,长距离的出行也较 多;住房面积相对较大。

4 结论与对策

本文以“南京1 000家庭碳排放”调查的家庭活动数据为基础,引入国外“消费者生活方式”新范式,定量分析了家庭碳排放,并提炼出了影响家庭碳排放的显著性因子。

(1)通过计算得出:南京户均家庭年碳排放量为3 705.76 kg,人均家庭碳排放量占总碳排放量的29.27%;家庭能耗、生活垃圾、交通出行碳排放比例为64∶24∶12; 户均家庭月碳排放量随月际变化规律明显,峰值在7月份,谷值在10月份,差值为181.10 kg;在家庭能耗碳排放次结构中,家庭用电碳排放量约占76%,在交通出行碳排放次结构中,私人交通碳排放量占了86%。因此,碳减排活动首先应从最重要的碳排放方式――家庭能源消耗入手,一方面应提高家庭能源利用效率,鼓励居民使用性价比高而环境影响相对较小的天然气,减少管道煤气和瓶装液化气的使用,换上节能灯,形成节约用电的生活习惯,如夏季(冬季)将空调调高(调低)1度,把门窗堵严,墙壁和天花板做隔热处理等;另一方面鼓励新能源的使用,如居民在夏季和阳光条件好的春秋两季利用太阳能热水器,减少燃气等能源消耗,有条件的社区可集中开发太阳能电力。其次,通过集中改善公共交通遮蔽防护和提高自行车安放场所等措施来引导居民交通出行方式的转变;鼓励社区居民选择公共交通、步行或自行车出行,减少高能耗的私人交通工具的使用。最后,政府部门可以针对现实的家庭碳排放量,设定户均年碳排放的上限值,通过市场干预措施(如碳交易)规范家庭消费行为,推广“碳汇林”活动,在社区内部施行“碳中和”,使碳减排实践活动得到公正、透明的开展。

(2)通过多元回归分析得出:影响家庭碳排放的显著因子为常住人口、住宅面积、交通工具。常住人口与碳排放量相关程度很强,每增加一个常住人口,户均年碳排放量要增加约397.84 kg;住宅面积多一个平方米,户均年碳排放量增加8.535 kg;交通工具每提高一个层次,户均年碳排放量上升约551.21 kg。因此,政府部门应该进一步落实计划生育政策,鼓励小户型住房的建设,有效的实行“公交优先”政策,而中国只在大城区公共交通便利,目前比较可行的办法是建立快速公交系统,在特定公路上专载长途旅客。

总体而言,消费行为反应了个人生活方式,而生活方式被外部大环境的制约,受个人的信仰和消费习惯影响,家庭作为个人生活的栖息地,直接干预个人消费能力和层次,因此碳减排的落实应从国家、家庭、个人三方面开展。就国家而言,应通过科技手段提高能源利用效率、调整产业结构、改善住房材料,制定减少温室气体排放相关法律、法规和政策措施;就家庭而言,坚决不超生,和老年人共同居住,联合使用家庭设施,与生活在同一社区的居民建设共同的公共设施,营造公共场所,共同分享车辆,减少出行和交往的碳排放;对于个人而言,应从衣、食、住、行等节能生活琐事做起,如关掉电脑而不是待机、让工作地点离家近、选乘公共交通、网上支付账单、换上节能灯、举办绿色婚礼等等。

参考文献(References)

[1]EIA. Energy Consumption by Sector[J].Annual Energy Review, 2000, (b):1949-2000.

[2]EIA.Carbon Dioxide Emissions from Energy Consumption by Sector[J]. Annual Energy Review,2000, (c):1980-1999.[3]Shui B, Dowlatabadi H. Consumer Lifestyle Approach to US Energy Use and the Related CO2 Emissions[J]. Energy Policy, 2005, (33):197-208.

[4]Vringer K, Blok K. The Direct and Indirect Energy Requirements of Households in the Netherlands[J]. Energy Policy, 1995, 23(10):893-905.

[5]Lenzen M. Primary Energy and Greenhouse Gases Embodied in Australian Final Consumption: an Inputoutput Analysis[J]. Energy Policy, 1998, 26 (6):495-506.

[6]Weber C, Perrels A. Modeling Lifestyle Effects on Energy Demand and Related Emissions[J]. Energy Policy, 2000, (28):549-566.

[7]Pachauri S, Spreng D. Direct and Indirect Energy Requirements of Household in India[J]. Energy Policy, 2002, (30):511-523.

[8]Reinders A H M E, Vringer K, et al. The Direct and Indirect Energy Requirement of Households in the European Union[J]. Energy Policy, 2003, (31):139153.

[9]Crame C J. Population Growth and Quality in California[J]. Demography, 1998, 35(1):45-56.

[10]Crame C J. Population Growth and Local Air Pollution: Methods, Models and Results. In: Lutz W, Prkawetz A, Sanderson WC (eds). Population and Environment,Population and Development Review[J]. New York:Population Council , 2002, (28): 22-52.

[11]Crame C J, Cheney R P. Lost in the Ozone: Population Growth and Ozone in California[J]. Population Environment, 2000, 21 (3):315-337.

[12]Diets T, Rosa E D. Effects of Population and Affluence on CO2 Emissions[J]. Proceedings of the National Academy of Sciences USA, 1997, (94):175-179.

[13]York R, Rosa E A, Diets T. STIRPAT, IPAT and IMPACTS:Analytic Tools for Unpacking the Driving Forces of Environment Impacts[J]. Ecological Economics, 2003, 46 (3):351-365.

[14]Shi A. The Impact of Population Pressure on Global Carbon Dioxide Emissions, 1975-1996: Evidence from Pooled Crosscountry Data[J]. Ecol Econ, 2003, (44):29-44.

[15]Cole M A, Neunayer E. Examining the Impacts of Demographic Factors on Air Pollution[J]. Populate Dev Rev, 2004, 26(1):5-21.

[16]徐国泉,刘则渊,姜照华.中国碳排放的因素分解模型及实证分析:1995-2004[J].中国人口•资源与环境,2006,16(6):158-161.[Xu Guoquan, Liu Zeyuan, Jiang Zhaohua. Factors Decomposition Model and Empirical Analysis on the Carbon Emission of China: 1995-2004 [J]. China's Population Resources and Environment, 2006, 16(6):158-161.]

[17]王中英,王礼茂.中国经济增长对碳排放的影响分析[J].安全与环境学报,2006,6(5):88-91.[Wang Zhongying, Wang Limao. The Impact Analysis on China's Economic Growth to the Carbon Emissions [J]. The Journal of Safety and Environment, 2006, 6(5):88-91.]

[18]杜婷婷,毛锋,罗锐.中国经济增长与CO2排放演化探析[J].中国人口•资源与环境,2007,17(2):94-99.[Du Tingting, Mao Feng, Luo Rui. The Analysis Between China Economic Growth and the Evolution of the Carbon Emission[J]. China's Population Resources and Environment, 2007, 17(2):94-99.]

[19]朱永彬,王铮,庞丽,等.基于经济模拟的中国能源消费与碳排放高峰预测[J].地理学报,2009, 64(8):935-944. [Zhu Yongbin, Wang Zheng, Pang Li, et al. Simul ation on China's Economy and Prediction on Energy Consumption and Carbon Emission under Optimal Growth Path[J]. Geographic Sinica, 2009, 64(8):935-944.]

[20]科学技术部社会发展科技司,中国21世纪议程管理中心.全民节能减排实用手册[M].北京:社会科学文献出版社,2007. [Social Development Squad of the Ministry of Science and Technology, The 21st Agenda Government Center. Handbook of Energy Saving and Emission Reducing [M].Beijing: Social Sciences Archive Press, 2007.]

[21]台湾经济部能源局.www.moeaboe.gov.tw.

[22]GHG Protocol. www.省略/templates/GHG5/layout.asp,2005.

[23]保护国际. www.省略.cn./cn/CO2.asp.

The Household Carbon Emission Analysis under Individual Consumer Behavior

YANG Xuanmei1 GE Yousong1 ZENG Hongying2

(1.Department of Urban& Region Planning,Nanjing University,Nanjing Jiangsu 210093,China;2.The Center of Department of Environmental Protection Missionary, Beijing 100 035,China)

Abstract This article proposes an alternative paradigm called the Consumer Lifestyle Approach (CLA) to explore the relationship between consumer activities and environmental impacts in Nanjing. By sorting out the carbon coefficients which conform to the situation of China, estimates based on the multiple regression method reveal that:①The annual carbon emission is 3 705.76 kg in one household.②Carbonemissions per capita household account for about 29.27% of total carbon emissions.③ Household electricity carbon emissions accounted for almost half of total domestic carbon emissions, and home scrap proportion of carbon emissions accountedfor nearly 1/4. ④Household carbon emission changes much monthly and the range is 181.10 kg between the peak and the valley value where the peak value is in July while the valley is in October.⑤ The proportion of household energy consumption, home scrap and personal transportation carbon emission is 64∶24∶12.⑥ The significant factors are number of inhabitant,area of residence,and vehicle of transport ation.⑦ When household population increases one resident,residential area increas es one square meter and household transportation vehicle is upgraded, the averag e annual carbon emissions increased by 397.84 kg,8.54 kg,and 551.21 kg respectively. It may help people be aware o f the level of impacts associated with each of their consumption activities. In addition, it also provide a convincing evidence to make a strategic decision for policy makers in the course of reducing carbon emission.

Key words CLA; carbon coefficients; households carbon emission; significant factors