首页 > 范文大全 > 正文

外源砷对土壤微生物数量的影响研究

开篇:润墨网以专业的文秘视角,为您筛选了一篇外源砷对土壤微生物数量的影响研究范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:通过室内模拟的方法,研究外源砷对土壤微生物数量影响。结果表明,对经驯化后的无污染土壤而言,低浓度外源砷对异养型微生物的生长有刺激促进作用,随着浓度的增加又表现为抑制作用;在相同的外源砷浓度下,砷对自养型微生物有更强的抑制作用。微污染土壤中的微生物数量高于受砷严重污染区土壤的;而当向其中加入外源砷后,微污染土壤中的微生物数量明显减少。

关键词:外源砷;土壤;微生物;数量

中图分类号:X53文献标识码:A文章编号:0439-8114(2011)13-2636-03

Effect of Additional Arsenic on Numbers of Soil Microorganisms

SONG Wei-feng,DENG Qi,BIN Li-ying,XIONG Ru-yi

(Faculty of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China)

Abstract: Arsenic pollution of soil has been a quite serious problem in some areas of China. The impact of adding arsenic (the mass fraction was 0 mg/kg,500 mg/kg,1 000 mg/kg,2 000 mg/kg) on the change of soil microbial populations were studied under laboratory conditions. The results showed that the growth of auxohetertrophs was stimulated by adding low concentration of arsenic, but it was inhibited when increasing the concentration of arsenic. At the same concentration of additional arsenic, a stronger inhibiting effect was found on auxoautotrophs than on auxohetertrophs. Under the stress of arsenic, the microbial populations of auxoautotrophs and auxohetertrophs both decreased firstly and then increased.

Key words: additional arsenic; soil; microorganisms; populations

砷是自然界分布广泛的元素,其最初来源于土壤母质,主要受火山活动所影响,在地壳中自然含量较低,约为3 mg/kg[1]。矿冶是造成高浓度砷污染的主要原因,其操作过程中不可避免地产生含砷污泥,造成二次污染[2]。从20世纪开始,高浓度砷对地下水的污染就一直危害着全球21个国家和地区的人们,其中受影响人数最多的国家是孟加拉国,大约有20万~27万人因饮用受砷污染的水而死于癌症[3]。在我国局部地区,由矿冶和化工活动造成的土壤砷污染也相当严重,有的地区土壤砷浓度高达

5 070 mg/kg[4]。砷已被国内外列为优先控制的污染物,土壤的砷污染和防治一直是国际上的研究难点和热点领域。在土壤中,微生物种类很多,由于它们各自具有不同的生理习性,故能产生各种不同的作用[5]。土壤中微生物生存条件的差异,使得土壤中微生物群落的组成和数量发生相应的变化[6,7]。已有研究发现,在长期受砷污染的土壤中,微生物的生物量显著下降,一些敏感性种群数量下降或消失,而一些耐砷强的种群则得以生长和繁殖[8]。

微生物群落的组成和数量变化必将影响到土壤的功能,而耐砷菌的大量生长对砷价态和形态的变化也必将产生作用。因此,外源砷对土壤微生物数量影响的研究是一项基础工作,对于研究砷在土壤中的转化、迁移具有重要意义。本研究通过室内试验,研究了外加砷源对土壤微生物相对数量的影响,总结出关于不同浓度的砷促进与抑制土壤中微生物生长的变化规律。现将结果报道如下。

1材料与方法

1.1材料

1.1.1样品来源土壤样品有3个,样品1来自广东省肇庆市鼎湖山自然保护区,在自然条件下,该样品污染少,能减少各种试验干扰因素,其自然含砷量为4.38 mg/kg。因《土壤环境质量标准》(GB 15618-1995)中一级标准规定砷的含量在15 mg/kg以下,所以所取土壤可以视为代表性较强的未受砷污染的土壤。样品2取自广东省北部某市受砷严重污染的土壤,其周围只有蜈蚣草得以生存,总砷为

7 532.63 mg/kg,视为受砷严重污染土壤。样品3取样自距离受砷严重污染点2~3 km处的茶场,其土壤总砷含量为45.68 mg/kg,视为受砷微污染土壤。

1.1.2培养基①自养型无机盐培养基:无机盐培养基+酵母0.1 g/L、NaHCO3 0.5 g/L。用于土壤样品1的试验。②异养型无机盐培养基:无机盐培养基+酵母0.5 g/L、乳酸钠5 mmol/L。用于土壤样品1、2、3的试验。③10% LB+葡萄糖培养基:蛋白胨1.0 g/L、酵母抽提物0.5 g/L、NaCl 0.5 g/L、葡萄糖2.0 g/L,用于土壤样品2、3的试验。

无机盐培养基:Na2SO4・10H2O 0.07 g/L,(NH4)2SO4 0.10 g/L,KCl 0.05 g/L,MgCl2・6H2O 0.04 g/L,

CaCl2・2H2O 0.05 g/L,KH2PO4 0.17 g/L,琼脂 20 g/L,微量元素 1 mL/L,维生素 5 mL/L。

1.2试验方法

1.2.1土壤样品驯化与保存土壤样品1:挑出石块和植物残渣后,研磨过筛,四分法取样,每份取400 g,共取4份,分别放置于4个塑料保鲜盒中,其中1份作为空白。另外称取已研磨成粉末状的NaAsO2 200、400、800 mg各1份分别溶解于145 mL去离子水中,分别加到另外3份土样中,用消毒后的竹筷搅拌使其充分混合,放置于带盖的小保鲜盒内,使得土壤含NaAsO2量分别为0、500、1 000、2 000 mg/kg[9]。存放于实验室(室温)进行培养驯化,为期90 d。期间每隔一周查看土壤情况,若缺水,则及时添加去离子水。土壤样品2、3:挑出石块和植物残渣,研磨过筛,四分法取样后放置于4 ℃冰箱保存。

1.2.2样品稀释液的制备称取待测样品1 g,放入装有99 mL去离子水和几颗小玻璃珠的已灭菌三角烧瓶中,放置于摇床上振荡培养(室温、180 r/min)3 h[10],使微生物细胞分散;再用移液枪吸取,制成10-3、10-4、10-5、10-6、10-7等一系列稀释菌液。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

1.2.3涂抹平板计数法将培养基加热熔化后倒入无菌平板中,待凝固后编号,每一号码设置3个重复。然后按无菌操作要求,用移液枪吸取100 μL菌液,对号接种在不同稀释度编号的琼脂平板上。再用涂布棒将菌液均匀涂抹在平板上,每次涂抹时需先将涂布棒灼烧灭菌。将涂抹好的平板倒置放于28 ℃恒温培养箱中培养,直至长出菌落后进行计数。将培养皿取出后用细菌计数器进行菌落计数,计算方法为:每克样品的菌数=同一稀释度的菌落平均数×10×稀释倍数;每克干土中菌数=(菌落平均数×稀释倍数)/干土重×10。

2结果与分析

2.1外源砷对经驯化后的无污染土壤中的微生物数量影响

试验中的干土重是通过湿土在105 ℃烘箱中烘干后得到的,按NaAsO2浓度递增顺序,添加不同浓度NaAsO2进行驯化的每克湿土壤的干土重分别为0.804、0.755、0.886、0.826 g。土壤驯化后,在不同的外源砷浓度下,微生物数量见图1、图2。由图1、图2可知,每克干土中,自养型微生物在空白对照土壤中的数量最多,为9.3×107个;其次为含NaAsO2

2 000 mg/kg的土壤,有3.3×107个;接着是含NaAsO2500 mg/kg的土壤,有2.1×107个;含NaAsO2

1 000 mg/kg的土壤最少,为2.5×106个。每克干土中异养型微生物的数量最多的是含NaAsO2 500 mg/kg的土壤,有2.8×108个;其次为空白对照土壤,为7.1×107个;再者为含NaAsO2 2 000 mg/kg的土壤,有5.6×107个;最少的是含NaAsO2 1 000 mg/kg的土壤,为1.8×107个。

对图1和图2进行对比发现,未添加外源砷前,自养型微生物和异养型微生物在土壤中的数量相差不大,每克干土中分别有9.3×107、7.1×107个。但当加入不同浓度的外源砷后,砷对自养型微生物有明显地抑制作用。3个浓度梯度下的自养型微生物数量均低于异养型的,反映出砷对自养型微生物的抑制作用大于其对异养型微生物的作用,从另一个侧面也说明异养型微生物的抗砷能力更强。此外,异养型微生物数量在外源砷添加浓度为500 mg/kg时出现了明显的增加,这表明低浓度砷对异养型微生物生长有刺激促进作用,随着浓度的增加,又表现为抑制作用。在相同的外源砷浓度下,砷对自养型微生物有更强的抑制作用。但无论是自养型还是异养型,在砷的抑制作用下,微生物数量均表现为先减少后增加的趋势,这说明不适应砷的微生物先大量减少或灭绝;当外源砷的浓度达到

2 000 mg/kg时,能适应环境存活下来的耐砷菌便开始大量繁殖,表现为微生物数量的增加。

2.2外加砷对已受砷污染土壤的微生物数量的影响

由图3可知,在无砷的有机培养基中,微污染土壤的微生物数量高于受砷严重污染区土壤的。而当向其中加入外源砷后,微污染土壤的微生物数量明显减少;而长期在高浓度砷土壤中的微生物数量却不减反增。

在研究外源砷对未受砷污染土壤中的微生物数量影响的同时,也对受砷污染土壤的样品进行调查。这种调查除了可以反映调查土壤的微生物数量受砷浓度影响而变化外,还可以和未受砷污染土壤的微生物数量的变化作对比。在无砷的有机培养基中,受砷严重污染的土壤中微生物数量比微污染土壤中的要少,这是由于受砷严重污染的土壤中,砷抑制了某些微生物的生长和繁殖,而离污染区2~3 km处的茶场土壤受砷污染较少,因此不抗(耐)砷的微生物则能生长。随着外源砷的加入,微污染土壤的微生物数量急剧下降,这是因为茶场土壤的微生物在遇到含砷的培养基,特别是含砷较高的培养基时,出现大量死亡或生长不起来,因此数量大大下降;而含高浓度砷土壤中的微生物数量却不降反升,这是因为受砷严重污染区土壤中本身含有大量的抗(耐)砷菌,砷成为抗砷菌生长所必需的元素,因此微生物的数量大大增加。

3结论

在不同的砷浓度下,砷在3种土壤中对微生物的生长既有促进作用,也有抑制作用;主要表现为土壤中微生物的数量会随着砷浓度的变化而变化。在砷的抑制作用下,随着砷浓度的增加,微生物数量均表现为先减少后增加;不适应砷的微生物首先大量减少或灭绝,而后当土壤中的砷浓度达到某一较高浓度后,能适应环境存活下来的耐砷菌便开始大量繁殖,表现为微生物数量的增加。

外源砷对土壤微生物数量影响的研究只是一项基础工作,后续的工作包括:结合砷对土壤中微生物数量的影响规律,利用PCR-DGGE手段进一步探讨其对微生物种群结构的影响,筛选出具有抗砷、耐砷能力的菌种;分别在不同的外源砷浓度下,研究砷对土壤中的自养、异养型微生物的促进和抑制机制;将微生物、植物修复两者结合起来,在两者的协同作用下,研究砷的降解与吸收特性及两者的协同机制。这些工作还需要进行进一步的深入研究。

参考文献:

[1] 杨慧,王富华,王旭,等. 砷元素形态分析研究进展[J]. 广东农业科学,2010,37(4):109-113.

[2] SHIBAYAMA A, TAKASAKI Y, WILLIAM T, et al. Treatment of smelting residue for arsenic removal and recovery of copper using pyro-hydrometallurgical process[J]. Jour of Hazar Mater, 2010,181(1-3):1016-1023.

[3] ULUOZLU O D, TUZEN M, MENDIL D, et al. Determination of As(III) and As(V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry[J]. Food and Chemi Toxicol,2010,48(5):1393-1398.

[4] 韦朝阳,郑欢,孙歆,等. 不同来源蜈蚣草吸收富集砷的特征及植物修复效率的探讨[J]. 土壤,2008,40(3):474-478.

[5] 陈范燕. 重金属污染的微生物修复技术[J]. 现代农业科技,2008(24):297,299.

[6] 赵维梅. 环境中砷的来源及影响[J]. 科技资讯,2010(8):146.

[7] 顾爱星,范燕敏,武红旗,等. 天山北坡退化草地土壤环境与微生物数量的关系[J]. 草业学报,2010,19(2):116-123.

[8] VAXEVANIDOU K, PAPASSIOPI N, PASPALIARIS L, et al. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques [J]. Chemos,2008,70(8):1329-1337.

[9] 高松,谢丽. 中国土壤砷污染现状及修复治理技术研究进展[J]. 安徽农业科学,2009,37(14):6587-6589,6615.

[10] 蒋友芬,甘子明,许晏, 等. 新疆奎屯地区高砷环境中抗砷菌的初步筛选[J]. 中国现代医药杂志,2009,11(6):21-23.

注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文