首页 > 范文大全 > 正文

纳米材料与纳米技术在口腔内外科学中的应用概述

开篇:润墨网以专业的文秘视角,为您筛选了一篇纳米材料与纳米技术在口腔内外科学中的应用概述范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

【关键词】 纳米材料纳米技术口腔内科学;口腔外科学

文章编号:1003-1383(2013)01-0106-04 中图分类号:R319 文献标识码:A

纳米(符号为nm)是一种度量单位。1 nm=1/100万mm。“纳米材料”的概念是20世纪80年代初形成的,指的是物质的颗粒尺寸小于100 nm的具有小尺寸效应的零维、一维、二维、三维材料的总称。目前在口腔医学临床上使用的材料相当广泛,运用于口腔的纳米材料称之为口腔纳米材料,对口腔临床修复治疗起到了非常重要的作用。随着纳米材料和纳米技术的兴起,新型的纳米材料开始在口腔医学领域[1]应用,对现有口腔材料的改性和创新具有重要意义。纳米材料具有以下主要特点:纳米粒子大小在1~100 nm;有大量的自由表面或界面;纳米单元之间存在着相互作用,作用或强或弱。因为具有以上特性,纳米材料具有包括表面或界面效应、小尺寸效应、量子尺寸、宏观量子隧道效应[2]。纳米材料与组成相同的微米晶体材料比较具有其许多优异的性能[3],主要表现在催化、磁性、光学、力学等许多方面。纳米高分子材料的应用涉及多方面,主要为介入性诊疗、免疫分析、药物控制释放载体等[4]。纳米技术涉及许多领域,包括纳米合成技术、纳米装置技术、微加工技术等,在口腔医学方面采用的纳米技术称之为口腔纳米技术[5]。现就纳米材料与纳米技术在口腔内外科学中的应用进行如下概括综述。

纳米技术与纳米材料在口腔内科学中的应用 1.纳米复合树脂 从以化学方式固化的复合树脂到光固化灯照射固化的复合树脂及双固化型复合树脂。用复合树脂修复牙体缺损已有40多年历史。复合树脂的基本组成部分是无机填料,根据无机填料的粒径大小分为大颗粒型、超微颗粒型和混合填料型。混合填料型树脂填料粒径近几年不断向纳米级发展。如今推出的适用于所有充填通用型纳米复合树脂,将是最有希望的新型复合树脂。为改善牙科树脂的性能,目前多采用许多增加强度和增加韧性的方法。在树脂中加入种类、数量、大小不相同的无机填料,虽然使复合树脂的强度得到提高,但同时又使树脂的韧性降低。而在树脂中运用纳米粒子来填充,可使复合树脂强度与韧性增加。使复合树脂的强度增强的纳米粒子包括纳米二氧化硅[6]、纳米氧化锆[7]、纳米羟基磷灰石[8]、纳米氧化钛[9]等。由于纳米粒子具有以下独特的性能,如非配对原子多,表面缺陷少,比表面积大,能与聚合物发生较强物理结合或化学结合,使粒子与基体间界面粘结时,对更大的载荷都能承受,从而使纳米复合树脂具有更高的强度和韧性。为使材料发生聚合时不收缩或收缩减小,在光化聚合丙烯酸脂或异丁烯酸脂基的向列液晶单体中,加入二氧化硅纳米微粒和较高含量的金属氧化物,使形成高分子量的聚合物粘结性增强,

体积收缩减小。二氧化锆用于口腔科具有X射线阻射性高、强度高和硬度高等优点,纳米氧化锆复合树脂光学透明性极高,是理想的口腔科复合树脂增强材料。口腔临床使用的树脂充填材料,放射阻射性弱,如发生继发龋坏时,X线片上很难将充填材料与继发龋进行鉴别,若将氧化钽纳米粒子通过运用纳米技术填充入树脂材料中,形成具有放射阻射性的新型纳米复合树脂材料,材料的物理强度会得到增强。而将氧化钽纳米粒子加入玻璃离子材料中,能使材料克服容易溶解的不足,同时强度增强,与一般的复合树脂相比,具有更好的耐磨性。该材料主要是依靠纳米机械结合,来提高其耐磨性。如果把纳米多孔二氧化硅凝胶加入树脂材料中,使新形成的材料具有不相同的结构,耐磨性能得到提高。有学者将纳米材料加入复合树脂中,发现能使其具有抗菌性能。Xu等在口腔科复合树脂中加入熔附了纳米硅颗粒的晶须和纳米二钙或四钙磷酸盐,可达到自修复的目的[10,11]。宋欣等人在复合树脂中加四针状氧化锌,发现该材料不仅能提高树脂的机械性能,还使树脂具有抗菌作用[12]。Niu等也在复合树脂中加入四针状氧化锌,使复合树脂具有抗菌性能的同时机械性能也增强[13]。由有机高分子材料和各种纳米单元通过多种方式复合成型的新型复合材料就是纳米填料复合树脂,是一种含有纳米单元相的纳米复合材料。纳米复合树脂与过去的复合树脂相比较性能上有更大提高,其优势就是色泽更逼真,抛光性与持久性更佳,超强强度更耐磨,可以广泛用于前牙或后牙。

2.纳米粘结材料 从BisGMA粘结剂和酸蚀技术用于口腔临床以来,在口腔临床粘结治疗方面获得很大进步。口腔内环境有其独特性,使许多粘接材料和粘接技术没有达到理想要求。随着纳米技术的广泛运用,纳米材料的日益发展,将纳米粒子加入现有的口腔粘结材料中进行改性外,还把纳米杂化树脂(poss)作为基质,用它与硅基纳米材料发生共聚,从而得到高强度、热稳定、耐久性的高粘结性材料。这种材料不仅能很好地克服酸蚀过程中造成的牙本质小管闭合问题,而且能在牙体和材料之间发挥较高的粘结性,使粘接技术和粘接材料达到一个更高更新的水平。牙本质过敏是口腔内科临床上常见病多发病,是牙齿上暴露的牙本质在受到外界刺激,如温度、化学性、机械性刺激后,引起牙齿的酸、软、疼痛症状,这主要是牙本质暴露后,牙本质小管内的液体,即牙本质液对外界刺激产生机械性反应所引起。临床主要是通过在暴露的牙本质表面涂布粘结剂来缓解敏感症状。在临床口腔常用的光固化粘结剂中加入一些纳米材料,不仅能提高其粘结力,还可作为牙本质过敏治疗的封闭材料。主要是利用纳米粘结材料来封堵牙本质小管,可以使牙本质过敏得到迅速和永久的治愈。

3.纳米根管充填材料 临床上用于做根管治疗的根充材料要求有以下特点:其一,能把炎症始发地彻底清除,能使根管封闭、死腔消灭,从而防止微生物进入根管内,阻止根管再次受到感染;其二,材料自身有恢复组织病变的能力,对根尖孔的钙化闭合有促进作用。因羟基磷灰石颗粒的尺寸较大,如单纯使用羟基磷灰石作为根管充填材料,在根管充填后形成的整体脆性较大,弹性模量与牙根牙本质不匹配,从而出现明显的微渗漏。随着纳米羟基磷灰石生物材料的出现,能很好解决根充材料存在的关于生物相容性的难题。经过大量基础和临床研究,发现纳米羟基磷灰石的结构与天然骨的无机成分很相似,均有良好的生物相容性,两者可以紧密结合,结合后周围组织未见有炎症和细胞毒性的发生,其对骨组织还有良好的诱导性。材料的组成和构造与脊柱动物硬组织相似,生物相容性良好[14~16]。将纳米羟基磷灰石制成糊剂用于充填根管,大多数病例根尖透影区变小或消失,临床症状消失,成功率达93.2%。根尖周围组织有病变的牙齿,成功率达93.8%。王艳玲[17]研究指出,用纳米羟基磷灰石根充与传统氧化锌丁香油糊剂根充两者相比较,在根管壁密合度方面,前者明显优于后者。纳米羟基磷灰石具有良好的根尖封闭特性,用其作根管封闭剂可减少微渗漏的出现。不少学者把具有良好的生物相容性,可使病变组织愈合加快,根充不会被组织吸收的纳米羟基磷灰石作为根管充填材料和根尖屏障材料,对其可行性进行了大量的临床研究[18~22],取得良好的疗效。纳米羟基磷灰石材料本身无杀菌作用,将碘或其他抗生素加入其中可以使该材料的抑菌和抗菌效果提高[23]。张海燕等[24]对难治性根尖周炎应用无机抗菌剂作为根管充填剂进行根管治疗,取得很好临床疗效。本身没有成骨性的纳米羟基磷灰石,可为新生骨的沉积提供合适的生理基质,引导牙骨质不断沉积来封闭根尖处的根尖孔。有临床报道将其用于年轻恒牙的根管充填特别合适。

纳米技术与纳米材料在口腔外科学中的应用 1.纳米技术在拔牙麻醉上的应用 拔牙麻醉时的注射操作和疼痛往往让患者感到害怕和恐惧。临床上可使用丁卡因进行组织的表面麻醉或局部注射碧兰麻来减轻患者的疼痛,但有时仍会出现诸多问题如麻醉镇痛不全、血肿、面神经暂时性麻痹等。随着纳米技术的发展,口外医生可将纳米粒子活性麻醉剂悬液直接涂布在牙龈和牙龈沟内,在声学信号(如超声波)或程序化的化学反应链(电化学机制)的指引下,经牙齿的薄弱区牙颈部,药物通过牙本质小管到达牙髓腔,达到麻醉效果。比牙本质小管管径(1~4 μm)小数百倍甚至数千倍的纳米粒子,可由信号引导,从牙本质小管灌流到牙髓腔内,起到麻醉效果,实现牙科无痛麻醉,给患者减少疼痛和恐惧感。

2.纳米复合体材料修复骨缺损 随着口腔材料学不断发展,羟基磷灰石作为新兴的材料,可大量用于口腔骨组织缺损的修复,如牙槽骨再造、牙周骨组织缺损、颌骨囊肿等。研究表明:羟基磷灰石所具有的许多特征与多种因素有关,尤其与它的颗粒直径大小有密切关系。如果颗粒直径大小在1~100 nm,羟基磷灰石则会具有特有的生物学特点。纳米羟基磷灰石的晶体构造与自然骨中的无机成分相比较,两者极为相似,都可以通过氢键方式与蛋白质及多糖结合在一起。无细胞毒性,生物相容性好,故认为其是多种口腔疾患造成天然骨质缺陷最好的替代物[25~29]。纳米羟基磷灰石材料既可作为骨形成的支架,而且还对骨细胞有引导的作用。有学者用纳米羟基磷灰石复合胶原植入术,对牙周病造成骨组织缺损的患者进行临床治疗及疗效观察,取得令人满意的临床效果[30,31]。羟基磷灰石复合胶原与周围组织相容性好,其组成和构造跟天然骨相似,本身无细胞毒性,对牙周膜细胞的生长和新生骨的形成有促进作用,故认为它是一种良好的组织工程支架材料。清华大学材料科学与工程系研制的纳米羟晶/胶原仿生骨,用来修复家兔颅颌骨实验性穿通性骨缺损,因仿生骨有良好的生物相容性,对骨组织的再生、修复起到促进作用,从而取得良好的骨创愈合效果,达到骨创的关闭和骨性桥接。有学者用纳米羟基磷灰石人工骨充填慢性根尖周炎及根尖囊肿手术后的骨缺陷区内以及下颌智齿拔除后的牙槽窝内,均取得令人满意的疗效。颌骨囊肿是口腔科的一种常见疾病,为减少术后出现感染概率,缩短术后修复时间,防止患者面部出现畸形,可加入纳米羟基磷灰石人工骨,纳米羟基磷灰石人工骨在充填骨缺损的同时,使感染问题得以解决,而且对骨诱导作用明显,手术操作简便易行,应在口腔外科临床工作中广泛推广。

3.纳米控释系统在肿瘤治疗中的应用 纳米控释系统包括纳米粒子和纳米胶囊,它们直径在10~500 nm之间。药物可以通过吸附作用、附着作用位于粒子表面或者通过溶解、包裹作用位于粒子内部。在外磁场的引导下,将磁性纳米颗粒作为药剂载体引导到肿瘤患者的患病部位,对病变部位进行定位治疗,这样可以减少治癌药的毒副作用,提高药物疗效。恶性肿瘤血管组织的通透性较大,细胞的吞噬能力较强,用静脉给药方式把纳米粒子运送到肿瘤组织,可使药物疗效得到提高,降低毒副作用和减少给药量。Lebold T等[32]把针孔结构的纳米硅石当作载体,结合多柔比星,将两者制成薄膜,与其他给药方式比较其释药时间显著延长。作为抗恶性肿瘤药物的输送系统,纳米控释系统被认为是最有发展的应用之一。纳米颗粒乳剂载体与分散于人体内的癌细胞容易融合,临床上可利用它将抗癌药物包裹。有人用聚乙烯吡咯烷酮纳米粒子将抗癌药物紫杉醇包裹用于肿瘤治疗,结果表明,含紫杉醇的纳米粒子与同浓度游离的紫杉醇在治疗肿瘤疗效方面,前者疗效明显增加。大量研究显示,具有纳米级的一些抗肿瘤药物,延长在肿瘤内停留时间,肿瘤生长缓慢,同时减少对组织器官的毒性和副作用,减少药物剂量。纳米脂质载体在肿瘤造影和成像等方面具有较好的优势[33],因为其对药物、基因、成影剂有较好的包封率。

综上所述,随着纳米材料与纳米技术的兴起和快速发展,为口腔材料学的研究提供了一种全新的方法和手段。使我们能以全新的思维模式从纳米水平来重新探索和研究材料的成份与结构,从而为口腔医学领域研制出更好更理想的口腔材料。

参考文献[1]王程越,李曦光.纳米技术与口腔医学[J].辽宁医学院学报,2004,25(4):6870.

[2]梁立红.纳米材料特点及研究动态[J].吉林工学院学报,2000,21(3):3033.

[3]胡文祥.分子纳米技术在生物医药学领域的应用[J].化学通报,1998(5):3238.

[4] Song CX,Labhasetwar V,Murphy H,et al.Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery[J].J Controlled Release,1997,43:197212.

[5]陈治清.口腔生物材料学[M].北京:化学工业出版社,2004:116166.

[6]支 敏,李长福,韦界飞,等.纳米SiO2在PMMA口腔义齿修复材料中的应用基础研究[J].天津医科大学学报,2007,13(4):493496.

[7]吴伟力,张修银,朱邦尚,等.氧化锆的用量对纳米氧化锆/PMMA复合材料挠曲性能的影响[J].口腔颌面修复学杂志,2008,9(1):4347.

[8]王 云,王青山.牙体修复性纳米羟基磷灰石复合材料的机械性能研究[J].现代口腔医学杂志,2011,25(2):115117.

[9]Xia Y,Zhang F,Xie H,et al.Nanoparticlereinforced resinbased dental composites[J].J Dent,2008,36(6):450455.

[10]Xu HH,Sun L,Weir MD,et al.Nano DCPAwhisker composites with high strength and Ca and PO4 release[J].J Dent Res,2006,85(8):722727.

[11]Xu HH,Weir MD,Sun L,et al.Strong nanocomposites with Ca,PO4,and F release for caries inhibition[J].J Dent Res,2010,89(1):1928.

[12]宋 欣,杜 滢,肖 月,等.添加四针状氧化锌晶须抗菌剂对义齿软衬材料机械性能的影响[J].黑龙江医药科学,2011,34(1):3940.

[13]Niu LN,Fang M,Jiao K,et al.Tetrapodlike zinc oxide whisker enhancement of resin composite[J].J Dent Res,2010,89(7):746750.

[14]李 平.新型纳米羟基磷灰石根充糊剂(nHA)的应用基础研究[D].四川大学华西口腔医学院硕士学位论文,2005.

[15]苏 勤,叶 玲,周学东.纳米羟磷灰石/聚酰胺66对牙髓细胞生物学作用的实验研究[J].华西口腔医学杂志,2005,23(1):7981.

[16]方厂云,曹 莹,夏 宇,等.大鼠牙细胞与纳米羟基磷灰石的体外复合培养[J].中南大学学报:医学版,2007,32(1):114118.

[17]王艳玲.纳米级HA根充糊剂根管密合度及抑菌性的实验研究[D].佳木斯大学口腔医学院硕士学位论文,2006.

[18]董 波,刘陆滨,刘玉杰.纳米羟基磷灰石修复慢性根尖周炎骨缺损的研究[J].黑龙江医药科学,2006,29(4):103.

[19]杨青岭,李文婷,王健平,等.壳聚糖/纳米羟基磷灰石治疗髓室底穿的实验研究[J].黑龙江医药科学,2007,30(2):37.

[20]程玉华,陈 东,赵广军,等.骨形成蛋白复合羟基磷灰石用于盖髓根管充填的临床观察[J].医药,1998,10(2):9394.

[21]刘秀丽,刘 曦.复方羟基磷灰石充填根管临床疗效观察[J].西安医科大学学报,2000,21(3):257258,295.

[22]Jallot E,Nedelec JM,Grimault AS,et al.STEM and EDXS characterisation of physicochemical reactions at the periphery of solgel derived Znsubstituted hydroxyapatites during interactions with biological fluids[J].Colloids Surf B Biointerfaces,2005,42(34):205210.

[23]Krisanapiboon A, Buranapanitkit B, Oungbho K.Biocompatability of hydroxyapatite composite as a local drug delivery system[J].J Orthop Surg (Hong Kong),2006,14(3):315318.

[24]孙海燕,裴玉岩,梁 楠.羟基磷灰石根管充填诱导根尖形成的临床研究[J].黑龙江医药科学,2003,26(1):21.

[25]温 波,陈治清,蒋引珊,等.纳米羟基磷灰石骨细胞相容性的研究[J].华西口腔医学杂志,2004,22(6):456459.

[26]崔 阳,刘一,陈学思,等.改性羟基磷灰石骨修复纳米复合材料的制备及生物学评价[J].中国组织工程研究与临床康复,2007,11(26):50745077.

[27]汤京龙,奚廷斐.纳米羟基磷灰石生物安全性的研究现状[J].中国组织工程研究与临床康复,2007,11(5):936939,943.

[28]Huber FX,Belyaev O,Hillmeier J,et al.First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM in human cancellous bone[J].BMC Musculoskelet Disord,2006,7:50.

[29]Kalita SJ,Bhardwaj A,Bhatt HA.Nanocrystalline calcium phosphate ceramics in biomedical engineering[J].Materials Sci Eng C,2007,27:441449.

[30]张 莉,马 宁,车彦海,等.纳米羟磷灰石和胶原复合膜修复下颌骨缺损[J].国际口腔医学杂志,2009,36(6):647649,654.

[31]孙 波,李月玲,杨德龙.纳米羟基磷灰石胶原骨植入治疗根分叉病变的临床研究[J].口腔医学,2010,30(6):358359,366.

[32]Lebold T,Jung C,Michaelis J,et al.Nanostructured silica materials as drugdelivery systems for Doxorubicin:single molecule and cellular studies[J].Nano Lett,2009,9(8):28772883.

[33]Erdogan S.Liposomal nanocarriers for tumor imaging[J].J Biomed Nanotechnol,2009,5(2):141150.

(收稿日期:2012-08-12 修回日期:2012-12-10)