首页 > 范文大全 > 正文

表征土壤肥力指标研究进展

开篇:润墨网以专业的文秘视角,为您筛选了一篇表征土壤肥力指标研究进展范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

【摘 要】本文阐述了土壤肥力概念、分类以及影响土壤肥力的因素,进而从土壤物理指标、土壤化学指标和土壤生物指标等方面对土壤肥力指标进行了阐述。

【关键词】土壤;土壤肥力;表征指标

土壤作为植物生产的基地、动物生产的基础、农业的基本生产资料、人类耕作的劳动的对象,与社会经济紧密联系,其本质是肥力。土壤肥力也正是土壤各方面性质的综合反映,体现了其在农业生产和科学研究中的重要地位。土壤肥力的高低直接影响着作物生长,影响着农业生产的结构、布局和效益等方面。土壤肥力是土壤的基本属性,是土壤物理、化学和生物性质的综合反映,也是影响作物生长发育和产量的关键因素之一。早在1840年李比西提出的“矿质营养学说”,为土壤肥力研究奠定了基础。迄今为止,尽管有人围绕着土壤质量取得了一些重要研究进展,但有关土壤肥力的理论研究都在各自学科的研究方向上徘徊,没有将土壤化学、物理和生物等相关学科统一起来形成公认的、一致性的定量化评价指标来进行表征土壤肥力。所以,及时了解分析和跟踪国内外土壤肥力指标研究的最新进展,对解决土壤肥力研究的实际性工作和使之为现代农业的可持续发展服务具有重要意义。

1 土壤肥力

1.1 土壤肥力概念

土壤肥力是指土壤为植物生长提供养分、水分以及优良环境条件的能力,它是土壤各种基本性质的综合表现,是土壤区别于成土母质和其他自然体的最本质的特征,也是土壤作为自然资源和农业生产资料的物质基础[1]。

1.2 土壤肥力分类

土壤肥力按成因可分为自然肥力和人为肥力。自然肥力是指在自然因素(生物、气候、母质、地形及时间等)的综合作用下,土壤产生和发展起来的肥力,未经耕种的自然土壤只具有自然肥力。人为肥力是人类在利用土壤进行作物栽培的过程中,通过对土壤耕作、施肥、排灌及土壤改良等农业技术投入所创造的肥力。土壤所具有的自然肥力与人为肥力的综合被称为有效肥力,也称为经济肥力。

1.3 影响土壤肥力的因素

1.3.1 化学因素

化学因素是指土壤的酸碱度、阳离子吸附及交换性能、土壤还原性物质、土壤含盐量以及其他有毒物质的含量等,它们直接影响植物的生长和土壤养分的转化、释放及有效性。

1.3.2 养分因素

养分因素是指土壤中的养分贮量、强度因素和容量因素,这主要取决于土壤矿物质及有机质的数量和组成。

1.3.3 生物因素

生物因素是指土壤中的微生物及其生理活性,它们对土壤氮、磷、硫等营养元素的转化和有效性具有明显影响,主要表现在:一是促进土壤有机质的矿化作用,增加土壤中有效氮、磷、硫的含量;二是进行腐殖质的合成作用,增加土壤有机质的含量,提高土壤的保水保肥性能;三是进行生物固氮,增加土壤中有效氮的来源。

2 土壤肥力表征指标

目前,国内外尚没有一个反映土壤本质特征的、综合的土壤肥力指标(SFI,soil fertility index)的理论体系。用土壤生产力的水平或土壤的一些理化性质的数量化特征来表征土壤肥力水平都有一定的局限性。土壤肥力综合指标有四类:(1)土壤营养(化学)指标:全氮、全磷、全钾、碱解氮、速效磷、速效钾、阳离子交换量、碳氮比(2)土壤物理性状指标:质地、容重、水稳性团聚体、孔隙度(总孔隙度、毛管孔隙度、非毛管孔隙度)、土壤耕层温度变幅、土层厚度、土壤含水量、粘粒含量(3)土壤生物学指标:有机质、腐殖酸(富里酸、胡敏酸)、碳、微生物态氮、土壤酶活性(脲酶、蛋白酶、过氧化氢酶、转化酶、磷酸酶等);(4)土壤环境指标:土壤 pH值、地下水深度、坡度、林网化水平[2]。

2.1 土壤物理指标

2.1.1 土壤质地

土壤颗粒组成是指土壤中大小不同的各级土粒的比率,它是反映土壤物理性质的一项重要指标,如土壤耕作难易、养分和水分保蓄能力、孔隙组成、通气性、持水性、透水性、水分运动及土壤气体和热状况等都在很大程度上受土壤颗粒组成的影响。土壤矿质颗粒的组成状况及其在土体中的排列,对土壤肥力起着决定性影响,土壤颗粒形状与大小各异的土壤结构,反映出一个不规则的几何形体和不同的土壤肥力基础,粒级越小,粒间孔隙小,吸水易膨胀,可塑性、粘着性、粘结性和保水保肥性越强,营养元素越丰富。余东山(1997)等研究表明,土壤颗粒组成与土壤的保肥及供肥能力有关,影响着有机质含量。不同土壤颗粒组成,肥力水平不同,团聚体的大小不同,所以土壤颗粒组成也是评价土壤肥力的重要因子之一。

2.1.2 土壤结构体

不同土壤的团粒结构,依土壤种类、特征和性质等限定性因子的不同而代表SF的水平不同,所以至今仍未报道过表征SF定量化的团粒结构指标,仅用粘粒含量、团聚体的稳定性和其粒径的比例等与其他SFI的相关性表征SF的高低。

研究表明,有良好团聚体结构的土壤,不仅具有高度的孔隙性、持水性和通透性,而且在植物生长期间能很好地调节植物对水、肥、气、热诸因素的需要,以保证作物高产。不同粒级的微团聚体对养分吸收者与释供的不同作用与其适宜的组合决定土壤肥力的高低,因此,不同肥力水平的土壤及各粒级微团聚体的有机质含量和腐殖质的结合形态的研究为解释土壤肥力水平的差异以及揭示土壤肥力的实质提供依据。土壤微团聚体及其适宜的组合是土壤肥力的物质基础,在对大小粒级土壤微团聚体的组成比例与土壤肥力的关系进行研究时发现[3],“特征微团聚体”(10μm的微团聚体)的组成比例能比较综合地反映土壤对于水、肥的保供性能,小粒级微团聚体有较强的持水性,而大粒级的有较强的释水性,可作为评断土壤肥力水平的有用指标。

土壤团聚体和水稳性团聚体的状况是影响土壤肥力的一个重要因素,其在一定程度上乃至很大程度上影响土壤通气性与抗蚀性,大团聚体比微团聚体含有更多的C和N,其所含的有机质更不稳定,更富生物体物质和特殊有机质。李小刚等[4]研究表明,随着有机质含量的增加,土壤团聚体的稳定性显著增加,粘粒的分散性显著降低。Capriel等指出,土壤团聚体的稳定性与土壤微生物之间存在明显的相关性。袁可能等[5]研究表明,在直径0.1mm与2~5 mm之间的各级团聚体,其腐殖质总量随着团聚体直径的增大而增大,G1/G2比值则随着团聚体直径的增大而逐渐减小。

土壤分形维数是反映土壤结构几何形状的参数,土粒表面分形维数是反映土壤颗粒表面状况的一个综合指标,而土壤团粒结构粒径分布的分形维数映了土壤水稳性团聚体及水稳性大团聚体含量对土壤结构与稳定性的影响趋势,即团粒结构粒径分布的分形维数愈小,则土壤愈具良好的结构与稳定性。

2.1.3 其他因子

土壤容重、通透性和抗蚀性是间接评价SF的一项重要指标,容重是土壤重要的物理性质,随着剖面深度而增加,能间接地反映SF水平的高低,它不仅直接影响到土壤空隙度与空隙大小分配、土壤的穿透阻力及土壤水肥气热变化,也影响着土壤微生物活动和土壤酶活性的变化,同时土壤容重对土壤物理性质如质地、团聚体、土壤结构、通气状况、持水性质和坚实度等影响显著。通透性的改变使得土壤的其他一些物理性质也随之改变,使土壤有机质含量、根系生物量、土壤呼吸、微生物数量及酶活性发生相应的变化。土壤的通气状况直接影响土壤的物理、化学性质,从而影响土壤生物活性。抗蚀性也是间接评价SF的一项重要指标,不同的土壤类型,其抗风、水蚀的性能不同,大量研究表明,通过改善土壤的理化性质,如质地、结构和有机质含量等就可以增强土壤的抗蚀性,减少土壤表面的水土流失,从而逐渐提高土壤肥力。

2.2 土壤化学指标

2.2.1 土壤氮、磷、钾

反映土壤肥力的化学指标较多,如土壤全N含量是评价土壤肥力水平的一项重要指标,在一定程度上代表土壤的供N水平,它的消长取决于N的积累和消耗的相对强弱,特别是取决于土壤中有机质的生物积累和分解作用的相对强弱。无机态N和有机态N反映了土壤肥力水平的暂时与潜在能力,而N的分布状况和土壤对N的固定、释放能力则直接反映出土壤肥力的高低。大量研究表明,随着土壤施N量的增加,生物量也增大,有机质的积累也随之增加;土壤中速效P可表征土壤的供P状况和指导磷肥的施用,也是诊断土壤有效肥力的指标之一,速效K作为当季土壤供钾能力的肥力指标,速效P、K含量一般随黏粒、粉粒含量增加而分别呈减少、增加的趋势,这是反映SF的短期指标。

2.2.2 土壤有机质

土壤有机质是土壤中各种营养元素特别是N、P的重要来源,由于它具有胶体特性,能吸附较多的阳离子,因而使土壤具有保肥性、保水性、耕性、缓冲性和通气状况,还能使土壤疏松,从而可改善土壤的物理性状,是土壤微生物必不可少的碳源和能源,所以土壤有机质含量的多少是土壤肥力高低的又一重要化学指标。从能量利用和经济效益的观点出发,土壤肥力的高低并不只是取决于有机质的含量,主要取决于土壤腐殖质的品质,改善重组有机质中的腐殖质的结合形态,能提高有机无机复合量,使轻组有机质增加而降低原复合度,从而不断提高土壤肥力。腐殖质是SOM的主体,碳水化合物是SOM的主要成分之一,土壤腐殖质与矿物质的结合态可分为3种,即松结态腐殖质、稳定态腐殖质和紧结态腐殖质。土壤结合态腐殖质在表征土壤肥力方面有不可忽视的作用,其结合的方式及松紧度的不同对土壤肥力有很大的影响。研究表明,肥地结合态腐殖质的含量与松结态腐殖质占有机质总量的比例均比瘦地高,稳结合态的比例较小,紧结合态腐殖质的比例肥瘦地大体相当。重组腐殖质中的松结态腐殖质主要是新鲜的腐殖质,它的活性较大,其含量以及与紧结态腐殖质含量的比值是反映腐殖质活性和品质的重要指标。腐殖质的作用在很大程度上取决于腐殖质大量功能团的含量,胡敏酸甲氧基功能团含量的多少是衡量土壤腐殖质化的重要指标,胡敏酸甲氧基含量增加,说明土壤有机质腐殖质化程度加强。Kononova和E.V.Turin认为气候、植被、地形、母质和人为活动等对SOM的转化有其独特的作用。

2.2.3 土壤有机碳

一般认为,土壤有机碳含量与土壤肥力高低呈正相关,随黏粒、粉粒含量增加而增加。土壤有机碳的氧化稳定性,活性和抗生物降解能力是反映土壤碳库的重要指标,对评价土壤有机质和SF状况有重要意义。土壤碳库动态平衡是土壤肥力SF保持和提高的重要内容,直接影响作物产量和土壤肥力的高低,土壤生物活性有机碳库的大小可以反映土壤中潜在的活性养分含量,周转速率可以反映土壤中的养分循环和供应状况。研究表明[7],土壤微生物生物量C/全N,作为土壤碳库质量的敏感指示因子可以推断碳素有效性,土壤矿化碳与全碳的比值可以指示土壤有机碳活性,土壤难氧化碳与全碳的比值可以度量土壤有机碳的氧化稳定性。土壤的氧化稳定性是可以反映土壤肥力演变的一项指标,而氧化性系数既能反映腐殖质的组成,又能综合地反映所有的有机矿质复合体,还比胡敏酸/富里酸的比值更能反映土壤的生物稳定性。

2.2.4 土壤阳离子交换量和平pH值

土壤阳离子交换量(SCEC)和pH值是反映土壤肥力状况的两项指示性指标,交换剂溶液的pH值是影响SCEC的重要因素,SCEC是由土壤胶体表面的净负电荷量决定的,而有机、无机胶体的官能团产生的正负电荷和数量则因溶液的pH值和盐溶液浓度的改变而改变。研究表明,不同土壤的CEC和pH值明显地影响着土壤有机质、酶和微生物活性等。

2.3 土壤生物指标

2.3.1 微生物指标

土壤微生物是土壤生态系统中养分源和汇的一个巨大的原动力,在植物凋落物的降解、养分循环与平衡、土壤理化性质改善中起着重要的作用,良好的生物活性和稳定的微生物种群是反映土壤肥力的主要动态指标之一。

土壤微生物生物量是表征土壤肥力特征和土壤生态系统中物质和能量流动的一个重要参数,常被用于评价土壤的生物学性质,因为它能代表参与调控土壤中能量和养分循环以及有机物质转化所对应微生物的数量。研究结果表明,土壤微生物生物量与土壤有机质、全N、有效N之间关系密切,呈极显著的正相关,微生物生物量与速效P之间看不出明显的相关性,这说明土壤中微生物的活动与土壤有机质和氮素营养有关。研究微生物生物量C可以了解土壤有机质状况,进而对SF有一大概的了解。Insam等把作物产量与土壤微生物生物量C相结合研究,结果表明作物产量与土壤微生物生物量C明显呈正相关,并认为土壤微生物生物量C可以作为土壤的一个肥力指标,He等也对此作了一致的报道。微生物生物量C周转期更能说明土壤微生物的活性,可以作为土壤微生物活性和有机质降解速率的潜在指标。大量研究结果表明,凋落物的腐解可以刺激相应土层的土壤微生物活性的增长,微生物量分布与其相应土层的土壤养分的含量相关,总生物量可作为SF的一个指标。

土壤微生物具有景观变异性,而其种群的数量和分布是反映生物稳定性的一个显著特征,并在一定程度上代表了SOM活性。所有的微生物种群数量一般随着土壤深度的增加而降低,其中0~10cm的土层中最多,而真菌数量的降低幅度较细菌高。土壤真菌影响土壤团聚体的稳定性,是土壤肥力的重要微生物指标。土壤微生物的活性表示了土壤中整个微生物群落或其中的一些特殊种群的状态。在免耕的农田生态系统中,微生物活性随土壤深度的变化很大,一般表层土壤中的微生物活性最大,而翻耕的耕作层微生物活性基本相当。

2.3.2 土壤酶指标

土壤酶是土壤中植物、动物、微生物活动的产物,是土壤生物化学反应的重要指标之一,土壤中许多重要的物理、化学和微生物活性物质等,都与土壤酶有着密切的相关性。SEA是评价SF又一重要活性指标,在土壤中主要研究的酶有脲酶、磷酸酶、硝酸还原酶、转化酶和纤维素酶等。土壤脲酶与土壤有机质、全氮、全磷等性质均呈显著或极显著相关关系,可作为土壤肥力指标之一[8],而Sakorn等认为脲酶活性与土壤任一理化性质均不显著,磷酸酶与P转化密切相关,土壤磷酸酶活性是指示土壤管理系统集中和土壤有机质含量的重要指标;Knowles等认为,在嫌气条件下硝酸还原酶是反消化过程中的一种重要的酶,它的活性比在好气条件下强,催化硝酸盐还原为亚硝酸还原酶,转化酶能催化蔗糖水解为葡萄糖,SEA是土壤生物活性的总体现,反映了土壤的综合肥力特征及土壤养分转化进程,所以它可以作为衡量土壤肥力水平高低的较好指标;Lenhard发现,脱氢酶活性与氧的消耗以及细菌群的活性密切相关;但Sparling发现脱氢酶活性与生物量以及其他生物活性没有相关性。研究结果表明,土壤中一些非专一性和水解性的酶活性作为反映管理措施和环境因子引起的土壤生物学和生物化学变化的指标,在自然生态系统或低投入的农田生态系统中,土壤酶活性或其他生物指标与植物生物产量密切相关,而高投入的系统中干扰无相关性。

Frankenberger和Dick研究了10种土壤中的11种酶,发现碱性磷酸酶、酰胺酶和过氧化氢酶活性与土壤微生物呼吸量和总生物量显著相关,但与微生物平板计数无关,其他研究[9]也证明了土壤微生物活性与脱氢酶、纤维分解酶、蛋白酶、磷酸酶和脲酶活性间的相关性。

参考文献

[1]庞元明.土壤肥力评价研究进展[J].山西农业科学,2009,37(2):85-87.

[2]骆东奇,白洁,谢德体.论土壤肥力评价指标和方法[J].土壤与环境,2002,11(2):202-205.

[3]周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评断土壤肥力水平中的意义[J].土壤学报,1994,31 (1):18-28.

[4]李小刚,崔志军,王玲英等.盐化和有机质对土壤结构稳定性及阿特伯极限的影响[J].土壤学报,2002,39(4): 550-559.

[5]袁可能,陈通权.土壤有机矿质复合体研究Ⅱ.土壤各级团聚体中有机矿质复合体的组成及其氧化稳定性[J].土壤学报,1981,13(4):335-343.

[6]曹志洪,朱永官.苏南稻麦两熟制下突然养分平衡与培肥的长期试验[J].土壤,1995,27(2):60-64.

[7]Bradley R L,Fyies J W.A kinetic parameter describing soil available C and its relationshipto rateincreaseinCmineralization[J]. SoilBiol.Biochem,1995,27(2):167-172.

[8]周礼恺.土壤酶活性的总体现在土壤肥力水平中的作用[J].土壤学报,1983,20(4):413-417.

[9]孙波,赵其国,张桃林等.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标[J].土壤,1997,(5):225-233.