开篇:润墨网以专业的文秘视角,为您筛选了一篇运用层次分析法确定营销力评价指标权重范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘 要:营销力是企业获取竞争优势的重要源动力,如何确定企业营销力评价指标权重是正确认识和评价企业营销力的关键。通过建立营销力指标体系层次,构造判断矩阵、进行层次单排序和总排序,并对结果进行一致性检验,确定营销力指标体系权重。通过定性指标的定量化计算,为企业对营销力进行战略性管理提供数据支持。
关键词:层次分析法;指标体系;一致性;权重
中图分类号:F123.9 文献标志码:A 文章编号:1673-291X(2014)27-0079-04
引言
营销力是中国学者提出的本土化概念,伴随着中国市场营销环境的不断变化与发展,营销力已成为企业获取竞争优势的源动力。本文从资源与竞争这两个理论基点出发,认为营销力是企业有效整合内外资源,在市场营销层面上加以优化配置和高效运用,并在动态环境中不断强化和提升,进而转化为企业竞争力,并最终依靠这种竞争力获得市场竞争优势、支撑企业可持续发展的合力。要对营销力进行评价,构建科学合理的指标体系,运用科学方法确定指标体系的权重是关键。但目前学术界对于营销力评价指标体系和评价模型方面的研究较少,缺乏指标体系和应用层面的系统研究。
层次分析法(AHP)是由美国运筹学家T.Lsaaty教授于20世纪70年代提出的一种定性与定量相结合的分析评价方法。它是一种对复杂现象的决策思维过程进行的系统化、模型化、数量化的研究方法,既可以反复统一处理决策中的定量与定性问题直至接近客观要求,又能够检验并减少主观因素的影响,在处理复杂系统的评价中有独特的优点。
AHP法的基本思路是把复杂事情分成若干有序层次,建立起一个描述系统功能或特征的内部独立的层次结构(即模型树),然后根据对某一客观事物的判断,就每一层次的相对重要性作出定量表示,即构造“比较判断矩阵”,以这个矩阵的最大特征值及其相应的特征向量,在通过一致性检验的前提下,确定每一层次中各元素的相对重要性次序的权重;通过对各层次的分析,进而导出对整个问题的分析,即总排序权重。AHP方法把人的思维过程层次化、数量化,并用数学手段为分析、决策提供定量的依据,所以,AHP方法是一种定性与定量相结合进行权重分析的较好方法。
二、层次分析法的运用
第一步:明确问题
威廉・汤姆森先生曾经说过:“不能量化,就不能很好的认识。”任何研究或分析一般都是从研究事物的质的差别开始,然后再去研究它们的量的规定,在量的分析的基础上,再作最后的定性分析,得出更加可靠的结论。通过层次分析法,运用定量的分析方法,为企业对营销力进行战略性管理提供数据支持。
第二步:运用AHP方法建立营销力指标体系层次
要明确指标体系权重分析系统中各因素之间的关系,建立系统的递阶层次结构,即建立相应的目标层,主准则层(中间层)和分准则层(方案层);目标层又叫最高层,是AHP法解决问题的目标。对于营销力分析,目标层是企业的营销力。中间层是实现目标所必需的几个环节或因素构成的。本文认为营销力是由文化力、产品力、价格力、渠道力、品牌力、销售力、执行力和协同力营销亚力组成,营销亚力为指标体系的主准则层,营销亚力又由不同的营销分力组成即方案层,方案层也是指标体系的最低层由以下29个指标构成,营销力评价体系(如下页表1所示):
第三步:构造判断矩阵
构造判断矩阵,判断矩阵元素的值反映了人们基于客观实际对各因素相对重要性的主观认识与评价,采用基数1,
2,…,9及其倒数的标度方法,具体数值可采用德尔菲法调查,然后结合理论分析给出。构造判断矩阵是运用AHP法的重要环节,参加层次分析的决策人员,要对层次结构中每一层次的元素的重要性(或优劣性)做出判断,并通过引入合适的标度,用一定的数量表示出来的,形成判断矩阵。针对上一层次某元素、本层次与之有关的元素之间相对重要性的比较。通过两两比较,构造两两比较判断矩阵。根据心理统计,人们设定标度Cij的取值范围为1,2,…,9,其含义(见表2)。
构造准则层(A层次―B层次)判断矩阵。
构造判断矩阵,同时为了考察判断矩阵能否用作层次分析,就要对判断矩阵作一致性检验,一致性检验是和排序同步进行的。下表中B1、B2、B3、B4、B5、B6、B7、B8,分别表示协同力、执行力、销售力、价格力、渠道力、品牌力、产品力和文化力(见表3):
CI===0.0257
第四步:层次单排序
层次单排序是根据判断矩阵,即可计算出判断矩阵的最大特征根及相应的特征向量,得出对于上一层中某元素和本层次与之有联系的元素的重要性权重。层次单排序是总排序的基础。层次单排序主要计算判断矩阵的最大特征值和与之相对应的特征向量,即根据线性代数中的知识(Perron定理)[6],对于判断矩阵C,必有符合:
由|λI-C|=0,(I为8阶单位矩阵)解得,λmax=8.1798
对应的特征向量为:
(0.0932 0.3537 0.1868 0.2858 0.2604 0.1977 0.5322 0.5996)
单位化之后为:
X′=(0.0371 0.1410 0.0744 0.1139 0.1038 0.0788 0.2121
0.2389)
第五步:单排序的一致性检验
为了检验判断矩阵的一致性,我们引入一致性指标CI,此外,为了更好地检验判断矩阵的一致性,美国数学家Saaty引进了判断矩阵的平均随机一致性指标RI,他用随机的方法,构造了500个相关矩阵,对于不同的n阶矩阵,得到的RI值(见下页表4):
从判断矩阵的定义可知,一阶、二阶判断矩阵总是完全一致的;当阶数大于2时,判断矩阵的一致性指标CI与同阶的平均随机一致性指标RI之比,称为判断矩阵的一致性比例,用CR表示,如果n=1或2,那么判断矩阵具有完全一致性,定义CR=0;如果n>2,若求得CR0.1,则判断矩阵不具有满意一致性,需要对判断矩阵进行调整和修正,一直到矩阵满足CR
当n=8时,由表4可得RI=1.41
则CR===0.0182
所以该判断矩阵具有满意一致性。
构造次准则层(B层次―C层次)
同A层次―B层次一样,构造B层次―C层次的判断矩阵,并且计算出各自的权重。判断矩阵B1―C1,相对于协同力,各分准则之间的相对重要性的比较,及其单排序和一致性检验结果(见表5):
判断矩阵B2―C2,相对于执行力,各分准则之间的相对重要性的比较,及其单排序和一致性检验结果(见表6):
为了得到某一层次相对于上一层次的组合权重,我们用上一层次各个元素分别作为下一层次各元素间相互比较判断的准则,得到下一层次元素相对于上一层次各个元素的相对重要性权重,然后用上一层次元素的组合权重加权,即得到下一层次元素相对于上一层次整个层次的组合权重,就是总排序。层次总排序应沿着整个层次结构由上到下逐层来计算,即可计算出最低层元素相对于最高层次的相对重要性权重或相对优劣的排序值。
式中CIi和RIi,分别表示与Ai对应的B层次中判断矩阵的一致性指标和随机一致性指标。CR
结束语
层次分析法把复杂问题中的各种因素通过划分成相互联系的有序层次使之条理化,根据对一定客观现实的判断就每一层次的相对重要性给予定量表示,利用数学方法确定表达每一层次的全部元素的相对重要性次序的权值,可为决策者面对其他领域纷繁复杂的形势做出正确决策提供科学的依据,了解企业自身的营销力状况,分析优势和劣势,并有针对性地提升和培养竞争力。在层次分析法中构造判断矩阵是非常重要的一步,因为判断矩阵是计算权重的根据,是唯一的信息来源,对最终结果有决定性影响,专家在判断时难免会出现判断的不一致性情况,因此还必须对专家的定性分析判断进行严格的定量检验以保证利用层次分析法得到结论的合理性。
参考文献:
[1] 程艳霞,潘继红.基于资源与竞争两要素的营销力研究[J].现代管理科学,2005,(12).
[2] 蒋亚奇.基于层次分析法的企业品牌竞争力评价与测度研究[J].经济研究导刊,2011,(8).
[3] 聂辰席.企业竞争力评价方法及其应用研究[J].管理科学与工程,2003,(9):115-116.
[4] 郭金玉.层次分析法的研究与应用[J].中国安全科学学报,2008,(5).