首页 > 范文大全 > 正文

连续型与锯齿型螺旋翅片管翅片效率计算与分析

开篇:润墨网以专业的文秘视角,为您筛选了一篇连续型与锯齿型螺旋翅片管翅片效率计算与分析范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:

介绍了烟气换热领域常用的两类高频焊钢质螺旋翅片管.指出目前存在多种连续型与锯齿型高频焊螺旋翅片管翅片效率计算方法,不便于同类换热实验结果的相互比较.通过深入分析与计算比较,对连续型与锯齿型高频焊螺旋翅片管分别给出了建议的翅片效率计算方法,供相关的工程设计及实验研究选用.两种管型的翅片效率比较表明,锯齿翅片的翅片效率较高,提高的幅度随翅片高度增大而增大.

关键词:

余热锅炉; 螺旋翅片管; 连续型翅片; 锯齿型翅片; 翅片效率

中图分类号:TK 223 文献标志码:A

Calculation and analysis of fin efficiency of solid and serrated helical-finned tubes

MA You-fu, YUAN Yi-chao

(School of Energy and Power Engineering, University of Shanghai for Science

and Technology, Shanghai 200093, China)

Abstract:

This paper introduced two types of helical-finned tube which are manufactured by high-frequency resistance welding and widely applied to various flue gas heat exchangers. However, various methods for calculating the fin efficiency of solid and serrated helical-finned tubes have been used in the literature, which makes it inconvenient to compare the experimental results of helical-finned tube heat transfer by different researchers. Based on a comprehensive analysis and comparison, the calculation methods of fin efficiency of solid and serrated helical-finned tubes were recommended for the design of heat exchanger and the processing of experimental heat transfer data. The comparison of fin efficiency between the solid and serrated fin tubes indicated that the serrated fin has a higher fin efficiency than the solid fin, and the fin efficiency difference between the two types of finned tube increased with the increase in fin height. The fin efficiency of the serrated fin tube is approximately 15% higher than that of the solid fin tube when the fin height is equal to 28 mm; the fin efficiency of the serrated fin tube is only 1% higher than that of the solid fin tube when the fin height is equal to 12 mm.

Key words:

HRSG; helical-finned tube; solid fin; serrated fin; fin efficiency

在联合循环余热锅炉、化工废热锅炉等大型高温烟气换热设备中,通过高频电阻焊接技术制造的螺旋翅片管(翅片材质为碳钢或合金钢)得到了广泛应用.实际应用的高频焊螺旋翅片管分为连续型与锯齿型两大类,如图1所示.其中,d0为基管外径;df为翅片外径;hf为翅片高度;pf为翅片螺距;hs为锯齿高度;ws为锯齿宽度;δf为翅片厚度.锯齿型螺旋翅片管又可根据翅根形状分为I型与L型.I型翅片的根部仍保留一定高度的连续翅片,即锯齿高度小于翅片高度,而L型翅片中锯齿高度与翅片高度相等,锯齿延伸至翅片根部,如图2所示.

一般而言,换热与阻力特性是翅片管束的重点研究内容.在翅片管束强化传热的实验研究中,常以无量纲准则数Nu或J 因子表征管束换热特性,但由实验数据得出Nu或J因子时需先计算确定翅片效率.在大量有关钢质螺旋翅片管束换热特性的实验研究中,翅片效率的计算方法较多,这给不同研究者换热实验结果间的比较带来了困难.此外,有些文献给出换热实验结果时未指明所依据的翅片效率计算方法,使得研究成果的参考价值降低.本文对高频焊螺旋翅片管翅片效率计算方法进行分析和比较,以期为相关工程设计及实验研究给出建议的翅片效率计算方法.

1 连续型螺旋翅片管翅片效率计算

Gardner[1]所提出的翅片效率概念在扩展表面对流换热领域得到了广泛的应用.对于连续型螺旋翅片管,一般认为其翅片效率可按环形翅片计算.若忽略翅端散热,并假定翅片表面换热系数均匀,则矩形截面环翅的翅片效率Ef分析解为

式中,m=[2αf/(λfδf)]1/2;αf为翅片表面换热系数;λf为翅片导热系数;r0=d0/2;r1=df/2;I0、I1为第一类修正零阶与一阶Bessel函数;K0、K1为第二类修正零阶与一阶Bessel函数.

需考虑翅端换热时,Harper-Brown假定被广泛应用.通过Harper-Brown假定考虑翅端换热后环翅Ef分析解为[2]

式(2)中含有Bessel函数,计算过程较为复杂.为便于工程计算,Schmidt[3]提出按式(3)计算环翅Ef,其原理是将矩形平直翅片的翅片效率计算式应用于环翅,以增加翅片高度的方式考虑环翅内外周界长度不同的影响.

式中,hf,e为折算翅片高度,hf,e=(hf+δf/2)[1+0.35ln(df/d0)].

Schmidt近似计算方法形式简单、便于使用,得到了广泛的应用与推荐[4].mhf2.5时预测精度有所下降.为提高近似计算的精度,文献[5-7]从不同的角度提出了各自的计算方法.这些计算方法虽在更广的mhf范围使预测精度提高,但同时也使计算公式的形式更为复杂.实际应用中常见的连续型钢质螺旋翅片管df/d0=1.5~2.5且mhf

式(2)的得出仍有一个假定前提,就是假定翅片表面对流换热系数αf为常数.实际中翅片表面αf分布并不均匀,致使Ef理论计算值较实际值偏高或偏低.在流体横掠翅片管束的强迫对流换热中,αf不均常使假定αf为常数计算所得Ef较实际值偏高,而在自然对流换热中却可能使Ef较实际值偏低[8].若要获得考虑αf不均的Ef分析解,需建立描述αf沿翅片表面分布的数学模型.在流体横掠翅片管束的换热中,αf沿径向与周向呈现出复杂的分布,且影响因素众多,使得通过数学方法描述αf分布变得困难.多年来就环翅表面αf分布提出过多种数学模型,但均未获得广泛应用.目前αf分布不均匀对环翅Ef的影响仍以实验研究为主要依据.

αf分布不均匀对Ef的影响程度与Ef大小有关.根据Lymer等[9]对不同材质环翅的实验研究,Ef>0.8时理论值与实验值相差不大,不必再修正[10].对大部分以Al、Cu为材质的翅片管,大多Ef>0.8,故Ef常按式(2)或式(3)计算.但在高温烟气换热领域,多采用导热系数较低的钢质翅片,Ef

连续型钢质螺旋翅片管实际翅片效率Ef,real为式中, 为考虑了αf分布不均匀的修正系数;Ef为理论翅片效率,可按式(2)或式(3)计算.

Yudin等[11]以大量连续型钢质螺旋翅片管的换热实验数据为基础,在较广的实验验证范围mhf=0.1~3.7提出修正系数 =1-0.058mhf;Reid等[12]根据Lymer等[9]的实验结果推荐 =0.7+0.3Ef.此外,Weierman[13]关联式在欧美被广泛推荐用于钢质螺旋翅片管传热与阻力特性计算[14-16],该关联式中对连续型螺旋翅片管Ef,real的计算方法为

2 锯齿型螺旋翅片管翅片效率计算

虽然锯齿型螺旋翅片管是在连续型螺旋翅片管基础上为进一步提高翅化比发展而来,但两者的翅片结构及强化传热机理相差较大.连续型螺旋翅片接近于传统的环翅,而锯齿型螺旋翅片接近于传统的钉翅,故而两种管型的翅片效率计算方法明显不同.在公开文献中,有关锯齿型螺旋翅片管的研究报道远少于连续型螺旋翅片管,关于锯齿翅片Ef也存在不同计算方法.

2.1 按钉翅计算

多数文献[12,13,17-18]认为锯齿型螺旋翅片管理论翅片效率Ef按矩形截面钉翅计算,即

4 结论

本文对高频焊钢质螺旋翅片管翅片效率进行了分析与比较研究,主要结论为:

(1) 在高频焊钢质螺旋翅片管翅片效率计算中,翅片表面换热系数分布不均匀的影响需予考虑;虽然都称为螺旋翅片管,但连续型与锯齿型螺旋翅片管的翅片效率计算方法并不相同.

(2) 连续型螺旋翅片管翅片效率建议按式(5)计算,以便于与多数相关实验研究结果比较,亦可按式(3)计算理论翅片效率并通过文献[11]的修正方法予以修正,两种方法计算结果相差在2%以内.

(3) 锯齿型螺旋翅片管理论翅片效率建议按式(6)计算.实际翅片效率对于I型锯齿型螺旋翅片管建议 =0.8+0.2Ef,对L型锯齿型螺旋翅片管建议 =0.9+0.1Ef.

(4) 锯齿翅片的翅片效率高于连续翅片,提高的幅度随翅片高度增大而增大;翅高为12 mm时锯齿翅片的翅片效率比连续翅片高约1%,翅高为28 mm时高约15%.

参考文献:

[1] GARDNER K A.Efficiency of extended surface[J].Trans ASME,1945,67:621-631.

[2] KRAUS A D,AZIZ A,WELTY J.Extended surface heat transfer[M].New York:John Wiley & Sons,Inc,2001.

[3] SCHMIDT T E.Heat transfer calculations for extended surfaces [J].Refrigerating Engineering,1949,57:351-357.

[4] VDI Gesellschaft.VDI Heat Atlas [M].Berlin:Springer,2010.

[5] HONG K T,WEBB R L.Calculation of fin efficiency for wet and dry fins[J].Journal of HVAC&R Research,1996,2(1):27-41.

[6] ACOSTA-IBORRA A,CAMPO A.Approximate analytic temperature distribution and efficiency for annular fins of uniform thickness[J].International Journal of Thermal Sciences,2009,48(4):773-780.

[7] BAHADORI A,VUTHALURU H.Predictive tool for estimation of convection heat transfer coefficients and efficiencies for finned tubular sections[J].International Journal of Thermal Sciences,2010,49(8):1477-1483.

[8] ESMAIL M A.Heat transfer from extended surfaces subject to variable heat transfer coefficient[J].International Journal of Heat and Mass Transfer,2003,39(2):131-138.

[9] LYMER A,RIDAL B F.Finned tubes in a crossflow of gas[J].Journal of British Nuclear Energy Conference.1961,6:307-313.

[10] HUANG L J,SHAH R K.Assessment of calculation methods for efficiency of straight fins of rectangular profile[J].International Journal of Heat and Fluid Flow,1992,13(3):282-293.

[11] YUDIN V F,TOKHTAROVA L S.Investigation of the correction factor psi for the theoretical effectiveness of a round fin[J].Thermal Engineering,1973,20(3):65-68.

[12] REID D R,TABOREK J.Selection criteria for plain and segmented fined tubes for heat recovery systems[J].ASME Journal of Engineering for Gas Turbines and Power,1994,116(4):406-410.

[13] WEIERMAN C.Correlations ease the selection of fin tubes[J].Oil and Gas Journal,1976,74(6):94-100.

[14] GANAPATHY V.Industrial boilers and heat recovery steam generators[M].New York:Marcel Dekker,Inc.,2003.

[15] ANNARATONE D.Steam generators[M].Berlin:Springer,2008.

[16] Gas Processors Suppliers Association.Engineering Data Book (12th Edition-FPS)[M].Tulsa:Gas Processors Suppliers Association,2004.

[17] NIR A.Heat transfer and friction factor correlations for cross-flow over staggered finned tube banks[J].Heat Transfer Engineering,1991,12(1):43-58.

[18] SHAH R K,SEKULIC D P.Fundamentals of heat exchanger design[M].Hoboken:John Wiley & Sons,Inc.,2003.

[19] HASHIZUME K,MORIKAWA R,KOYAMA T,et al.Fin efficiency of serrated fins[J].Heat Transfer Engineering,2002,23(2):6-14.

[20] 程贵兵,陈远国.齿型翅片管肋效率的数值计算[C].中国工程热物理学会传热传质学学术会议论文集,合肥,1998:23-27.