首页 > 范文大全 > 正文

一种超低温漂的带隙基准电压源

开篇:润墨网以专业的文秘视角,为您筛选了一篇一种超低温漂的带隙基准电压源范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!

摘要:为提高带隙基准电压源的温度特性,采用Buck电压转移单元产生的正温度系数对VBE的负温度系数进行高阶曲率补偿.同时使用共源共栅结构(Cascode)提高电源抑制比(PSRR).电路采用0.5 μm CMOS工艺实现,在5 V电源电压下,基准输出电压为996.72 mV,温度范围在-25~125 ℃时电路的温漂系数为1.514 ppm/℃;当电源电压在2.5~5.5 V变化时,电压调整率为0.4 mV/V,PSRR达到59.35 dB.

关键词:带隙基准电压源;低温度系数;高阶补偿;集成电路

中图分类号:TN432 文献标识码:A

An Ultra-low Temperature Coefficient

Bandgap Voltage Reference

QIU Yu-song, ZENG Yun, PU Ya-nan

(College of Physics and Microelectronics Science,Hunan Univ,Changsha,Hunan 410082, China)

Abstract: In order to improve the temperature characteristics of bandgap voltage reference, this paper took advantage of Buck's voltage transfer cell generating a positive temperature coefficient to provide a high-order curvature compensation of VBE. And Cascode structure was used to improve the power supply rejection ratio (PSRR). The circuit was simulated in 0.5 μm CMOS process. The output voltage of bandgap reference is 996.72 mV under 5 V supply available, and a temperature coefficient of 1.514 ppm/℃ can be achieved over the temperature varying from -25 to 125 ℃. The PSRR reaches 59.35 dB and an average line regulation reaches 0.4 mV/V when power supply changes from 2.5 to 5.5 V.

Key words: bandgap voltage reference;low temperature coefficient;high-order compensation;integrated circuit

基准源在集成电路中的作用是提供准确的电压或电流,它是模拟集成电路的核心组成部分,而其中带隙基准电压源由于具有高电源抑制比及长期稳定等优点,而被广泛地应用在A/D和D/A转换器、低压差线性稳压器(LDO)、高精度比较器、存储器等集成电路中.传统的带隙基准电路仅仅补偿了一阶温度项,而VBE的高阶项才是限制温度特性的关键因素[1].因此,设计低温漂系数带隙基准源是十分必要的.

近年来,国内外提出了多种不同的高阶补偿技术来改善基准电路的温度特性.Cao等提出了利用动态基础泄漏补偿技术来进行高阶补偿,使基准电压在-40~125 ℃范围内温漂系数达到15 ppm/℃[2];Malcovati等利用双极晶体管电压差进行温度补偿,温漂系数在0~80 ℃内降至7.5[3],但该电路存在电阻回路,精度不高;Gong等利用不同的电阻材料进行温度补偿,电路的温度变化范围大[4],但产生的温漂系数高;而Leila Koushaeian等使用电流镜和运算放大器来减小温漂,其温漂系数为4.7 ppm/℃[5].

本文对传统的电流型求和基准源的原理和结构进行分析总结,通过采用Buck式电压转移单元[6]和与温度无关的电流对VBE进行高价补偿的方法,设计了一种具有超低温漂系数的带隙基准源电路.同时使用一种有效的启动电路保证电路能正常启动,并且在输出端采用共源共栅结构,提高了电路的电源抑制比.该电路结构对负温度系数项的非线性部分进行了高阶补偿,达到了更低的温漂系数.仿真测试结果表明,输出基准电压为996.72 mV,当温度在-25~125 ℃时,温漂系数为1.514 ppm/℃;电源电压在2.5~5.5 V变化时,电压调整率为0.4 mV/V,适合于高精度电路中的参考电压源.

1 一种超低温漂带隙基准源的设计

带隙基准源是将分别拥有负温度系数VBE和正温度系数ΔVBE的电压按适当的权重相加,获得零温度系数的基准电压[7].为了最大程度地降低带隙基准电路的温漂系数,同时保证足够大的电源抑制比,本文设计了一种新型超低温漂的带隙基准源电路.

1.1 整体电路的设计

本设计基于传统带隙基准源工作原理,采用Buck电压转移单元产生的正温度系数对VBE的负温度系数进行高阶曲率补偿,整个带隙基准电路如图1所示.

图1中Part 1部分是电流求和型基准源,其将正温度系数和负温度系数两电流之和通过电流镜镜像到输出端,通过电阻分压得到基本与温度无关的基准电压[8].运算放大器使电路处于深度负反馈状态,调整R0的阻值使Va和Vb分别大于0.6 V,利用R1B1,R1B2及 R1A1,R1A2进行分压,得出较小的电压Vc和Vd作为运放的输入电平.其中R1B1= R1A1, R1B2= R1A2,故Va=Vb,Vc=Vd. M1和M2管的宽长比一致,使得两支路流过的电流也相同,Part 1中产生的带隙基准参考电压为:

式中:第1项为常数项,第2项为一阶项,第3项为高阶项.常数项是在温度为0 K时外推而得到的PN结二极管电压,VBE0是发射结电压.T0是参考温度,η是与工艺有关的常数.α的值与Ic的温度特性有关,当Ic与温度成正比时,α=1;当Ic与温度无关时,α=0.

由式(2)可以得出:VBE与温度并不是线性关系,一般的电路仅对其中的一次项进行了补偿,而与温度有关的高阶项TlnT并没有得到补偿,从而导致电路的温度特性较差.所以为了减小输出电压的温度系数,就需要对VBE中的非线性项TlnT进行补偿.

图中Part 2部分产生与温度无关的电流,并将其注入到Q5,Q1管,Q5与Q1的发射极面积相等.所以Q1的电流与T成正比,由式(2)可得VBE1-VBE5为:

因此,V1与V5的差值即为与非线性项TlnT成比例的电压.

图中Part 3部分即为Buck型电压转换单元,是整个带隙基准电路的核心部分,用来实现Vref的高精度曲率补偿.Buck式转移单元电路主要由两个差分对构成,通过晶体管差分对管M3~M4可求出电压,再由电流镜M5~M6管传送给差分对管M1和M2.晶体管M1~M4管均工作于饱和区,在忽略体效应与沟道长度调制效应时,可得到:

带隙基准电路通过调整电阻R0,R1A1,R1A2的大小,可对VBE1进行一阶线性补偿;而VBE1的高阶曲率补偿是由参数A和G实现的,只要调整好参数A和G就可以消除高阶温度系数项TlnT,从而获得理想的基准电压.

1.2 启动电路

在传统的带隙基准源电路中,存在电流为0的稳定状态,该状态是非正常工作状态,所以必须加入启动电路使其脱离该状态[5].启动电路先为工作电路提供适当的启动电流,使整个电路正常启动后,启动电路再自动关闭.从图1可以看出:启动电路由晶体管M7~M10构成,且M7~M9是二极管连接方式.当电源接通后,M8管工作在饱和区,M10导通使节点A的电位上升,电路开始正常工作.当节点A的电位上升到使M10管截止时,启动电路关闭,从而使得电路进入正常的工作状态.

1.3 运算放大器设计

运算放大器的性能对带隙基准源的性能参数有着十分重要的影响.为了保证运算放大器两端输入电压相等,并且尽可能地提高带隙基准电路的电源抑制比,放大器的增益应保证足够大[10].运算放大器采用放大器级联结构,如图2所示,在提高增益的同时使电路能够产生较大的输出摆幅.

运算放大器的增益高低决定了电源抑制比的大小.在0.5 μm CMOS工艺下使用Cadence工具对运算放大器电路进行仿真,得到其频率特性曲线如图3所示.由图可见:放大器的增益达到79.46 dB,相位裕度为74.05°,完全满足电路要求.放大器的输入对管采用PMOS保证运放工作在饱和区,并且在放大器两级输入之间加入补偿电阻和电容,以提高放大器的相位裕度和稳定性.

1.4 版图设计

带隙基准源是高精度的模拟电路,其版图设计对精度和匹配性要求很高,因此在设计中,电流镜,BJT,运算放大器以及电阻等都要做到匹配对称,布局布线也要尽可能合理.在双极型晶体管和电阻的周围添加虚拟器件,并将三极管并联组合在一起以达到版图匹配.在放大器的版图设计中,采取中心对称结构可以降低工艺偏差.故最终设计的整体版图如图4所示,面积为300 μm×300 μm.

2 仿真与测试的结果分析

对基准电路而言,温漂系数是其最重要的性能参数之一,温漂系数的大小直接决定电路性能的好坏.本设计基于0.5 μm的CMOS工艺,采用Cadence中的Spectre软件进行模拟仿真,最后对其进行测试.当电源电压为5 V时,在-25~125 ℃温度

范围内对电路进行仿真与测试,结果如图5所示.由图可见:仿真曲线中电路的输出基准电压为996.72 mV,在扫描范围内仅有0.1 mV的变化;而实际测试得到的输出基准电压为996.7±0.06 mV,与仿真结果相似.经补偿后的输出基准电压的温漂系数只有1.514 ppm/℃,温度特性得到了很大的改善.

带隙基准电路的电源抑制比仿真与测试曲线如图7所示,其直流PSRR为59.35 dB.通过温度特性及电源特性的仿真与测试结果比较得出,虽然由于工艺的偏差导致测试与仿真结果存在些许差异,但电路设计完全满足电源控制芯片所要求的性能指标.

3 结 论

本文设计并实现了一种温漂系数仅为1.514 ppm/℃的带隙基准电压源.所设计的电路以Buck型转移单元电路作为基准电路的核心,将其产生的正温度系数对VBE的负温度系数进行高阶温度补偿,极大地改善了电路的温漂特性;同时由于使用了Cascode结构,保证了高的电源抑制比.在0.5 μm CMOS工艺条件下,运用Spectre工具仿真验证了电路的电源以及温度特性.测试结果显示:当温度在-25~125 ℃之间变化时,温漂系数仅为1.514 ppm/℃.电源电压在2.5~5.5 V内变化时,电路的电压调整率仅为0.4 mV/V,PSRR为59.35 dB,测试结果证明了所设计电路性能优良,可广泛应用于要求超低温漂系数的电路系统中.

参考文献

[1] 苑婷,巩文超,何乐年. 高精度、低温度系数带隙基准电压源的设计与实现[J].电子与信息学报, 2009, 31(5):1260-1264.

YUAN Ting, GONG Wen-chao, HE Le-nian. Design and realization of a high precision low temperature coefficient bandgap voltage reference [J]. Journal of Electronics & Information Technology, 2009, 31(5): 1260-1264.(In Chinese)

[2] CAO Y, WOUTER D C, MICHIEL S, et al. A 4.5 MGy TID-tolerant CMOS bandgap reference circuit using a dynamic base leakage compensation technique [J]. IEEE Transactions on Nuclear Science, 2013, 60(4):2819-2824.

[3] MALCOVATI P, MALOBERTI F, FIOCCHI C, et al. Curvature-compensated BiCMOS bandgap with 1-V supply voltage[J].IEEE Journal of Solid-State Circuits,2001,36(7):1076- 1081.

[4] GONG Xiao-feng, LIU Min-jie, ZHOU Bin, et al. A novel wide temperature range bandgap reference [C]//Proceedings of 2012 IEEE 55th International Midwest Symposium on Circuits and Systems. New York: IEEE, 2012:506-509.

[5] KOUSHAEIAN L, SKAIDAS S. A 65 nm CMOS low-power, low-voltage bandgap reference with using self-biased composite cascode opamp [C]// Proceedings of 2010 IEEE International Symposium on ISLPED. New York: IEEE, 2010:95-98.

[6] BUCK A, MC DONALD C, LEWIS S, et al. A CMOS bandgap reference without resistors [J]. Journal of Solid-State Circuits, 2002, 37(1):81-83.

[7] RAZAVI B. Design of analog CMOS integrated circuits[M]. Boston: McGraw-Hill, 2011: 381-390.

[8] LEUNG K N, MOK P K T. A Sub-1-V 15-ppm/℃ CMOS bandgap voltage reference without requiring low threshold voltage device [J]. IEEE Journal of Solid-State Circuits, 2002, 37 (4): 526-530.

[9] TSIVIDIS Y. Accurate analyzes of temperature effects in IC-VBE characteristics with application to bandgap reference sources[J]. IEEE Journal Solid-State Circuits, 2001, 15 (6):1076-1084.

[10]LI W G, YAO R H, GUO L F, et al. A low power CMOS bandgap voltage reference with enhanced power supply rejection [C]//Proceedings of IEEE 8th International Conference on ASIC. New York: IEEE, 2009:300-304.