开篇:润墨网以专业的文秘视角,为您筛选了一篇公路工程造价快速估算的模糊神经网络方法应用范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要:近些年来,伴随着我国公路事业的蓬勃发展,公路工程建设的数量和规模日益增加。而公路工程造价估算作为公路工程建设的重要前提以及公路工程管理的重要组成部分,其在公路建设中的地位也日益突显,合理的工程造价估算可以有效提高工程施工单位投资决策的科学性。而基于模糊神经网络的工程造价估算方法可以有效的克服传统工程造价估算方法的一系列弊端,有效提高公路工程造价估算的合理性和科学性。本文从公路工程造价的相关概念谈起,然后对模糊神经网络的相关概念给予详细的说明,最后就公路工程造价估算中模糊神经网络方法的应用进行了说明。
关键词:公路工程 造价估算 模糊数学 神经网络 模糊神经网络
中图分类号:F540.34 文献标识码:A 文章编号:1672-3791(2012)04(c)-0053-01
1 公路工程造价估算概述
1.1 公路工程造价估算的重要性
公路工程造价估算作为公路工程管理的重要组成部分其重要性主要体现在如下几个方面。
第一,公路工程造价的估算是实现工程成本控制的基础。其中工程施工前期造价估算、施工前的编制预算以及施工图设计阶段的编制预算等环节作为工程造价估算的核心,同样是公路工程施工成本控制的起点,因此,实现公路工程造价的合理估算是实现工程成本控制的重要前提条件。第二,公路工程造价的估算可以为施工企业成本控制计划方案的制定提供重要的参考依据。施工企业通过工程造价的估算可以寻找到降低工程成本的有效途径,从而为工程施工过程中施工成本的控制提供正确的方向。第三,公路工程造价的估算可以帮助施工企业在进行设计招标前可以确定工程的大致造价。这样一来,施工企业在招标的过程中就可以有效避免中间商的欺诈以及保标等恶意行为的发生。
1.2 传统公路工程造价估算中存在的问题
尽管工程造价估算在公路工程建设中越来越受到人们的重视,但是由于受各方面因素的影响,在传统公路工程造价估算中还存在一系列的问题,其中我国传统公路造价估算中主要存在如下几个方面的问题:一是相关规章制度的限制,造价估算结果往往与投标报价相差悬殊;二是预算结果与概算结果差距较大,不利于工程实际造价的控制和确定;三是缺少对工程造价估算的有效监督机制,从而使最终的造价结果变的十分不确定;四是由于各参与方利益的问题,在进行工程造价估算时很难早到平衡点,以至于造价估算精度不能得到有效的保证。
2 认识模糊神经网络
2.1 模糊数学概述
(1)模糊数学的概念,我们通常说的模糊就是指一些模棱两可的、即可能又不可能、即是又不是的概念。而模糊数学就是要用数学的方法来表示那些模糊概念发生的可能性的大小,换句话讲就是明确那些模糊概念所处的状态,从而利用数学的思想来解决那些模棱两可的、不确定的实际问题。(2)模糊数学的数学描述,一般模糊数学的数学描述,多采用的是类似与集合的数学表示方法。与集合的区别就在于模糊数学在表示集合元素时需要附带一个称为隶属函数值的参数,其中该参数的值是隶属函数与元素的值进行运算的结果。
2.2 神经网络概述
(1)神经网络的概念,所谓的神经网络是一个借鉴物理和生物技术来实现的用来模仿人类大脑神经细胞结构和功能的系统,与人类的大脑结构相似,它也由大量的模拟神经元所组成的,而且这些神经元之间相互连接,并行工作,作为一个系统协同完成一系列复杂的信息处理活动。(2)神经网络的基本原理,神经网络在结构和功能上都是模拟人脑的神经系统来进行设计和实现的,它同时作为模拟生物神经元的一种计算方法,其基本原理是这样的,与生物神经元的基本原理相似,用那些具有突的网络结点来接受信息,并不断的将接受到的信息累加起来,这些信息有些是抑制神经元,有些则是激发神经元,对于那些激发神经元,一旦积累到一定的阈值后,相应的神经元便会被激活,被激活的神经元就会沿其称为轴突的部件向其它神经元传递信息,并完成信息的处理。
2.3 模糊神经网络概述
模糊神经网络是模糊数学和神经网络有效结合的应用研究成果。其中在模糊神经网络中模糊数学的应用体现在它可以根据那些假定的隶属函数以及相应的规律,用逻辑推理的方法去处理各种模糊的信息。
3 模糊神经网络在公路工程造价估算中的应用
3.1 基于模糊神经网络的公路工程造价估算方法的实现
基于模糊神经网络的公路工程造价估算方法的实现过程如下。
第一,构建已施工公路工程的造价信息库,其中包括应经施工的公路工程的各种特征因素以及工程造价等其他各方面的材料。
第二,结合拟建工程的施工需求来确定其包括评价指标等在内的各种特征因素的数据取值。
第三,按照模糊数学的思想法在已施工公路工程的造价信息库中选取若干个(至少三个)与拟建工程最相似的已施工的工程,将其作为神经网络进行学习和训练的基础数据。其中,将信息库中公路工程的各种特征因素值的隶属度作为神经网络的输入向量,信息库中公路工程的造价值作为神经网络的输出向量。
第四,将拟建公路工程的各种特征因素值的隶属度作为神经网络的输入向量,通过神经网络的学习后所得到的输出向量即为拟建公路工程的造价估算值。
第五,建立公路施工工程造价信息数据,编制神经网络学习的算法通用程序。将学习训练的基础数据输入神经网络,然后合理设计学习率,经过一定次数的迭代运算,有效提高公路工程造价估算结果的精度。
3.2 基于模糊神经网络的公路工程造价估算方法的优点
该方法的优点可以概括为如下几点。
第一,模糊神经网络中所采用的模糊数学可以对公路工程造价估算中的模糊信息进行有效的处理,通过对已竣工的公路工程和计划施工的公路工程的相似度进行定量化描述,从而使模糊的公路工程造价问题得以模型化。
第二,基于模糊神经网络的公路工程造价估算方法的估算结果科学合理,因为该方法采用的是基于数学模型的数学计算分析,所以其结果受人为因素的影响较小。
第三,模糊神经网络中所采用的神经网络模型对公路工程造价的估算具有很好的适应性,与传统的造价估算方法相比,该方法能更好的适应公路工程造价的动态变化。
第四,基于模糊神经网络的公路工程造价估算方法是借助计算机来完成的,所以还具有运算速度快和运算精度高的优点。
4 结语
由于影响公路工程造价的因素比较多,而且各因素的构成比较复杂,计算相对繁琐,所以公路工程的造价估算具有很大的模糊性。对于使用传统的工程造价估算方法而言,公路工程造价的估算将是一项非常复杂的工作。然而结合模糊数学和神经网络的理论思想,利用工程之间所存在的相似性,使用基于模糊神经网络的公路工程造价估算方法可以迅速的得出精确的工程造价估算结果。
参考文献
[1] 张天力.模糊神经网络在公路工程造价估算中的应用[J].中外公路,2007(10).