开篇:润墨网以专业的文秘视角,为您筛选了一篇新九燕山隧道红黏土段施工风险控制技术范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘要:风险管理是隧道施工管理中的重要组成部分。影响隧道风险的因素很多,对于不同的隧道,风险的种类和风险的大小也千差万别。红黏土是一种具有膨胀性的黏土。本文针对新九燕山隧道红黏土段,采用系统分析的方法,对施工风险因子进行识别,并对红黏土隧道风险因子进行了定性和定量分析,为隧道施工风险控制提供依据。
关键词:红黏土;风险分析;系统分析; 新九燕山隧道
Abstract: the risk management is the management of tunnel construction is an important part. Many factors influence the risk of tunnel, for different tunnel, the type of risk and risk of size also differ in thousands ways. The red clay is one kind has the dilatability clay. This article in view of the new nine red clay period of yanshan tunnel, the system analysis method, the construction risk factors identification, and the red clay tunnel risk factors for the qualitative and quantitative analysis, risk control for tunnel construction to provide the basis.
Keywords: red clay; Risk analysis; System analysis; New nine yanshan tunnel
中图分类号:U455文献标识码:A 文章编号:
前言
随着经济的发展,风险管理日益成为企业管理的重要组成部分。隧道及地下工程是一个投资大、工期长、专业多、涉及面广的复杂系统工程。在这些项目的规划、设计、建设和运营过程中,还会存在许多不确定和不可预见因素,使得隧道工程在安全性方面面临着风险。对于这些项目进行完善和系统安全风险管理,可以预见可能出现的危险和灾害,从而采取有效的预防和控制措施。
现行的风险评估理论和风险评估技术主要集中在基于不确定性理论、概率及数理统计、模糊数学、决策理论等多种理论的定性分析、定量分析,及定性分析和定量分析相结合的方法等。例如:定性分析,有HAZOP(Hazard and Operability) 分析、FMEA(Failure Mode & Effect Analysis) 等方法;定量分析,有故障树/ 事件树分析、层次分析法(AHP) 、概率风险评估(Probabilistic Risk Assessment2PRA) 等方法;介于两者之间的方法,如FRR(Facility Risk View) ;另外,风险评估的理论和评估技术正在将模糊控制、人工智能神经网络技术和系统工程中的智能化技术引入风险评估,以使风险评估向智能化的动态系统评估的方向发展。但这些方法在分析的深度,广度上都是不一样的,提供的信息量也都不一样,因此,选用合理的方法十分重要。
目前,对隧道及地下工程的风险评估工作还停留在简单的定性和定量评估水平上。在国内、外还没有具体针对地铁工程项目进行风险评估的方法、模型和体系,绝大部分问题(如工程项目的决策风险、投资风险、设计风险、施工风险及运营风险的评估等多个方面的问题) 的研究,还几乎没有展开或尚处于认识和初步研究阶段。对地铁工程的风险评估,还仅限于在可行性研究报告中的定性分析和少量的定量分析,还不能对地铁工程进行全面系统的定量分析,还没有合理的和完整的评估体系、评估模型和评估方法。
本文针对新九燕山隧道红黏土段,采用系统分析方法,对红黏土隧道风险进行分析,提出了施工中风险因子的控制方法,为隧道风险控制提供依据。
2 工程概况
新九燕山隧道是包西铁路二线(包头~西安)控制性工程,全长9353米,隧道起讫里程DK514+049~DK523+402。位于延安市南川河与劳川河上游分水岭处的劳山川右岸黄土梁峁区,隧道于三十里铺一沟左侧进洞,下穿即有线西延铁路洪市沟二号隧道,再穿过九燕山分水岭从前黄土沟出洞,地面高程一般为1158~1335m。隧道进口基岩,山坡表层冲沟发育,地表植被较发育。隧道最大埋深210m,一般埋深34~80m。DK521+177~DK523+397段洞身位于上第三系红黏土地层,红色黏土岩为中等红黏土。含较多疆石结核层富水,受地下水浸泡,对隧道工程影响较大,工程性质较差。
隧道经过区出露主要地层为,第四系全新统坡积砂质黄土、上更新统风积砂质黄土、中更新统风积黏质黄土,上第三系红黏土,及侏罗系页岩夹砂岩。其中红黏土分布于隧道洞顶及隧道洞身中,土层厚度约10~50m,棕红色,土质较均一,以黏粒为主,夹较多姜石及黑色斑质物,黏性较好。Ⅲ级硬土。
地下水类型主要为第四系孔隙潜水和基岩裂隙水。第四系孔隙潜水又分两种:一种分布于小沟及河流的地下水类型主要为第四系孔隙潜水和基岩裂隙水。第四系孔隙潜水又分两种:一种分布于小沟及河流的各级阶地上,以砂类土及碎石类土透镜体层为含水层,接受河流和大气降水补给,水量较丰富,埋深较浅;另一种赋存于黄土孔隙和裂隙中的地下水,经黄土孔隙下渗至相对隔水的老黄土、红黏土或基岩面上,以下降泉和面状渗滴排泄,水量较小,埋藏随黄土层厚度而变化,大气降水是其补给源。该地下水是造成黄土山坡变形的重要条件之一。
主要的工程措施为,拱墙、仰拱:C30钢筋混凝土;喷混凝土:C25喷射混凝土;钢筋网:HPB235钢筋,直径16;锚杆: 拱墙采用22砂浆锚杆。施工方法采用上下断面法施工。
3 红黏土隧道风险因素识别
3.1 地质风险
红黏土特殊地质
红黏土特性是红黏土隧道施工特殊风险产生的根本原因。影响红黏土膨胀率和强度的因素很多,主要有:红黏土的矿物成分和化学成分百分比;红黏土的结构特征;红黏土的含水量等。同时膨胀圈的厚度也会影响红黏土隧道风险的大小。
不良地质
隧道经过断裂带、破碎带,隧道地表,特别在浅埋段如出现地裂、地沟等地质现象。这些不良地质会降低围岩的等级,也会为雨水下渗提供条件。
地下水
水对于红黏土性能的影响特别大,是重要的风险因子。地下水和下渗的雨水都会给红黏土隧道带来巨大的危害。
3.2 设计风险
隧道的长度和埋深
隧道的长度和埋深对红黏土隧道特殊风险具有一定的影响,但影响较小。
支护参数
红黏土隧道的变形会比普通隧道大,如何保证隧道施工安全、隧道结构的稳定是支护参数确定的关键因素。
隧道断面形状与结构形式
在一定的围岩压力条件下,不同的隧道断面形状,其应力分布状态是有明显区别的。为了尽量减少围岩应力集中,有利于围岩的稳定,红黏土中隧道断面形状最好是采用圆形,其次是马蹄形曲墙。而且隧道底部应设置仰拱,使之形成一闭合结构。同时应对衬砌边墙地基进行加固,防止地基不均匀沉陷与胀缩变形,约束底板变形。