开篇:润墨网以专业的文秘视角,为您筛选了一篇初中数学概念教学举例范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
摘 要:数学概念是数学教材结构的最基本的因素,正确理解数学概念,是掌握数学基础知识的前提.学生如果不能正确地理解数学中的各种概念,就不能很好地掌握各种法则、公式、定理,也就不能应用所学知识去解决实际问题。
关键词:概念教学;概念引入;概念本质
中图分类号:G622 文献标识码:B 文章编号:1002-7661(2014)15-394-01
数学概念是用简练的语言对研究对象的本质属性的高度概括,是学生学习数学、接受新知识的基础。初中数学概念的教学在整个教学阶段乃至整个数学学习当中又起到了相当重要的作用。加之初中学生理解能力和阅读能力较弱,因此,教师在教学过程中应认真讲解概念,不能忽视每一个概念,不能认为概念是条条,只要学生记住就行了,而是让学生彻底理解并在此基础上去记忆。这样不仅能使学生记得牢,更重要的是学生能通过概念举一反三,融会贯通,从而达到教学的要求。因此,教好初中数学概念这一关是非常重要和必要的。
一、揭示含义,突出关键词
数学概念严谨、准确、简练。教师的语言对于学生感知教材,形成概念有重要的意义,因此要特别注意用词的严格性和准确性。教师要用生动、形象的语言讲清概念的每一个字、句、符号的意义,特别是关键的字、词、句,这是指导学生掌握概念,并认识概念的前提。
如:“分解因式”概念:“把一个多项式化成几个整式的积的形式,这种变形叫把这个多项式分解因式。”在教学中学生往往只注重“积”这个关键词,而忽略了“整式”,易造成对分解因式的错误认识。所以在教学中务必强调,并与学生分析这两处关键词的含义,加深对概念的理解。
二、分析概念,抓住本质
数学概念大多数是通过描述定义给出他的确切含义,他属于理性认识,但来源于感性认识,所以对于这类概念一定要抓住它的本质属性。
如:“互为补角”的概念:“如果两个角的和是平角,则这两个角互为补角。”其本质属性:1、必须具备两个角之和为180°,一个角为180°或三个角为180°都不是互为补角,互补角只就两个角而言。2、互补的两个角只是数量上的关系,这与两个角的位置无关。通过这两个本质属性的分析,学生对“互为补角”有了全面的理解。
三、剖析变化,深化概念
数学概念都是从正面阐述,一些学生只从文字上理解,以为掌握了概念的本质,而碰到具体的数学问题却又难以做出正确的判断。因此,在教学过程中,必须在学生正面认识概念的基础上,通过反例或变式从反面去剖析数学概念,凸显对象中隐蔽的本质要素,加深学生对概念理解的全面性。
如:在学习对顶角的概念后,让学生做题:1、下列表示的两个角,哪组是对顶角?(a)两条直线相交,相对的两个角(b)顶点相同的两个角(c)同一个角的两个邻补角 前后联系,多方印证,加深认识。
部分学生对概念的全面理解不可能一蹴而就,而是要经历:实践――认识――再实践――再认识的过程,这是个“正确”与“错误”摇摆不定的过程,更是一个对概念的理解不断深化的过程。事实上,学生在初步学习某一数学概念之后,对概念的理解并不怎么深刻,而是通过对后续知识的学习让学生回过头来再对概念进行加深理解,遵循“循环反复,螺旋上升”的学习原则。
如:学生刚接触“二次函数”的概念时,仅能从形式上判断某一函数是否为二次函数。但当他们学习了其图象,研究了图象的性质后就能根据a得出图象的开口方向,由a、b确定图象的对称轴,由a、b、c给出图象的顶点坐标。这时对二次函数的概念自是记忆深刻,能脱口而出了。
四、易混淆概念,联系区别
任何一个概念都有它的内涵和外延,外延的大小与内涵成反比关系。内涵越多,外延就越小;内涵越少,外延就越大。把握概念的内涵与外延,能大大增加学生对概念的明晰度,提高鉴别能力,避免张冠李戴,为此,把所教概念同类似的相关的概念相比较,分清它们的异同点及联系,也就显得十分重要。如:学完“轴对称”与“轴对称图形”的概念后,可引导学生找出两者之间的联系和区别。联系:两者都有对称轴,如把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形,如把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分成轴对称。区别:“轴对称”是指两个图形成轴对称,主要指这两个图形特殊的位置关系;而“轴对称图形”仅仅是指一个图形,主要指这个图形所具备的特殊形状。通过这样的联系与区别,学生加深了对概念的理解,避免混淆,从而提高学生认知概念的清晰度。
五、在计算、判断、推理、证明中巩固数学概念
学生学习概念,主要在理解概念的基础上通过适量的练习来巩固概念,所以,巩固概念是概念教学中的重要环节。心理学告诉我们,概念一旦获得,如不及时巩固就会被遗忘,所以巩固概念具有十分重要的意义。而引导学生利用概念解决数学问题和发现概念在解决问题中的作用,将直接影响学生对数学概念的巩固。在教学中要注意引导学生在计算、判断、推理、证明中运用概念,也要注意在日常生活和生产实践中运用概念,以加深学生对概念的理解和巩固。例如“平方根”的概念是初中数学的一个难点,在教学这个概念后,可通过以下几类练习题加以巩固。1、加强对平方根符号√ ̄的运用。可以让学生练习:(1)把32 =9、(-7)2 =49、 =5、- =-6改写成平方根或平方形式。并要求学生说出底、幂、被开方数、平方根,通过这些练习一方面把被开方数a与二次幂联系起来,加深对符号意义的理解,也明白为什么a≥0,为以后学次根式做好准备,另一方面又明白了平方运算与开平方运算的互逆性。2、扣住平方根定义去思考。如求16、0、8这些数的平方根。讲解时可以这样分析:什么叫求16的平方根?根据平方根的定义,就是求一个数a,使a2 =16。因为42 =16,(-4)2 =16,所以16的平方根是4和-4。3、利用反例加深对概念的巩固。如:判断下列语句是否正确,并说明理由。(1)36的平方根是6。(2)0没有平方根。(3)-9的平方根是3和-3。(4)7没有平方根。(5)2是4的平方根。让学生在辨析的过程中,巩固学生对平方根概念的理解和掌握。
搞好数学概念的教学,教师要从教材和学生的实际出发,面向全体学生,耐心地帮助学生掌握逻辑思维的“语言”,逐步提高他们的思维水平,定能够增强数学概念教学的有效性,从而提高数学教学质量。