开篇:润墨网以专业的文秘视角,为您筛选了一篇数学实验教学是再现数学发现过程的有效途径范文,如需获取更多写作素材,在线客服老师一对一协助。欢迎您的阅读与分享!
《数学课程标准》指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”大数学家欧拉说:数学这门科学需要观察,也需要实验。实验是科学研究的基本方法之一,数学也不例外。不能设想,所有的数学知识和方法都可以离开实验而仅仅通过计算或推理得到。然而,由于学生所学的数学知识都是前人发现并经过严格论证的真理,因此,过去学生的数学活动大多表现为以归纳和演绎为特征的思维活动,简约了数学的发现过程。传统数学教学常常把数学过分形式化,忽视探索重要数学知识形成过程的实践活动,制约了学生的发展。数学实验教学是再现数学发现过程的有效途径,它为学生提供了主体参与、积极探索、大胆实践、勇于创新的学习环境,提供了一条解决数学问题的全新思路。信息技术与数学课程的整合,更为数学实验教学开辟了无限广泛的前景。
根据初中生的心理特征,他们喜欢动手操作,喜欢把新的数学知识跟现实生活、自己的经验联系起来,喜欢富有挑战性、新颖性、开放性的问题,笔者在教学实践中发现:在初中数学教学中恰当地引入数学实验是引导学生发现问题、提出猜想、验证猜想和创造性地解决问题的有效途径。在数学教学中让学生动手做数学实验,开启学生“数学的眼睛”,激发学生用数学的眼光探索数学的新知识,是调动学生热爱数学,学好数学,用好数学,发现步入数学殿堂大门的十分有效的数学教学方法。下面举几个例子,谈谈自己的一些做法。
一、借助数学实验教学,引导学生加深对概念的理解。
通常数学概念教学是教师给出概念,学生加以记忆,但学生往往对其本质属性理解不够,一知半解,更别提运用了。列夫托尔斯泰曾说:“知识,只有当它靠积极的思维得来,而不是凭记忆得来的时候,才是真正的知识。”新理念就要求教师在概念教学中注重知识的生成,引导学生从已有的知识背景和活动经验出发,提供大量操作、思考与交流的机会,让学生经历观察、实验、猜测、推理、交流与反思等过程,进而在增加感性认识的基础上,帮助学生形成数学概念。
案例1:无理数的概念教学
实验准备:课前准备一把剪刀、两张同样大小的正方形纸片(边长视为1)、计算器。
实验要求:
1.让学生利用这些工具剪拼出面积为2的正方形;
2.利用计算器探求 的小数部分。
实验说明:考虑到本节课的特点和随着学生年龄的增长,他们的思维水平也在不断提高,为此直接提出富有挑战性的数学问题“拼得的正方形的面积是多少?”“它的边长是多少?”“估计 的值在哪两个整数之间?”“能用分数表示吗?”引导学生进行数学实验与探索,发展抽象思维能力。在探索了以上几个问题的基础上,学生真实体会到了面积为2的正方形的边长不能用有理数来表示,但它确实存在,切身感受到除有理数外还有一类数――点出概念“无理数”。
实验结果:拼图对学生来说易如反掌,通过动手操作,班级交流,全班一致认为最容易、最美观的拼图是:
因为已经学习了算术平方根的概念,学生马上就说出了大正方形的边长是 。但接下去的“用计算器探求 的小数部分”就有点困难了。教师提示:(1)输入大于1小于2的数,平方的结果比2大了,怎样调整?结果比2小呢?(2)我们能否找到一个有限的小数,使得它的平方刚好等于2?(3)大家有没有发现1.4142…出现循环,那你认为在省略号的背后, 有没有可能出现循环?从而引导学生体验到:事实上,=1.4142…是一个无限的小数。
在动手操作实验和展示结果的过程,增强学生的感性认识、培养合作精神,并从中体验成功的喜悦,加深了对概念的理解。
二、数学实验教学,有助于培养学生发现数学规律
数学规律的抽象性通常都有某种“直观”的想法为背景。作为教师,就应该通过实验,把这种“直观”的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及与其它问题的联系。传统数学课堂教学压缩了学习知识的思维过程,往往造成感知与概括之间的思维断层,既无法保证教学质量,更不可能发展学生的学习策略。新理念提倡重视过程教学,在揭示知识生成规律上,让学生自己动手实验,自己去发现数学规律,从而理解更深刻。
案例2:浙江版初中数学七年级上册教材51页“探究活动”:
1.一张纸的厚度为0.09 mm,那么你的身高是纸的厚度的多少倍?
2.将这张纸安图2-14的方法(图略)连续对折6次,这时它的厚度是多少?
3.假设连续对折始终是可能的,那么对折多少次后,所得的厚度可以超过你的身高?先猜一猜,然后计算出实际答案。你的猜想符合实际问题吗?
实验准备:全班每四人一组,每人准备一张A4型号白纸。
实验要求:让学生将手中的纸安要求对折,并记录每一次对折后纸张的层数,计算出它的高度,寻找出数据变化的规律,并解决上述问题。
实验结果:问题1学生很快就解决了。解决问题2时,学生列出了这样一份表格:
对折次数1 2 3 4 5 6 7 … n
纸张层数2 2×2 2×2×2 24 25 26 27 … 2n
学生动手操作,找到规律,很快就解决了问题3。
三、通过数学实验,培养学生的创新思维能力。
学生的创新思维往往来自与学习过程中的思维“偏差”和好奇心。学生在传统的教学模式中,往往 表现为随着时间的推移,好奇心越来越弱,越来越顺着老师讲课的思维想问题,思维中的“偏差”越来越少,思维的亮点也越来越少。而实验教学恰恰是提供学生探索发现、尝试错误和猜想检验的机会,只要教师善于发现学生的闪光点,善于捕捉学生思维“偏差”的契机,恰当引导,有时实验教学会收到意想不到的效果。
案例3:在上一案例教学时,有一次,一个学生问:“我第7次折就折不起来了,纸这么小,要折到人这么高,该怎么折?”马上有很多学生也积极响应了这一疑问,也有学生说拿很大的纸就能折很多层。学生忽视了题中的“假设”,一个虚拟的问题变成了棘手的课堂突发事件。怎么办?
我马上让学生再用练习本的纸做折纸实验:四人分别用(1)练习本大小的纸(2)练习本一半大小的纸(3)练习本四分之一大小的纸(4)两张练习本大小的纸重叠(看作练习本大小两倍的纸已经对折了一次)的纸对折,看各自最多能对折多少次?
实验结果显示:按题中的方法对折,不论纸张大小,第6次对折都能完成,小的纸张第7次对折就比较勉强,第八次对折就难以完成了;大的纸可对折7次,第八次就难以完成,超过8次是不可能的。
教师趁机提问:一张纸对折了7次后,厚度是原来的多少?而宽度又是原来的多少?
学生再次实验后得出:一张纸对折了7次后,厚度是原来的128倍,而宽度则是原来的 ,这样就接近了可以对折的极限。
课堂实验后,我又布置了课外实验:找你认为很薄的纸和很大的纸,再做对折实验,探究纸张对折的极限。
实践证明:学生在思维“偏差”的引导下动手实验,学到了教材上学不到的知识,使学生通过学数学而变得聪明起来。
让我们合理运用实验教学,充分发挥其作用。倡导学生主动参与、交流、合作、探究等多种学习活动,改进学习方式,使学生真正成为学习的主人。从小培养学生科学的研究态度,拓展思路,形成创新意识,最终培育出更多高素质的优秀人才。